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Aims Experimental autoimmune myocarditis (EAM) is a CD4þ T cell-mediated mouse model of inflamma-
tory heart disease. Tissue-resident bone marrow-derived cells adopt different cellular phenotypes
depending on the local milieu. We expanded a specific population of bone marrow-derived prominin-
1-expressing progenitor cells (PPC) from healthy heart tissue, analysed their plasticity, and evaluated
their capacity to protect mice from EAM and heart failure.
Methods and results PPC were expanded from healthy mouse hearts. Analysis of CD45.1/CD45.2 chimera
mice confirmed bone marrow origin of PPC. Depending on in vitro culture conditions, PPC differentiated
into macrophages, dendritic cells, or cardiomyocyte-like cells. In vivo, PPC acquired a cardiac phenotype
after direct injection into healthy hearts. Intravenous injection of PPC into myosin alpha heavy chain/
complete Freund’s adjuvant (MyHC-a/CFA)-immunized BALB/c mice resulted in heart-specific homing
and differentiation into the macrophage phenotype. Histology revealed reduced severity scores for
PPC-treated mice compared with control animals [treated with phosphate-buffered saline (PBS) or
crude bone marrow at day 21 after MyHC-a/CFA immunization]. Echocardiography showed preserved
fractional shortening and velocity of circumferential shortening in PPC but not PBS-treated MyHC-a/
CFA-immunized mice. In vitro and in vivo data suggested that interferon-g signalling on PPC was critical
for nitric oxide-mediated suppression of heart-specific CD4þ T cells. Accordingly, PPC from interferon-g
receptor-deficient mice failed to protect MyHC-a/CFA-immunized mice from EAM.
Conclusion Prominin-1-expressing, heart-resident, bone marrow-derived cells combine high plasticity,
T cell-suppressing capacity, and anti-inflammatory in vivo effects.
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1. Introduction

Dilated cardiomyopathy is a common cause of heart failure
and frequently results from viral infections.1 Ongoing
inflammation can be due to viral persistence and continuous
release of inflammatory cytokines, or to an autoimmune
response against cardiac tissues.2–4

Experimental autoimmune myocarditis (EAM) is a CD4þ

T cell-mediated mouse model of post-infectious cardio-
myopathy and can be induced in susceptible strains by
immunization with self-peptides derived from the myosin

alpha heavy chain (MyHC-a) together with a strong adju-
vant,5,6 or by injection of activated, MyHC-a-loaded dendri-
tic cells.7,8 Severity scores peak 21 days after immunization
and the extent of inflammatory infiltrates resolves slowly
thereafter. Nevertheless, many animals develop dilated
cardiomyopathy on follow-up.9

The healthy mouse heart contains between 5 and 8%
CD45þ expressing, bone marrow-derived cells. Among this
population, a CD11bþ fraction is supposed to reflect
immature monocyte-like cells.9 The role of heart-resident
bone marrow-derived cells in inflammatory heart disease,
however, remains largely speculative. In the context of
other inflammation models, recent data suggest that
monocyte-like precursor cells can differentiate into diverse* Corresponding author. Tel: þ41 61 265 3524; fax: þ41 61 265 2350.
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subpopulations of inflammatory cells such as dendritic cells
and macrophages, depending on the cytokine/chemokine
environment.10–12 Other studies point to an amazing regen-
erative potential of bone marrow-derived tissue-resident
cells.13 For example, in heart disease models, there is evi-
dence that bone marrow-derived precursor cells can adopt
tissue-specific phenotypes depending on the local milieu.14

We hypothesize that bone marrow-derived precursor cells
with high plasticity can be expanded from healthy heart
tissue. As a selection marker, we chose prominin-1 (CD133),
a well-described indicator of haematopoietic, embryonic,
and adult progenitor cells.15,16 Here, we describe the expan-
sion of high numbers of immunomodulating prominin-1-
expressing bone marrow-derived precursor cells (PPC) with
multilineage differentiation potential from healthy mouse
hearts. In addition, we provide in vivo evidence that PPC
efficiently suppress EAM and heart failure development in
MyHC-a/complete Freund’s adjuvant (CFA)-immunized mice.

2. Methods

2.1 Animals

BALB/c mice, C57Bl/6-GFP transgenic mice (GFP under the control
of b-actin promoter), and IFN-g receptor knockout (IFN-gR2/2)
mice were purchased from Jackson Laboratory and housed in a
specific pathogen-free environment. The local authorities approved
the study and all experiments were performed in strict accordance
with the US National Institutes of Health Guide for the Care and Use
of Laboratory Animals and with the Swiss Federal Law.

2.2 Generation, expansion, and in vitro
differentiation of PPC

We generated and expanded PPC using a two-step protocol similar
to that described by Tang et al.17 Mouse heart tissues were prepared
according to reports17,18 with minor modifications (Supplementary
methods). We purified prominin-1þ cells from heart cell cultures
by magnetic cell sorting or FACS sorting. To generate
single-cell-derived clones, a single PPC-GFPþ cell was co-plated
with PPC-GFP2 feeder cells, cultured for 2–3 weeks. Cardiac differen-
tiation was induced with 100 mM oxytocin (Sigma, Basel, Switzerland).
Macrophage differentiation was induced with 10 ng/mL macrophage-
colony-stimulating factor (M-CSF) (PeproTech, UK). Dendritic cell
differentiation was induced with 10 ng/mL granulocyte/macrophage
colony-stimulating factor (GM-CSF) (PeproTech).

2.3 Immunization and treatment protocols

For immunization, all animals were transferred into conventional
housing. Mice were injected subcutaneously with 100 mg/mouse of
MyHC-a-(Ac-SLKLMATLFSTYASADOH) emulsified 1:1 with CFA on
days 0 and 7, as described.6 Control mice were immunized with
CFA/phosphate-buffered saline (PBS) only.

Depending on the experiment, PPC-GFPþ cells derived from GFP
transgenic mice or PPC labelled with fluorochrome-conjugated
nanocrystals (Quantum dots: QD, Molecular Probes, Invitrogen,
OR, USA) were injected either intravenously (2 � 106 cells per
mouse) at days 7 and 14 after immunization or directly into the
left ventricle of anesthetized healthy animals (5 � 104 cells per
mouse). The number of intravenously injected PPC recruited to
the heart was calculated as percentage of PPC-QDþ detected by
FACS, multiplied by the total number of cells isolated from heart
tissue. The integration of intra-cardially injected PPC-GFPþ was
analysed using fluorescent microscopy on cryo- and paraffin-
sections. Mean percentages of integrated PPC-GFPþ, 2–3 weeks
after cells injection, were calculated as mean percentage of
GFPþ cardiomyocytes at the site of injection, multiplied by the

total number of cells in the region of injection and number of
analysed slides.

To block in vivo nitric oxide (NO) production, mice were intra-
peritoneally injected daily with 10 mg/kg body weight of L-NAME
(Sigma) from day 7 until they were killed at day 21, as described.19

Control mice received D-NAME (Sigma) under the same experimen-
tal conditions. Groups of L-NAME- and D-NAME-treated mice were
injected with PPC on days 7 and 14.

2.4 Generation of bone marrow chimera mice

Using a Gammatron (Co-60) system, 5–8-week-old C57/Bl6
(CD45.2þ) mice were lethally irradiated with two doses of 6.5 Gy,
and reconstituted with 2 � 107 donor bone marrow cells from
C57/Bl6-Ly5.1 (CD45.1þ) mice. After reconstitution, all mice
received prophylactic antibiotics in the drinking water and were
housed in a specific pathogen-free environment.

2.5 Histology

Animals were sacrificed at day 21 after the first immunization.
Hearts were removed and stained with haematoxylin–eosin (HE).
Myocarditis severity was assessed on HE sections and graded from
0 to 4, as described before.8

2.6 Reverse transcription–polymerase
chain reaction

Samples were collected in Tri Reagent (Luzerna Chem, Luzern, Swit-
zerland) and total RNA was isolated according to manufacturer’s
recommendations. mRNA was reverse transcribed using Oligo d(T)
primers (Invitrogen) and RevertAid M-MuLV Reverse Transcriptase
(Fermentas, St Leon-Rot, Germany). cDNA samples were amplified
using the TaqPCR Master Mix Kit (Qiagen, Basel, Switzerland) and
the appropriate oligonucleotides (see Supplementary material
online, Table S1). Positive controls included R1 embryonic stem
cells (kindly provided by Prof. A.M. Wobus, IPK, Gatersleben,
Germany) for nanog, c-kit, and Sca-1, and brain tissue of adult
mouse for Islet-1 and nestin.

2.7 Immunocytochemistry

Cells were cultured on gelatine-coated cover slips. Fixation and
immunostaining procedures were performed according to Wobus
et al.20 (see Supplementary material online, Methods).

2.8 Flow cytometry and cell sorting

Cells were incubated for 30 min on ice with the appropriate combi-
nation of fluorochrome conjugated and/or primary and secondary
antibodies (see Supplementary material online, Methods), then
washed and analysed on a FACS Calibur (BD Bioscience) using FloJo
6.1.4 software (TreeStar, Ashland, OR, USA). PPC were separated
on a FACSVantage SE (BD Bioscience).

2.9 T cell lines, proliferation assays,
and cytokine ELISA

For proliferation assays, CD4þ T cell lines were either stimulated for
24 h in anti-CD3-coated 96-well plates or for 48 h on irradiated
MyHC-a peptide-pulsed splenocytes in RPMI 1640 medium
(Cambrex BioWhittaker, Vervier, Belgium) with additives (see
Supplementary material online, Methods). With titrating amounts
of PPC, 105 CD4þ MyHC-a-specific T cell clones and 2 � 105

antigen presenting cells (APC)/well were co-cultured. Proliferation
was assessed by measuring 3H-thymidine incorporation (Amersham
Biosciences, Otelfingen, Switzerland). Nitrite (NO2

2) levels reflect-
ing NO production were determined using the Griess Reagent
System (Promega, Madison, WI, USA). IFN-g and TNF-a were
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measured using commercially available OptEIATM Mouse Elisa
systems (both BD Biosciences).

2.10 Functional analysis

Echocardiographic assessments were carried out as described.7 For
analysis, we used healthy control mice, and animals immunized
with MyHC-a/CFA, injected with either PPC or PBS.

2.11 Statistics

The Mann–Whitney U-test was used for the evaluation of non-
parametrical data. Proliferation responses and cytokine levels
were compared using ANOVA and Student’s t-test.

3. Results

3.1 Expansion of PPC from healthy hearts

To specifically enrich heart-resident monocyte precursor
cells, we adopted a modified two-step protocol, originally
described for the expansion of cardiac progenitor cells from
heart cell suspensions.17 Healthy adult heart contains up to
2% prominin-1þ cells (see Supplementary material online,
Figure S1). On the basis of the hypothesis that the expansion
of bone marrow-derived precursor cells critically depends on
various tissue factors creating a specific milieu, we seeded
the cell suspensions at high density (.106 cells per 60 mm
culture dish) and screened proliferating cells for the
expression of both bone marrow-specific and progenitor cell
markers. After a few days of culture, we observed small,
round, semi-attached, and highly proliferating cells which
contained 80–90% CD45þCD11bþ cells co-expressing the
stem/progenitor cell marker prominin-1 (Figure 1A).
Prominin-1þ cells were then purified by cell sorting, re-plated
onto gelatine-coated plates, and expanded for another 5–6
passages. The resulting PPC were clonogenic; co-plating of
single PPC-GFPþ cell together with 5 � 104 PPC-GFP2

feeder cells resulted in highly proliferating clones (see Sup-
plementary material online, Figure S1A). All PPC were
CD11bþCD45þ and chemokine receptor (CXCR) 4 expressing
cells (Figure 1A, C, and D). In addition, PPC co-expressed
stem/progenitor cell markers, such as stem cell antigen
(Sca) 1 and c-kit (CD117) (Figure 1A and E), suggesting a
monocyte precursor phenotype. PPC, however, did not
express the endothelial/haematopoietic progenitor marker
CD34 or the granulocyte specific marker Gr-1 (not shown).
On the genetic level, PPC showed enhanced expression of
genes characteristic for stem/progenitor cells such as
nanog, Sca-1, and c-kit, and markers of early lineage precur-
sors like Islet-1 and nestin (see Figure 3A).

Isolation of PPC from hearts of CD45.1/CD45.2 chimera
mice confirmed the bone marrow origin of PPC (Figure 1F).
Importantly, the efficient generation of clonogenic PPC
critically required the presence of a heart-derived feeder
cell layer.

Thus, we have established an efficient in vitro system to
specifically expand high numbers of clonogenic PPC with
stem/progenitor and haematopoietic cell characteristic
from mouse hearts.

3.2 Differentiation capacity of PPC

PPC co-expressed CD45 and CD11b, but no markers indi-
cating a mature monocyte or macrophage phenotype such

as F4/80 (Figure 2A). In the presence of M-CSF, PPC lost
their stem/progenitor characteristic gene expression
pattern; they became F4/802 and major histocompatibility
complex (MHC) class II-positive, acquired a large, flat mor-
phology, and showed granular cytoplasm and phagocytic
activity (Figure 2D and E). On the other hand, in the pre-
sence of GM-CSF, PPC expressed CD11c and MHCII and
acquired a dendritic cell phenotype (Figure 2F and G).

The observation that PPC expressed transcription factors
characteristic for the developing myocardium (Figure 3B)
prompted us to evaluate the capacity of PPC to differentiate
into cardiomyocyte-like cells. To induce cardiac differen-
tiation, we cultured PPC in the presence of oxytocin.21,22

As illustrated in Figure 3, oxytocin-treated PPC formed
clusters (Figure 3C), expressed genes characteristic for
cardiomyocytes such as Nkx 2.5, cardiac actin, cardiac
troponin (cTn) I, aMyHC, bMyHC, atrial natriuretic peptide,
and myosin light chain-2V23 (Figure 3B), and produced the
corresponding proteins (Figure 3E–H ). Co-cultures of differ-
entiated, GFP-expressing PPC together with adult,
cell-tracker-labelled rat cardiomyocytes resulted in spon-
taneous contraction of the clusters (see Supplementary
material online, Movie), excluding cell fusion between rat
and GFPþ mouse cells (Figure 3D; see Supplementary
material online, Figure S3B).

In order to confirm the capacity of the PPC to differentiate
into cardiomyocytes in vivo, 5 � 104 PPC-GFPþ were injected
directly into the left ventricular wall of healthy heart. One
day after injection, PPC were detectable as small, round,
and prominin-1-expressing cells (Figure 3I). Three weeks
later, GFP-expressing cells were clearly integrated into
the myocardium and co-expressed cardiomyocyte-specific
markers, such as aMyHC, sarcomeric actin, and cTnI
(Figure 3K–M). We determined that the region of cell inser-
tion into the myocardium contained 500–2500 of injected
GFPþ, which corresponds to 1–5% of the total number of
injected PPC-GFPþ. Notably, none of GFPþ cells expressed
vimentin or aSMA, specific for fibroblast differentiation
(Figure 3N and O). Importantly, PPC did not accumulate
specifically in the healthy heart after intravenous injection
(not shown).

Taken together, these results demonstrate the capacity of
PPC to differentiate into cardiomyocyte-like cells in vitro
and in vivo and to integrate themselves into the myocardium
of healthy mice after direct intra-cardial administration.

3.3 PPC suppress experimental autoimmune
myocarditis

Autoimmune myocarditis development depends on the
presence of heart-specific autoreactive CD4þ T cells.24,25

The first inflammatory infiltrates develop 10 and 14 days
after immunization and maximal disease scores are usually
evident at days 20–23.9 Given the high plasticity of the PPC,
we queried how these cells affect the disease course of EAM.

We immunized groups of BALB/c wild-type mice with the
MyHC-a peptide together with CFA, and addressed the
in vivo fate of PPC, labelled with fluorochrome-conjugated
nanocrystals (QD), after intravenous administration at days
7 and 14 following immunization (2� 106 of PPC-QDþ/
animal). PPC-QDþ homed to the hearts of immunized mice
and were still detectable 2–3 weeks after injection
(Figure 4A and B). We detected 5 � 104–2 � 105 of PPC-QDþ

G. Kania et al.238

http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvn190/DC1


Figure 1 Characteristic of prominin-1-expressing progenitor cells (PPC). (A) FACS analysis of heart-derived cells before separation of prominin-1þ cells. (B) Mor-
phology of PPC. (C–E) Immunofluorescence showed that PPC co-expressed CD45 (C), CXCR4 (D), and Sca-1 (E). Hoechst 33342 (blue) was used to visualize cell
nuclei. Bars ¼ 20 mm. (F) In CD45.1/CD45.2, chimera mice population of donor CD45.1 cells replaced CD45.2 of host origin within the heart. PPC from hearts of
CD45.1/CD45.2 chimera confirmed the bone marrow origin of PPC.
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among the total cell number in heart tissue suspensions in
FACS analysis. This number corresponds to �5% of injected
PPC-QDþ. Importantly, QD-labelled cells accumulating
within the inflamed heart gained the expression of macro-
phage markers F4/80 (Figure 4A) and CD68 (Figure 4B), but
no fibroblast (collagen I; in Figure 4C), granulocyte (Gr-1; in
Figure 4D) or cardiac markers (not shown). This suggests
that in the inflammatory environment in vivo, PPC differen-
tiated to a macrophage-like phenotype. No relevant homing
to other organs was observed (not shown).

We next evaluated the effect of intravenously injected
PPC on myocarditis severity in immunized mice. Control
animals received either PBS or crude suspensions of bone
marrow cells. Injection of PPC (Figure 4E and G), but not
PBS (Figure 4F and G) or crude bone marrow cells
(Figure 4G), suppressed the histological severity of myocar-
ditis. Echocardiography showed preserved fractional short-
ening (Figure 4I) and velocity of circumferential shortening
(Figure 4K) in PPC-treated mice compared with control
PBS-treated MyHC-a/CFA-immunized mice. These data
demonstrate that PPC injected during the acute phase of
disease efficiently suppress EAM and prevent the progression
to heart failure.

3.4 PPC suppress the expansion of heart-specific
CD41 T cells

As shown in Figure 4H, injection of PPC impaired the expan-
sion of heart-specific, auto-reactive CD4þ T cells in vivo.

CD4þ T cells were isolated at day 21 from immunized mice
treated with either PPC or PBS. CD4þ T cells were then
re-stimulated on MyHC-a pulsed antigen presenting cells.
As illustrated in Figure 4H, CD4þ T cells from PPC-treated,
MyHC-a/CFA-immunized mice show a markedly reduced
recall response upon MyHC-a stimulation. This, together
with the fact that PPC were injected 7 and 14 days after
immunization (i.e. after the priming phase of T cells), illus-
trates the markedly impaired in vivo expansion of
MyHC-a-specific T cells in PPC-treated mice.

Because the frequency of the pathogenic Th17 CD4þ T cell
subset within the whole peripheral CD4þ T cell population
largely exceeds 1–2% in the EAM model,24 we specifically
addressed the effect of the PPC on in vitro expanded,
highly MyHC-a-specific CD4þ T cell lines containing
between 20 and 60% IL-17 producing T cells, together with
10–20% of IFN-g producing T cells (Figure 5A and not
shown). As illustrated in Figure 5B, PPC strongly suppressed
the proliferation of MyHC-a-specific, activated CD4þ T cells
in vitro and reduced the release of TNF-a, one of the key
cytokines in myocarditis development26 (Figure 5D).

Given the fact that PPC differentiate to mature macro-
phages in the inflammatory microenvironment in vivo
(Figure 4), we hypothesized that PPC mediate Tcell suppres-
sion by NOS2 up-regulation and release of NO in vivo. Indeed,
we observed markedly enhanced release of NO (Figure 5E) in
supernatants of Tcell/APC cultures in the presence of PPC. In
addition, T cell responses were largely restored in the

Figure 2 Sorted prominin-1-expressing progenitor cells (PPC) differentiated into macrophage- and dendritic-like cells in vitro. (A–C) Undifferentiated
prominin-1þ/CD45þ/CD11bþ cells stained negative for F4/80, CD11c, and major histocompatibility complex (MHC) II (A), and did not show phagocyte activity
(B and C). (D and E) PPC exposed to macrophage-colony-stimulating factor (M-CSF) co-expressed F4/80, CD11b, and CD45, and became large, oval cells with
the capacity to phagocyte bacteria (E). (F and G) PPC exposed to granulocyte/macrophage colony-stimulating factor (GM-CSF) started to express CD11c and
MHCII (F), and changed the morphology towards dendritic cell phenotypes (G). Hoechst 33342 (blue) was used to visualize cell nuclei. Bars ¼ 20 mm.
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presence of the NOS inhibitor L-NAME (Figure 5C), suggesting
that PPC-mediated NO release indeed accounts for the
observed suppression of heart-reactive T cells in vitro. The
critical role of NO in the PPC-mediated suppression of auto-
reactive T cell responses and myocarditis was confirmed
in vivo. As shown in Figure 6A and B, treatment of immunized

and PPC injected mice with the non-specific NOS inhibitor
L-NAME, but not with the inactive D-NAME, abolished the pro-
tective effects of PPC treatment.

Several lines of evidence suggest that IFN-g is critically
involved in the up-regulation of NOS2 on activated mono-
cytes/macrophages. We therefore hypothesized that IFN-g

Figure 3 Sorted prominin-1-expressing progenitor cells (PPC) differentiated to cardiomyocyte-like cells. (A) mRNA levels of stem and progenitor cell specific
markers: nanog, sca-1, c-kit, Islet-1, nestin. (B) mRNA levels of genes specific for developing and mature cardiomyocytes like GATA4, Nkx2.5, MEF-2C, MEF-2D,
TEF-1, cardiac actin, cardiac troponin (cTn) I, a myosin heavy chain (aMyHC), bMyHC, atrial natriuretic peptide, myosin light chain-2V, in sorted PPC (Pþ), and
after differentiation into cardiac (C) lineages. (þ), positive control; H, adult heart. (C–H ) Oxytocin induced cardiac in vitro differentiation of PPC. PPC formed
cardiomyocyte-like clusters (C). Co-culture of PPC-GFPþ cells with cell-tracker red CMTPX-labelled adult rat cardiomyocytes showed no cell fusion between
mouse and rat cells (D). Cardiomyocyte-like cells differentiated from PPC expressed aMyHC (E), cTnI (F), and showed a typical pattern of sarcomeric actin
(G) and titin (H ). (I–O) PPC injected into healthy hearts were integrated in the myocardium. Prominin-1þ/GFPþ cells were found in clusters 1 day post-injection
(I), and acquired the cardiac phenotype 3 weeks after injection expressing aMyHC (K), sarcomeric actinin (L), cTnI (M), but not vimentin (N) or aSMA (O).
Hoechst 33342 (blue) was used to visualize cell nuclei. Bars ¼ 20 mm.
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signalling might also be critical for NOS2 induction in PPC
within the inflammatory microenvironment. To address
this question directly in vivo, we treated MyHC-a/
CFA-immunized mice with PPC generated from hearts of
IFN-gR2/2 mice. As illustrated in Figure 6C, IFN-gR2/2

PPC did not protect against myocarditis development.
Taken together, these data suggest that PPC exert a direct

inhibitory effect on heart-specific autoreactive CD4þ T cells.
This effect requires IFN-g signalling on PPC and is mediated
by NO.

4. Discussion

We have developed an efficient in vitro system to
expand high numbers of a specific population of bone

marrow-derived prominin-1-expressing monocyte precursor
cells from healthy heart tissue with immunomodulating
and multilineage differentiation capacity. PPC homed to
the inflamed heart, protected against EAM, and inhibited
pathogenic CD4þ T cell responses. Importantly, the PPC are
self-renewing, clonogenic, and exhibit a capacity to differ-
entiate not only to macrophage/monocyte or dendritic cell
phenotypes but also to cardiomyocyte-like cells depending
on the cell culture conditions and applied signalling. From
this point of view, our cells fulfil the required criteria for
multipotent progenitor cells and share many features of
mesenchymal stem cells (MSC).27

EAM is a CD4þ T cell-mediated disease. Th17 cells are
critical for the induction of heart-specific autoimmunity,
whereas Th1 and Th2 subsets are supposed to modulate

Figure 4 Prominin-1-expressing progenitor cells (PPC) suppressed experimental autoimmune myocarditis. (A–D) Intravenously injected PPC-QDþ (2 � 106 cells
per mouse at days 7 and 14) homed to the hearts of myosin alpha heavy chain/complete Freund’s adjuvant (MyHC-a/CFA)-immunized mice, and 21 days post-
immunization showed characteristic of macrophages expressing F4/80 (A) and CD68 (B), but not collagen Iþ fibroblasts (C) or Gr-1þ granulocytes (D). (E and F)
Heart sections from MyHC-a/CFA-immunized mice treated either with PPC (E) or PBS (F). (G) Myocarditis scores of individual immunized mice treated with PPC
(black triangles), PBS (white squares), or bone marrow suspensions (red circles), analysed 21 days after immunization. Median values for each group are shown.
(H ) Proliferation assay of CD4þ T cells isolated from spleens of MyHC-a/CFA-immunized mice treated with PPC (black triangles) or PBS (white squares). Means+
SD of 23 individual mice (nine per experimental and control group, five per bone marrow treated mice) are shown. (I–K) Echocardiography of mice treated with
PBS or PPC after MyHC-a/CFA immunization. Fractional shortening (FS, %) (I) and velocity of circumferential shortening (VCFC; circ/s) (K) were determined
34 days after immunization on PBS- or PPC-treated mice and on healthy mice used as controls. Average values+ SD of six individual mice are shown.
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the disease phenotype.24,28 Our data show that PPC suppress
the expansion of autoreactive CD4þ T cells in vivo and
in vitro. Mechanistically, the protective capacity of the
PPC depends on their differentiation to a monocyte/
macrophage-like phenotype suppressing heart-specific auto-
reactive CD4þ T cells IFN-g-dependently by release of NO.
This observation is in line with earlier studies suggesting
immunomodulatory effects of NO, including the induction
of reversible growth arrest in proliferating human Th1 and
Th2 T cell lines.29 T cell suppression could also be observed
in the absence of APC, if T cells were stimulated by plate-
bound anti-CD3 antibodies (not shown), suggesting direct

NO release from PPC. PPC, injected into MyHC-a/
CFA-immunized mice differentiated into monocyte-like
cells up-regulating NOS2 synthetase. Importantly, this
effect was dependent upon IFN-g, suggesting that the immu-
nomodulating effects of PPC require the presence of IFN-g,
released by Th1 cells as part of a heterogeneous autoreac-
tive CD4þ T cell response, CD8þ T cells,24 or natural killer
(NK) cells. In autoimmune myocarditis, autoreactive heart
infiltrating CD4þ T cells belong to the Th17 phenotype.
Accordingly, only minimal IFN-g is released from CD4þ T
cells within the acutely inflamed heart.24 However, it has
been shown very recently that heart-infiltrating CD8þ T

Figure 5 Prominin-1-expressing progenitor cells (PPC) inhibited the proliferation of myosin alpha heavy chain (MyHC-a)-specific Th17 T cell in vitro. (A) FACS
analysis confirmed that T cell lines contained between 20 and 60% of interleukin-17 producing CD4þ T cells. (B) Titrating amounts of PPC suppressed the prolifer-
ation of MyHC-a-specific CD4þ T17 cells. CD4þ T17 cells were re-stimulated with the MyHC-a antigen on irradiated APC cells. (C) The nitric oxide synthase (NOS)
inhibitor L-NAME prevented PPC-mediated suppression of antigen re-stimulated MyHC-a-specific CD4þ T17 cells. TNF-a (D) and IFN-g (F) production of in vitro
MyHC-a antigen re-stimulated CD4þ Tcells are reduced in the presence of PPC. (E) Enhanced NO production in supernatants of Tcell/APC cultures in the presence
of PPC. Each bar represents the mean+ SD from five different culture wells.
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cells release IFN-g and mediate non-specific bystander sup-
pression of autoreactive Th17 cells by induction of NOS2 and
NO release from macrophages.24 Nevertheless, we cannot
exclude other PPC-mediated anti-inflammatory mechanisms
and further studies are certainly needed to clarify these
issues.

Given the progenitor cell characteristics of the PPC, it
should be mentioned that human MSC are also supposed to
exert anti-inflammatory effects by changing the cytokine
secretion profile of dendritic cells, naive and effector
T cells, and NK cells.30 In the animal system, MSC reduced
EAM severity in rats.31,32 Interestingly, Sato et al.32 recently
showed that MSC induce an NO-dependent reversible
T cell growth arrest in vitro. In humans, cell-based immuno-
modulatory treatments are mostly applied to patients with
autoimmune disease such as severe systemic lupus erythema-
tosus33 or as adjuvant for severe graft vs. host disease after
bone marrow transplantation in patients with leukaemia.34

In both cases, however, the precise mechanisms responsible
for the beneficial effect of cell-based immune-modulating

treatment remain unknown. The PPC provide some expla-
nation on the cellular level as to how such modulation of the
immune system could work. To our knowledge and in contrast
to the heterogeneous population of MSC, these PPC are the
first haematopoietic progenitor cells with such well-defined
properties.

Appropriate timing of PPC injections was essential for the
prevention of EAM. These findings are in line with obser-
vations on the effects of embryonic stem cells in a model
of viral myocarditis35 or MSC in a rat model of acute myocar-
ditis.36 Our data suggest that the protective effects of PPC
depend rather on their immunomodulatory capacity than
on their regenerative potential. Injection of PPC resulted
in the differentiation of macrophages/mature monocytes
in the inflammatory environment in vivo, and we found no
evidence for heart-specific differentiation. On the other
hand, in the microenvironment of a healthy heart PPC
integrated themselves into the myocardium and differen-
tiated into cardiomyocytes. Nevertheless, the multilineage
differentiation capacity of the PPC offers the potential
to develop strategies that specifically promote tissue
regeneration from PPC in the inflamed heart. Potential
strategies might include combined PPC treatment/cytokine
targeting, and epigenetic or genetic manipulation of
in vitro expanded PPC.

PPC represent a population of prominin-1-expressing,
bone marrow-derived heart-resident cells. Prominin-1-
expressing cells are also present in bone marrow of
healthy animals but show no comparable regenerative and
immunomodulatory capacity (unpublished observation). We
believe that either heart-specific tissue factors, the specific
microenvironment due to the disintegration of whole
heart tissue, or inflammatory processes are critical for the
activation and expansion of immunomodulatory and regen-
erative PPC. If it is possible to precisely specify these
conditions and to adopt them on crude bone marrow, it
might become feasible to isolate huge numbers of immuno-
modulatory/regenerative cells from bone marrow. This
would be a further step towards an innovative treatment
strategy against inflammatory heart diseases.

In conclusion, the healthy mouse heart contains a specific
population of prominin-1þ bone marrow-derived heart-
resident precursor cells that can be expanded from disinte-
grated cardiac tissue. These cells combine regenerative and
immunomodulatory capacities and suppress EAM in mice.
If it will become feasible to specifically control the differen-
tiation potential of the PPC within the specific cytokine/
chemokine milieu of the chronically inflamed heart,
PPC-based treatment strategies could become a promising
therapeutic option for devastating inflammatory heart
diseases in the future.
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Supplementary material is available at Cardiovascular
Research online.
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Figure 6 Nitric oxide (NO) mediated the suppression of heart-specific CD4þ

T cells in vivo. (A) Proliferation assay of CD4þ T cells isolated from spleens of
myosin alpha heavy chain/complete Freund’s adjuvant (MyHC-a/
CFA)-immunized mice treated with prominin-1-expressing progenitor cells
(PPC) (at days 7 and 14) and D-NAME (daily between days 7–21; grey
circles), or with PPC (at days 7 and 14) and L-NAME (daily between days
7–21; black squares). Means+ SD of 8 individual mice are shown. (B) Myocar-
ditis scores of individual immunized mice analysed at day 21, after treat-
ments with PPC (at days 7 and 14) and D-NAME (daily between days 7–21;
grey circles), or with PPC (at days 7 and 14) and L-NAME (daily between
days 7–21; black squares). (C) Myocarditis scores of individual wt
(INF-gRþ/þ) mice 21 days after MyHC-a/CFA immunization, after treatments,
at days 7 and 14, with PPC derived from the hearts of IFN-gR2/2 mice (grey
circles), with PPC derived from the wild-type hearts of IFN-gRþ/þ mice (black
triangles), or with PBS as control (white squares). Median values for each
group are shown.
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