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ABSTRACT
Excursion set theory, where density perturbations evolve stochastically with the smoothing
scale, provides a method for computing the mass function of cosmological structures like
dark matter haloes, sheets and filaments. The computation of these mass functions is mapped
into the so-called first-passage time problem in the presence of a moving barrier. In this
paper we use the path-integral formulation of the excursion set theory developed recently to
analytically solve the first-passage time problem in the presence of a generic moving barrier,
in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for
both Gaussian and non-Gaussian initial conditions and for a window function which is a top-
hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse
barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does
not require the introduction of any form factor artificially derived from the Press–Schechter
formalism based on the spherical collapse and usually adopted in the literature.
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1 IN T RO D U C T I O N

The mass function of dark matter haloes is a central object in mod-
ern cosmology, because of its relevance to the formation and evo-
lution of galaxies and clusters. It is therefore important to have
accurate theoretical predictions for it, first of all when the pri-
mordial fluctuations are taken to be Gaussian, and then when
some level of non-Gaussianity (NG) is included. NGs are par-
ticularly relevant in the high-mass end of the power spectrum of
perturbations, i.e. on the scale of galaxy clusters, since the ef-
fect of NG fluctuations becomes especially visible on the tail
of the probability distribution. As a result, both the abundance
and the clustering properties of very massive haloes are sensi-
tive probes of primordial NGs (Grinstein & Wise 1986; Matarrese,
Lucchin & Bonometto 1986; Lucchin, Matarrese & Vittorio 1988;
Moscardini et al. 1991; Koyama, Soda & Taruya 1999; Matarrese,
Verde & Jimenez 2000; Robinson & Baker 2000; Robinson,
Gawiser & Silk 2000; LoVerde et al. 2008; Lam & Sheth 2009;
Giannantonio & Porciani 2010; Maggiore & Riotto 2010c), and
could be detected or significantly constrained by the various
planned large-scale galaxy surveys, both ground based (such as
DES, PanSTARRS and LSST) and in space (such as EUCLID and
ADEPT) (see e.g. Dalal et al. 2008; Carbone, Verde & Matarrese
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2008). Furthermore, the primordial NG alters the clustering of dark
matter haloes inducing a scale-dependent bias on large scales (Dalal
et al. 2008; Matarrese & Verde 2008; Slosar et al. 2008; Afshordi
& Tolley 2008) while even for small primordial NG the evolution
of perturbations on super-Hubble scales yields extra contributions
on smaller scales (Bartolo, Matarrese & Riotto 2005; Matarrese &
Verde 2009).

The formation and evolution of dark matter haloes is a highly
complex phenomenon, and a detailed quantitative understanding of
it can only come through large-scale N-body simulations, such as
the Millennium simulation (Springel et al. 2005). Simulations with
NG initial conditions have also been performed (Grossi et al. 2009;
Giannantonio & Porciani 2010; Wagner, Verde & 2010). At the same
time, some analytic understanding of the process of halo formation
is also desirable, both for the deeper physical understanding that
analytic models offer and for their flexibility under changes of
parameters of the cosmological model, shape of NGs, etc. Analytical
derivations of the halo mass function are typically based on Press–
Schechter (PS) theory (Press & Schechter 1974) and its extension
(Peacock & Heavens 1990; Bond et al. 1991) known as excursion
set theory (see Zentner 2007 for a recent review). In excursion
set theory the density perturbation evolves stochastically with the
smoothing scale, and the problem of computing the probability
of halo formation is mapped into the so-called first-passage time
problem in the presence of a barrier.
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The original formulation of excursion set theory (Bond et al.
1991) makes a number of simplifying assumptions, both at the
technical level, and concerning the physics of halo formation. In
particular, at the technical level it is assumed that the smoothed
density field δ evolves with the smoothing scale R [or more precisely
with the variance S(R) of the smoothed density field] in a Markovian
way. However, this assumption is correct only if the density field is
smoothed with a window function which is a top-hat in wavenumber
space, and with such a smoothing function it is difficult to associate
a mass M to a region smoothed with smoothing parameter R, so in
practice it is not possible to associate a mass to the dark matter haloes
identified in this way. For any other choice of the window function
[such as a top-hat in real space, for which the relation between the
mass M and the smoothing scale R is trivially M = (4/3)πR3ρ̄,
where ρ̄ is the average density of the universe], the actual evolution
of the smoothed density field with R is non-Markovian. At the
physical level, the crucial simplifying assumption of the original
formulation of excursion set theory is that dark matter halo forms
through the spherical collapse of initial overdensities. However, the
actual process of halo formation, as revealed by N-body simulations,
is much more complicated, and involves smooth accretion, tidal
interactions with the environment, as well as violent episodes of
collisions with other haloes, merging and fragmentation.

In a recent series of papers (Maggiore & Riotto 2010a,b,c) (here-
after MR1, MR2 and MR3, respectively), the original formulation
of excursion set theory has been extended to deal with the non-
Markovian effects which are induced either by the use of a realistic
filter function or by NGs in the primordial density field. The basic
idea is to reformulate the first-passage time problem in the presence
of a barrier in terms of the computation of a path integral with a
boundary [i.e. over a sum over all ‘trajectories’ δ(S) that always stay
below the barrier], and then to use standard results from quantum
field theory and statistical mechanics to express this path integral
in terms of the connected correlators of the theory. A path inte-
gral with boundaries of the kind that we obtain is, however, not
a very common object even in quantum field theory or statistical
mechanics, and in MR1 and MR3 we developed the technique for
evaluating it perturbatively with respect to the non-Markovian and
the NG effects. This provided first of all a rederivation of the results
of excursion set theory which, from the mathematical point of view,
is from first principles (for instance the absorbing barrier boundary
condition, which in the original formulation was imposed by hand,
comes out automatically in the formalism of MR1). Furthermore,
it allows us to include, at least perturbatively, the effect of non-
Markovianities and of NGs. In particular, in MR3 we have shown
how to include the effect of a non-vanishing bispectrum, while the
case of a non-vanishing trispectrum was considered in Maggiore &
Riotto (2010d) [see also D’Amico et al. (2010) for an approach to
NGs which combines our technique with the saddle-point method
developed in Matarrese et al. 2000].

Of course, this extension of excursion set theory, even if it pro-
vides an improvement of the original formulation from the math-
ematical point of view, still shares the same physical limitations
of the original formulations, as long as the same model for col-
lapse is used. The model for collapse can be improved in different,
complementary, ways. A crucial step was taken by Sheth, Mo &
Tormen (2001) who took into account the fact that actual haloes are
triaxial (Bardeen et al. 1986; Bond & Myers 1996) and showed that
an ellipsoidal collapse model can be implemented, within the ex-
cursion set theory framework, by computing the first-crossing rate
in the presence of a barrier Bel(S) which depends on S (‘moving
barrier’), rather than being constant at the value δc of the spherical

collapse,

Bel(S) � δc

[
1 + 0.4

(
S

δ2
c

)0.6
]

. (1)

Physically, this reflects the fact that low-mass haloes (which corre-
sponds to large S) have larger deviations from sphericity and sig-
nificant shear, that opposes collapse. Therefore, low-mass haloes
require a higher density to collapse. In contrast, very large haloes
are more and more spherical, so their effective barrier reduces to
the one for spherical collapse. In order to improve the agreement
between the prediction from the excursion set theory with an el-
lipsoidal collapse and the N-body simulations, Sheth et al. (2001)
also found that it was necessary to replace δc with

√
aδc, where√

a � 0.84 was obtained by requiring that their mass function fits
the GIF simulation. The moving barrier therefore becomes

Bel(S) � √
a δc

[
1 + 0.4

(
S

a δ2
c

)0.6
]

. (2)

The parameter a cannot be derived from the dynamics of the el-
lipsoidal collapse. Rather on the contrary, the ellipsoidal collapse
model would predict a = 1 because in the limit S ≡ σ 2 → 0 (i.e.
in the large mass limit) haloes become more and more spherical,
and therefore the barrier must reduce to that of spherical collapse.
This mismatch might be originated by the fact that, as mentioned
above, halo collapse is a very complex dynamical phenomenon,
and modelling it as spherical, or even as ellipsoidal, is a signifi-
cant oversimplification. In addition, the very definition of what is a
dark matter halo, both in N-body simulations and observationally,
is a difficult problem. In MR2, it was proposed that some of the
physical complications inherent to a realistic description of halo
formation can be included in the excursion set theory framework,
at least at an effective level, by taking into account that the critical
value for collapse is itself a stochastic variable, whose scatter re-
flects a number of complicated aspects of the underlying dynamics
(see also Audit, Teyssier & Alimi 1997; Lee & Shandarin 1998;
Sheth et al. 2001 for earlier related ideas). Solving the first-passage
time problem in the presence of a barrier which is diffusing around
the value δc of the spherical collapse model, it was found in MR2
that the exponential factor in the PS mass function changes from
exp{−δ2

c/2σ 2} to exp{−aδ2
c/2σ 2}, where a = 1/(1 + DB) and DB

is the diffusion coefficient of the barrier. The numerical value of DB,
and therefore the corresponding value of a, depends among other
things on the algorithm used for identifying haloes. From recent N-
body simulations that studied the properties of the collapse barrier,
a value DB � 0.25 was deduced in MR2 predicting a � 0.80 (up to
σ smaller than about 3). We remark that the deduced value of a in
MR3 also holds when the collapse is ellipsoidal in the limit of large
masses. This is because in the limit of large masses, we are mostly
interested in, the ellipsoidal collapse reduces to the spherical one.
This is supported by the fact that the value of a � 0.80 seems to
be in excellent agreement with the exponential fall off of the mass
function found in N-body simulations where the threshold barrier
is well-reproduced by the form (2). Of course, one has to refine
the computation of the diffusion coefficient for intermediate masses
and also to account for the fact that the barrier diffuses in a slightly
non-Markovian way.

The path-integral formulation developed in MR1 and MR3 was
restricted to the case of a constant barrier δc (while in MR2
stochastic fluctuations were considered). The aim of this paper
is to extend the path-integral formulation of excursion set the-
ory to the case of a generic moving barrier, and to provide
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analytical expressions which can be used to calculate the corre-
sponding first-passage time probability.

Given that the Sheth–Tormen (ST) halo mass function is widely
used in the literature, we believe that it is interesting to derive it by
computing the first-crossing rate with an ellipsoidal barrier from first
principles. To the best of our knowledge, an analytical expression
of the first-crossing rate was given in Sheth & Tormen (2002) just
as a fit to the N-body data and its derivation has been sketched only
recently in Lam & Sheth (2009). As we shall see, this derivation
is not free from drawbacks. There are other good reasons why
solving analytically for the first-crossing rate with a generic moving
barrier is interesting. First, excursion set theory can be applied to
characterize the cosmic web (Shen et al. 2006). Combining models
of triaxial collapse with excursion set theory, cosmic sheets are
defined as objects that have collapsed along only one axis, filaments
have collapsed along two axes and haloes are objects in which
triaxial collapse is complete. Computing the abundances of cosmic
sheets, filaments and haloes within the excursion set theory amount
again to solving a first-time passage problem with the corresponding
moving barriers

Bsheet(S) � √
a δc

[
1 − 0.56

(
S

a δ2
c

)0.55
]

, (3)

Bfilam(S) � √
a δc

[
1 − 0.012

(
S

a δ2
c

)0.28
]

. (4)

The insertion of each moving barrier into the excursion set ap-
proach provides estimates of the mass fraction in sheets, fila-
ments and haloes as a function of mass and time. Secondly, mov-
ing barriers are adopted in modelling through the excursion set
method the sizes of ionized regions during the epoch of reionization
(Furlanetto, Zaldarriaga & Hernquist 2004), while Sheth & Tormen
(2002) suggested that moving barriers could effectively incapsulate
a wide variety of phenomena such as suppression of the collapse
of small, low-mass, overdense patches in models in which dark
matter is warm. For a given choice of the barrier, the first-crossing
rate can in principle be evaluated with numerical techniques (Bond
et al. 1991; Zhang & Hui 2006), but it is interesting to obtain an-
alytic formulas valid for a generic functions B(S). Thirdly, as we
already mentioned, it has become recently clear that detecting a
significant amount of NG and its shape either from the cosmic
microwave background (CMB) or from the large-scale structure
(LSS) offers the possibility of opening a window into the dynamics
of the universe during the very first stages of its evolution (Bartolo
et al. 2004). It is therefore of primary importance to compute the
halo mass function when NG initial conditions are present. The
halo mass function with NG has been calculated in Matarrese et al.
(2000) and LoVerde et al. (2008) using the PS approach with a
spherical collapse, while the path-integral formulation of excursion
set theory in the presence of NG and with a diffusive barrier has
been formulated in MR3. The main motivation for computing the
halo mass function in the presence of NG within the excursion set
method and with a moving ellipsoidal barrier is dictated by the fact
that it has become customary in the literature to obtain the halo mass
function with NG by multiplying the ST halo mass function with
Gaussian initial conditions by a form factor obtained by dividing the
first-crossing rate with NG obtained for the PS spherical collapse
case (Matarrese et al. 2000; LoVerde et al. 2008) by the PS one
(the exception is represented by the consistent calculation of MR3,
which does not require this procedure). It is unclear (at least to us)
why and to which extent this spurious method should provide a

good approximation to the correct halo mass function with NG and
ellipsoidal barrier. The issue is also timely since N-body data with
NG initial conditions finally exist (Grossi et al. 2009; Giannantonio
& Porciani 2010; Wagner et al. 2010), and may be compared to
the various theoretical predictions for the halo mass functions with
NG. They differ at the O(20) per cent level, and it is important to
understand which error is introduced by adopting the form factor
procedure.

The paper is organized as follows. In Section 2, we review the
approach to the computation of the halo mass function based on
excursion set theory. In particular, in Section 2.1 we begin with
a quick review of the case in which the collapse is assumed to
be spherical, primordial fluctuations are taken to be Gaussian and
the evolution of the density perturbation with the smoothing scale
is assumed to be Markovian. This is the setting considered in the
classical paper by Bond et al. (1991). We will then proceed towards
increasing complexity. In Section 2.2, we review the basic points
of the approach developed in MR1, MR2 and MR3. In Section 3
we present the computation of the first-crossing rate for a generic
moving barrier, while Section 4 contains the generalization of the
computation to the case of NG initial conditions. Various technical
details are collected in Appendices A–D.

2 THE HALO MASS FUNCTI ON
I N EXCURSI ON SET THEORY

The halo mass function can be written as

dn(M)

dM
= f (σ )

ρ̄

M2

d ln σ−1(M)

d ln M
, (5)

where n(M) is the number density of dark matter haloes of mass
M, σ (M) is the variance of the linear density field smoothed on a
scale R corresponding to a mass M and ρ̄ is the average density of
the universe. The basic problem is therefore the computation of the
function f (σ ).

2.1 Spherical collapse, Gaussian fluctuations and Markovian
evolution with the smoothing scale

Let us summarize the basic points of the original formulation of
excursion set theory. One considers the density field δ smoothed
over a radius R, and studies its stochastic evolution as a function
of the smoothing scale R. As it was found in the classical paper
by Bond et al. (1991), when the density δ(R) is smoothed with a
sharp filter in momentum space, and the density fluctuations have
Gaussian statistics, the smoothed density field satisfies the equation

∂δ(S)

∂S
= η(S) , (6)

where S = σ 2(R) is the variance of the linear density field smoothed
on the scale R and computed with a sharp filter in momentum space,
while η(S) is a stochastic variable that satisfies

〈η(S1)η(S2)〉 = δD(S1 − S2) , (7)

where δD denotes the Dirac-delta function. Equations (6) and (7)
are the same as a Langevin equation with a Dirac-delta noise η(S),
with the variance S formally playing the role of time. Let us denote
by �(δ, S)dδ the probability density that the variable δ(S) reaches
a value between δ and δ + dδ by ‘time’ S. A textbook result in
statistical physics is that, if a variable δ(S) satisfies a Langevin
equation with a Dirac-delta noise, the probability density �(δ, S)
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satisfies the Fokker–Planck (FP) equation

∂�

∂S
= 1

2

∂2�

∂δ2
. (8)

The solution of this equation over the whole real axis −∞ < δ <

∞, with the boundary condition that it vanishes at δ = ±∞, is

�0(δ, S) = 1√
2πS

e−δ2/(2S) . (9)

and is nothing but the distribution function of PS theory. Since, in
hierarchical models of structure formation, as R increases, i.e. as
the halo mass increases, the variance S decreases monotonically, in
Bond et al. (1991) it was realized that we are actually interested
in the stochastic evolution of δ against S only until the ‘trajectory’
crosses for the first time the threshold δc for collapse. The thresh-
old value δc is estimated within the spherical collapse model where
a spherically symmetric inhomogeneity behaves like a closed col-
lapsing universe. The underlying idea behind the PS theory is that
the comoving number density of collapsed haloes can be computed
from the statistical properties of the linear density field, assumed to
be Gaussian. In this picture haloes form when the smoothed linear
density contrast is larger than δc � 1.68 which is obtained com-
puting the linear density contrast at the collapse time. This result
can be extended to arbitrary redshift z by reabsorbing the evolution
of the variance into δc, so that δc in the above result is replaced
by δc(z) = δc(0)/D(z), where D(z) is the linear growth factor. No-
tice that all the subsequent stochastic evolution of δ as a function
of S, which in general results in trajectories going multiple times
above and below the threshold, is irrelevant, since it corresponds
to smaller-scale structures that will be erased and engulfed by the
collapse and virialization of the halo corresponding to the largest
value of R, i.e. the smallest value of S, for which the threshold has
been crossed. In other words, trajectories should be eliminated from
further consideration once they have reached the threshold for the
first time. In Bond et al. (1991) this is implemented by imposing
the boundary condition

�(δ, S)|δ=δc
= 0 . (10)

The solution of the FP equation with this boundary condition is

�(δ, S) = 1√
2πS

[
e−δ2/(2S) − e−(2δc−δ)2/(2S)

]
, (11)

and gives the distribution function of excursion set theory. The first
term is the PS result, while the second term in equation (11) is an
‘image’ Gaussian centred in δ = 2δc. Integrating this �(δ, S) over
dδ from −∞ to δc gives the probability that a trajectory, at ‘time’
S, has always been below the threshold. Increasing S this integral
decreases because more and more trajectories cross the threshold
for the first time, so the probability of first crossing the threshold
between ‘time’ S and S + dS is given by F (S)dS, with

F (S) = − ∂

∂S

∫ δc

−∞
dδ �(δ; S) . (12)

With standard manipulations [see e.g. Zentner (2007) or MR1] one
then finds that the function f (σ ) which appears in equation (5) is
given by

f (σ ) = 2σ 2F (σ 2) , (13)

where we wrote S = σ 2. Using equation (11) one finds the PS
prediction for the function f (σ ),

fPS(σ ) =
(

2

π

)1/2
δc

σ
e−δ2

c /(2σ 2)

=
(

2

π

)1/2
δc

S1/2
e−δ2

c /(2S) .
(14)

Observe that, when computing the first-crossing rate, the contribu-
tion of the Gaussian centred in δ = 0 and of the image Gaussian in
equation (11) add up, giving the well-known factor of 2 that was
missed in the original PS theory.

2.2 Path-integral formulation of excursion set theory

While excursion set theory is quite elegant, and gives a first analytic
understanding of the halo mass function, it suffers of two important
set of problems. First, it is based on the spherical collapse model,
which is, as we already mentioned, a significant oversimplification
of the actual complex dynamics of halo formation. The second set
of problems of excursion set theory is of a more technical nature,
and is due to the fact that the Langevin equation with Dirac-delta
noise, which is at the basis of the whole construction, can only be
derived if one works with a sharp filter in momentum space, and if
the fluctuations are Gaussian. However, as it is well known (Bond
et al. 1991), and as we have discussed at length in MR1, with such a
filter it is difficult to associate a halo mass to the smoothing scale R.
When one uses a sharp filter in coordinate space, the evolution of the
density with the smoothing scale becomes non-Markovian, and the
corresponding first-passage time problem is technically much more
difficult. In particular, the distribution function �(δ, S) no longer
satisfies a local differential equation such as the FP equation. The
issue is particularly relevant when one wants to include NGs in the
formalism, since the inclusion of NGs renders again the dynamics
non-Markovian. Neglecting the non-Markovian dynamics due to
the filter function would lead to incorrectly assigning to NGs in the
primordial density field effects which are rather due, more trivially,
to the procedure that one has adopted for smoothing the density
field.

In MR1 and MR3, a formalism has been developed that allows us
to generalize excursion set theory to the case of a non-Markovian
dynamics, either generated by the filter function or by primordial
NGs. The basic idea is the following. Rather than trying to derive
a simple, local, differential equation for �(δ, S) (which, as shown
in MR1, is impossible; in the non-Markovian case �(δ, S) rather
satisfies a very complicated equation which is non-local with respect
to ‘time’ S), we construct the probability distribution �(δ, S) directly
by summing over all paths that never exceeded the threshold δc, i.e.
by writing �(δ, S) as a path integral with boundaries. To obtain
such a representation, we consider an ensemble of trajectories all
starting at S0 = 0 from an initial position δ(0) = δ0, and we follow
them for a ‘time’ S. We discretize the interval [0, S] in steps �S =
ε, so Sk = kε with k = 1, . . . n, and Sn ≡ S. A trajectory is then
defined by the collection of values {δ1, . . . , δn}, such that δ(Sk) =
δk. The probability density in the space of trajectories is

W (δ0; δ1, . . . , δn; Sn) ≡ 〈δD(δ(S1) − δ1) . . . δD(δ(Sn) − δn)〉 , (15)

where δD denotes the Dirac delta. Then the probability of arriving
in δn in a ‘time’ Sn, starting from an initial value δ0, without ever
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going above the threshold, is1

�ε(δ0; δn; Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1

× W (δ0; δ1, . . . , δn−1, δn; Sn). (16)

The label ε in �ε reminds us that this quantity is defined with a
finite spacing ε, and we are finally interested in the continuum limit
ε → 0. As discussed in MR1 and MR3 (see equations 23–27 and
discussion therein), W(δ0; δ1, . . . , δn−1, δn; Sn) can be expressed in
terms of the connected correlators of the theory,

W (δ0; δ1, . . . , δn; Sn) =
∫

Dλ eZ , (17)

where∫
Dλ ≡

∫ ∞

−∞

dλ1

2π
. . .

dλn

2π
, (18)

and

Z = i

n∑
i=1

λiδi

+
∞∑

p=2

(−i)p

p!

n∑
i1=1

. . .

n∑
ip=1

λi1 . . . λip 〈δi1 . . . δip 〉c . (19)

We also used the notation δi = δ(Si), and 〈δ1. . .δn〉c denotes the
connected n-point correlator. So

�ε(δ0; δn; Sn) =
∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ eZ . (20)

When δ(S) satisfies equations (6) and (7) (which is the case for
sharp filter in wavenumber space) the two-point function can be
easily computed, and is given by

〈δ(Si)δ(Sj )〉 = min(Si, Sj ) . (21)

If furthermore we consider Gaussian fluctuations, all n-point con-
nected correlators with n ≥ 3 vanish, and the probability density W
can be computed explicitly,

W gm(δ0; δ1, . . . , δn; Sn) = 1

(2πε)n/2
e− 1

2ε

∑ n−1
i=0 (δi+1−δi )2

, (22)

where the superscript ‘gm’ (Gaussian–Markovian) reminds us that
this value of W is computed for Gaussian fluctuations, and when the
evolution with respect to the smoothing scale is Markovian. Using
this result, in MR1 we have shown that, in the continuum limit,
the distribution function �ε=0(δ; S), computed with a sharp filter
in wavenumber space, satisfies a FP equation with the boundary
condition �ε=0(δc, S) = 0, and we have therefore recovered, from
a path-integral approach, the distribution function of excursion set
theory, equation (11). Considering a more realistic filter, such as
a step function in coordinate space, necessarily introduces non-
Markovianity and the computation, which is quite non-trivial from
a technical point of view, has been discussed in great detail in MR1.
In order to make the computation of the first-crossing rate with a
moving barrier more clear, from now on we will adopt the step
function in wavenumber space as a filter and eliminate the source
of non-Markovianity given by the choice of the window function.
The effect of a more realistic filter function could then be computed
as in MR1. The effect, however, will be tiny in the large mass range

1 In equations (9) and (11) we had implicitly assumed δ0 = 0. In the follow-
ing, however, it will be necessary to keep track also of the initial position
δ0.

we are mostly interested in for the NG case. Let us just close this
section by reminding the reader about some useful properties of
the path-integral formulation which will turn out to be useful in the
following. We will encounter objects such as

n−1∑
i=1

F (Si)
∫ δc

−∞
dδ1 . . . dδn−1 ∂iW

gm(δ0; δ1, . . . , δn; Sn) , (23)

where F denotes a generic function. To compute this expression we
integrate ∂i by parts,∫ δc

−∞
dδ1 . . . dδn−1 ∂iW

gm(δ0; δ1, . . . , δn; Sn)

=
∫ δc

−∞
dδ1 . . . d̂δi . . . dδn−1

× W (δ0; δ1, . . . , δi = δc, . . . , δn−1, δn; Sn) , (24)

where the notation d̂δi means that we must omit dδi from the list of
integration variables. We next observe that Wgm satisfies

W gm(δ0; δ1, . . . , δi = δc, . . . , δn; Sn)

= W gm(δ0; δ1, . . . , δi−1, δc; Si)

× W gm(δc; δi+1, . . . , δn; Sn − Si) , (25)

as can be verified directly from its explicit expression (22). Then∫ δc

−∞
dδ1 . . . dδi−1

∫ δc

−∞
dδi+1 . . . dδn−1

× W gm(δ0; δ1, . . . , δi−1, δc; Si)W
gm(δc; δi+1, . . . , δn; Sn − Si)

= �gm
ε (δ0; δc; Si)�

gm
ε (δc; δn; Sn − Si) , (26)

and to compute the expression given in equation (23) we must
compute objects such as

n−1∑
i=1

F (Si)�
gm
ε (δ0; δc; Si)�

gm
ε (δc; δn; Sn − Si). (27)

To proceed further, we need to know �gm
ε (δ0; δc; Si). By definition,

for ε = 0 this quantity vanishes, since its second argument is equal
to the threshold value δc, compare with equation (10). However, in
the continuum limit the sum over i becomes 1/ε times an integral
over an intermediate time variable Si,

n−1∑
i=1

→ 1

ε

∫ Sn

o

dSi , (28)

so we need to know how �gm
ε (δ0; δc; Si) approaches zero when ε

→ 0. In MR1, we proved that it vanishes as
√

ε, and that

�gm
ε (δ0; δc; S) = √

ε
1√
π

δc − δ0

S3/2
e−(δc−δ0)2/(2S) + O(ε) . (29)

Similarly, for δn < δc,

�gm
ε (δc; δn; S) = √

ε
1√
π

δc − δn

S3/2
e−(δc−δn)2/(2S) + O(ε) . (30)

In the following, we will also need the expression for �gm
ε with the

first and second argument both equal to δc, which is given by (see
again MR1)

�gm
ε (δc; δc; S) = ε√

2πS3/2
. (31)

The two factors
√

ε from equations (29) and (30) produce just an
overall factor of ε that compensates the factor 1/ε in equation (28),
and we are left with a finite integral over dSi. Terms with two or
more derivative, e.g. ∂i∂j, or ∂i, ∂j∂k acting on W, with all indices
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i, j, k smaller than n, can be computed similarly, and have been
discussed in detail in MR1. With these technical details in mind,
one can proceed to the computation of the first-crossing rate in the
presence of a moving barrier.

3 PATH IN T E G R A L W I T H M OV I N G BA R R I E R :
G AU S S I A N F L U C T UAT I O N S A N D M A R KOV I A N
E VO L U T I O N W I T H T H E SM O OTH I N G S C A L E

In this section we discuss the first-crossing rate for a generic moving
barrier B(S), specializing to the ellipsoidal one at the end. We con-
sider first the case of Gaussian primordial fluctuations, and we will
assume that the evolution with the smoothing scale is Markovian.
Similarly to the constant barrier case, the probability of arriving at
δn in a ‘time’ Sn, starting from the initial value δ0 = 0, without ever
going above the threshold, is

�ε(δn; Sn) ≡
∫ B(S1)

−∞
dδ1 . . .

∫ B(Sn−1)

−∞
dδn−1

× W (δ0; δ1, . . . , δn−1, δn; Sn). (32)

Since we are considering the Gaussian and Markovian case, W(δ0;
δ1, . . . , δn−1, δn; Sn) can be expressed in terms of the connected
two-point function of the theory, as

W (δ0; δ1, . . . , δn; Sn) =
∫

Dλ

× exp

{
i

n∑
i=1

λiδi − 1

2

n∑
i,j=1

λiλj min(Si, Sj )

}
. (33)

Taking the derivative with respect to the time Sn ≡ S of equation (32)
and using the fact that iλj (j = 1, . . . , n) can be replaced by ∂j, we
discover that �ε(δ; S) satisfies the FP equation

∂�ε(δ; S)

∂S
= 1

2

∂2�ε(δ; S)

∂δ2
, (34)

(where we used the notation δn = δ). To determine the boundary
condition to be imposed on the solution of equation (34) we pro-
ceed as follows. We start from equation (32), with W given by
equation (22) and, shifting the variables δi (i = 1, . . . , n) as δi →
δi − B(Si), we obtain

�ε(δn + Bn; Sn) =
∫ 0

−∞
dδ1 . . .

∫ 0

−∞
dδn−1

× 1

(2πε)n/2
e− 1

2ε

∑ n−1
i=0 [δi+1−δi+Bn−Bn−1]2

=
∫ 0

−∞
dδn−1

1√
2πε

e− 1
2ε [δn−δn−1+Bn−Bn−1]2

× �ε(δn−1 + Bn−1; Sn−1) , (35)

where we used the notation Bi ≡ B(Si), so Bn ≡ Bn. Now let Sn−1 =
S so Sn = S + ε, and δn + B(S) = δ, δn − δn−1 = �δ. For fixed δn, we
have dδn−1 = −d(�δ). By further taking the limit ε → 0 [assuming
that B(S) is a continuous and differentiable function], equation (35)
becomes

�ε=0(δ; S) =
∫ ∞

δ−B(S)
d(�δ)δD(�δ)�ε=0(δ − �δ; S) . (36)

From this relation, we get the boundary condition. If δ = B(S)the in-
tegral is over half of the support of the Dirac delta and so �ε=0(B(S);
S) = (1/2)�ε=0(B(S); S) hence �ε=0(B(S); S) = 0. Furthermore, if
δ > B(S), the support of the Dirac delta is outside the integration
limits and therefore we conclude that

�ε=0(δ; S) = 0 for δ ≥ B(S) . (37)

In the continuum limit the first-crossing rate is then given by

F (S) = − ∂

∂S

∫ B(S)

−∞
dδ �ε=0(δ; S)

= −dB(S)

dS
�ε=0(B(S), S) −

∫ B(S)

−∞
dδ

∂�ε=0(δ; S)

∂S
. (38)

The first term on the right-hand side vanishes because of the bound-
ary condition, while the second term can be written in a more
convenient form using the FP equation (34), so

F (S) = −1

2

∫ B(S)

−∞
dδ

∂2�ε=0(δ; S)

∂δ2

= −1

2

∂�ε=0(δ; S)

∂δ

∣∣∣∣
δ=B(S)

. (39)

To compute the probability �ε=0(δn, Sn) we proceed in the following
way. At every ith step of the path integral we Taylor expand the
barrier around its final value

B(Si) = B(Sn) +
∞∑

p=1

B (p)
n

p!
(Si − Sn)p , (40)

where

B (p)
n ≡ dpB(Sn)

dS
p
n

(41)

[so in particular B(0)
n = B(Sn) ≡ Bn]. We now perform a shift in the

variable δi (i = 1, . . . , n − 1) in the path integral

δi → δi −
∞∑

p=1

B (p)
n

p!
(Si − Sn)p . (42)

Then �ε(δn; Sn) can be written as

�ε(δn; Sn) =
∫ Bn

−∞
dδ1 . . .

∫ Bn

−∞
dδn−1

∫
Dλ eZ (43)

where

Z = i

n∑
i=1

λiδi − 1

2

n∑
i,j=1

λiλj min(Si, Sj )

+ i

n−1∑
i=1

λi

∞∑
p=1

B (p)
n

p!
(Si − Sn)p . (44)

We next expand

exp

{
i

n−1∑
i=1

λi

∞∑
p=1

B (p)
n

p!
(Si − Sn)p

}

� 1 + i

n−1∑
i=1

λi

∞∑
p=1

B (p)
n

p!
(Si − Sn)p

−1

2

n−1∑
i,j=1

λiλj

∞∑
p,q=1

B (p)
n B (q)

n

p!q!
(Si − Sn)p

(
Sj − Sn

)q + · · · ,

(45)

and we write �ε(δn; Sn) as

�ε(δn; Sn) = �(0)
ε (δn; Sn) + �(1)

ε (δn; Sn)

+ �(2)
ε (δn; Sn) + · · · , (46)

where

�
(0)
ε=0(δn; Sn) = 1√

2πSn

[
e−δ2

n/(2Sn) − e−(2Bn−δn)2/(2Sn)
]
, (47)
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�(1)
ε (δn; Sn) =

n−1∑
i=1

∫ Bn

−∞
dδ1 . . . dδn−1

∞∑
p=1

B (p)
n

p!

× (Si − Sn)p ∂iW
gm(δ0; δ1, . . . , δn; Sn)

(48)

and

�(2)
ε (δn; Sn) = 1

2

n−1∑
i,j=1

∫ Bn

−∞
dδ1 . . . dδn−1

∞∑
p,q=1

B (p)
n B (q)

n

p!q!

× (Si − Sn)p
(
Sj − Sn

)q
∂i∂jW

gm(δ0; δ1, . . . , δn; Sn) .
(49)

We have therefore formally expanded �ε=0(δn, Sn) in a series of
terms �

(1)
ε=0, �

(2)
ε=0, etc., in which each term is itself given by an

infinite sum over indices p, q, . . . . To proceed further, we must
either perform some approximation, or identify a suitable small
parameter, and organize the terms in a systematic expansion in such
a small parameter. In the following sections, we first discuss the
approximation in which one can rederive the ST result, and we will
then compare it with two complementary, and more systematic,
expansions.

3.1 The Sheth–Tormen approximation

To attack the problem, a first idea is to perform the integrals in
equations (48) and (49) approximating (Sn − Si)p−1 � Sp−1

n inside
the integrals. This is in fact equivalent to the approximation made
in Lam & Sheth (2009) (see in particular their equation 20). The
detailed calculations, within our formalism, are reported in Appe-
ndix A and one obtains the first-crossing rate for a moving barrier

FST(S) = e−B2(S)/(2S)

√
2πS3/2

∞∑
p=0

(−S)p

p!

∂pB(S)

∂Sp
. (50)

This expression agrees with the one suggested in Sheth & Tormen
(2002). Notice that for the cases of constant barrier B(S) = δc and
of a linear barrier B(S) = δc + βS, which are the known examples
where the first-crossing rate can be computed analytically by solving
exactly the FP equation in the presence of such a barrier [for the
linear barrier see Sheth (1998) and section IX of Zentner (2007)], the
first-crossing rate (50) reproduces the correct answer. When applied
to the ellipsoidal barrier given in equation (2), and restricting the
sum to p ≤ 5, one recovers the ellipsoidal collapse result of Sheth
& Tormen (2002)

F ell
ST(S) �

√
a δc√

2πS3/2
e−B2(S)/(2S)

⎡⎣1

+ 0.4
5∑

p=0

(−1)p
(

0.6

p

)(
S

aδ2
c

)0.6
]

=
√

a δc√
2πS3/2

e−B2(S)/(2S)

[
1 + 0.067

(
S

aδ2
c

)0.6
]

. (51)

This procedure is, however, not free from drawbacks. Indeed, the
restriction of the sum to p ≤ 5 is not justified and is merely dictated
by the fact that stopping arbitrarily the series at p = 5 provides
a good fit to the N-body simulations.2 However, if the sum over
p is extended up to infinity the sum simply resums to B(0) since,
performing a Taylor expansion of B(S0 − S) in powers of S and

2 We thank Ravi Sheth for discussions about this point.

setting finally S0 = S, we have

B(0) =
∞∑

p=0

(−S)p

p!

∂pB(S)

∂Sp
. (52)

Since B(0) = √
aδc, we just end up with

F ell
p=∞(S) =

√
a δc√

2πS3/2
e−B2(S)/(2S) , (53)

so the correction term ∼ S0.6 in equation (51) seems an artefact of
stopping the sum to p = 5. This is a rather puzzling result, since
this correction is known to fit well the data, and is widely used in
the literature. This calls for a different and more rigorous approach
where the integrals are performed without the approximation (Sn −
Si)p−1 � Sp−1

n . We discuss two different possible approaches in the
next two section.

3.2 Expansion of �ε(δ, S) in derivatives of B(S)

In order to develop a more systematic expansion, we first consider
the case of a barrier B(S) which is slowly varying with S. In this
case, the small parameters are the derivatives of the function B(S).

At first one might think that such an approximation, although use-
ful in some cases, would not apply to the barrier which corresponds
to the ellipsoidal collapse, equation (2). In this case in fact Bel(S) is
given by a constant plus a term proportional to Sγ with γ � 0.6 <

1, and therefore already its first derivative, which is proportional
to Sγ−1, is large at sufficiently small S, and formally even diverges
as S → 0. However, one should not forget that, in practice, even
the largest galaxy clusters than one finds in observations, as well
as in large-scale N-body simulations, have typical masses smaller
than about 1015 h−1 M which, in the standard cold dark matter
cosmology, corresponds to values of S = σ 2(M) � 0.35 (see e.g.
fig. 1 of Zentner 2007). Even for such a value, which is the smallest
in which we are interested, the value of B′

el(S) is just of the order of
0.3 which means that, in the range of masses of interest, the barrier
of ellipsoidal collapse can be considered as slowly varying.

We therefore expand �ε(δn; Sn) in powers of the derivatives of
the barrier, keeping terms with the same number of derivatives, so
for instance a term proportional to d2B/dS2 is taken to be of the
same order as (dB/dS)2. Working up to terms of the second order
in the derivatives we get

�ε(δn; Sn) = �(0)
ε (δn; Sn) + �(a)

ε (δn; Sn) + �(b)
ε (δn; Sn)

+ �(c)
ε (δn; Sn) , (54)

where

�(a)
ε (δn; Sn) =

n−1∑
i=1

B ′
n(Si − Sn)

×
∫ Bn

−∞
dδ1 . . . dδn−1∂iW

gm ,
(55)

�(b)
ε (δn; Sn) = 1

2

n−1∑
i=1

B ′′
n (Si − Sn)2

×
∫ Bn

−∞
dδ1 . . . dδn−1∂iW

gm ,
(56)

�(c)
ε (δn; Sn) = 1

2

n−1∑
i,j=1

(
B ′

n

)2
(Si − Sn)(Sj − Sn)

×
∫ Bn

−∞
dδ1 . . . dδn−1∂i∂jW

gm,
(57)
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and we used a prime to denote the derivatives of B(Sn) with respect
to Sn. Observe that �(a) and �(b) are linear in the first and second
derivative, respectively, and come from the terms p = 1, 2 of �(1),
while �(c) is quadratic in the first derivative, and is the term p =
q = 1 of �(2).

In Appendix B, we compute these three terms, in the continuum
limit, using the techniques developed in MR1. For the first term we
find

�
(a)
ε=0(δn; Sn) = −2B ′

n

(Bn − δn)√
2πSn

e−(2Bn−δn)2/(2Sn) . (58)

Observe that it satisfies the boundary condition �
(a)
ε=0 (δn;Sn) = 0

when δn = Bn, as it should. For the second term we get

�
(b)
ε=0(δn; Sn) = 1

2π
B ′′

n (Bn − δn)

×
[√

2πSne
−(2Bn−δn)2/(2Sn) − πBnErfc

(
2Bn − δn√

2Sn

)]
, (59)

and again vanishes linearly as δn → Bn. The third term is given by

�
(c)
ε=0(δn; Sn) = −2(B ′

n)2 (Bn − δn)2

√
2πSn

e−(2Bn−δn)2/(2Sn), (60)

and vanishes quadratically as δn → Bn. This means that in the
end it does not contribute to the first-crossing rate, since, using
equation (39), the latter is given by the derivative of �ε=0(δn; Sn)
with respect to δn, evaluated in δn = Bn.

It is interesting to check explicitly that this solution for �(δn;
Sn) satisfies the FP equation, up to the order to which we have
computed, i.e. up to terms of second order in the derivatives of the
barrier, included. Define the FP operator

D̂ = ∂

∂Sn

− 1

2

∂2

∂δ2
n

, (61)

and define f (0), . . . f (c) from

D̂�A
ε=0(δn; Sn) =

√
2

π

1

S
3/2
n

e−(2Bn−δ)2/(2Sn)f A , (62)

where A = (0), (a), (b), (c) so, up to terms of second order (included)
in the derivatives of the barrier,

D̂�ε=0(δn; Sn) =
√

2

π

1

S
3/2
n

e−(2Bn−δn)2/(2Sn)

× [f (0) + f (a) + f (b) + f (c)] . (63)

Inserting the expressions for �
(0)
ε=0, �

(a)
ε=0, �

(b)
ε=0, �

(c)
ε=0 computed

above we get

f (0) = (2Bn − δn)B ′
n , (64)

f (a) = −(2Bn − δn)B ′
n − Sn(Bn − δn)B ′′

n

+ [2(Bn − δn)(2Bn − δn) − Sn](B ′
n)2 (65)

f (b) = Sn(Bn − δn)B ′′
n + O(B ′′′

n , B ′
nB

′′
n , (B ′

n)3) (66)

f (c) = −[2(Bn − δn)(2Bn − δn) − Sn](B ′
n)2

+ O(B ′′′
n , B ′

nB
′′
n , (B ′

n)3). (67)

Therefore, the sum �
(0)
ε=0 + �

(a)
ε=0 + �

(b)
ε=0 + �

(c)
ε=0 satisfies the FP

equation, modulo terms of third order in the derivative of the barrier.
The first-crossing rate is then readily evaluated through equa-

tion (39). The zeroth-order contribution from �
(0)
ε=0 is

F (0)(S) = B(S)√
2πS3/2

e−B2(S)/(2S) , (68)

while the higher orders give

F (a)(S) = − B ′(S)√
2πS

e−B(S)2/(2S) , (69)

F (b)(S) = B ′′(S)

4π

×
{√

2πSe−B(S)2/(2S) − πB(S)Erfc

[
B(S)

2S

]}
, (70)

and F (c) = 0, as already mentioned. In Fig. 1, we compare the ST
first-crossing rate FST(S) to the quantity

F (2)
der(S) = F (0)(S) + F (a)(S) + F (b)(S) , (71)

i.e. to the first-crossing rate obtained by performing the expansion
in derivatives of the barrier, up to the second order (included) in the
derivatives, while in Fig. 2 we plot the relative difference (F (2)

der −
FST)/FST. We see that the two results agree perfectly at large values
of ν (i.e. at large masses), and they still agree to better than 10 per
cent down to ν = 1.

The fact that the F (2)
der is numerically quite close to FST provides

a more satisfying derivation of the ST mass function, showing that
the approximation (Sn − Si)p−1 � Sp−1

n , together with the truncation
to p = 5 of the series in equation (50), in the end gives a simple
analytic formula which is numerically quite close to the result of a
derivation based on a systematic expansion.

1.0 5.02.0 3.01.5

0.01

0.02
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0.20
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f

Figure 1. The ST first-crossing rate for the ellipsoidal barrier F ell
ST (dashed

black line), compared to the first-crossing rateF (2)
der (solid blue line) obtained

from the expansion in derivatives of the barrier, as a function of ν.
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Figure 2. The ratio (F (2)
der − FST)/FST, as a function of ν.
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Figure 3. First-crossing rate for filaments (blue), sheets (red) and haloes
(brown). The dotted lines refer to the ST approximation (50) with p ≤ 5,
while the continuous ones refer to our result (71).

For comparison, we also report in Fig. 3 the first-crossing rate for
filaments (blue), sheets (red) and haloes (brown). The dashed lines
refer to the ST approximation (50) with p ≤ 5, while the continuous
ones refer to our result (71).

3.3 Expansion of �ε=0(δn, Sn) in powers of (Bn − δn)

In this section we describe a different expansion scheme, which
allows us to resum a large number of terms. The basic idea is
that, even if the computation of the distribution function � can be
interesting by itself in a more general context (since the probability
distribution of a random walk in the presence of a moving barrier
is a problem interesting in its own right in statistical physics), for
the computation of the halo mass function we are really interested
only in the first-crossing rate. Then equation (39) shows that, in the
Gaussian and Markovian case, we only need the derivative ∂�/∂δn

evaluated at δn = Bn. As shown in equation (37), �(δn, Sn) vanishes
at δn = Bn, so its Taylor expansion around δn = Bn starts from a term
linear in (δn − B), followed by terms of order (δn − B)2, etc. When
we compute ∂�/∂δn in δn = Bn, the terms quadratic and higher
order in (δn − B) give zero, so we do not need the full function �,
but only the term linear in (δn − B) in its Taylor expansion around
δn = Bn. This simplifies our task considerably.

We first compute the part linear in (δn − Bn) of �(1). Using the
results of the previous section, in particular equations (24), (29) and
(30), �(1)

ε (δn;Sn) can be rewritten as

�
(1)
ε=0(δn; Sn) = Bn(Bn − δn)

π

∞∑
p=1

(−1)p

p!
B (p)

n

×
∫ Sn

0
dSi

(Sn − Si)
p−(3/2)

S
3/2
i

× e−B2
n/(2Si )e−(Bn−δn)2/[2(Sn−Si )] . (72)

For p = 0, 1 this integral can be computed analytically, see Ap-
pendix C, but for p ≥ 2 we have not been able to compute it
exactly. However, for our purposes it is sufficient to observe that
in this expression for �

(1)
ε=0 there is already a factor (Bn − δn)

in front of the integral over dSi, and the integral converges at
Si = Sn for all p ≥ 1, even if in the integrand we set δn = Bn.

Therefore

�
(1)
ε=0(δn; Sn) = Bn(Bn − δn)

π

∞∑
p=1

(−1)p

p!
B (p)

n

×
∫ Sn

0
dSi

(Sn − Si)
p−(3/2)

S
3/2
i

e−B2
n/(2Si )

+ O(Bn − δn)2 . (73)

In Appendix C, we show that for p = 1 this integral is elemen-
tary while for p ≥ 2 it can be computed in terms of the confluent
hypergeometric function U(a, b, z). As a result,

�
(1)
ε=0(δn; Sn) =

√
2

π

Bn − δn

S
1/2
n

e−B2
n/(2Sn)

×
[ ∞∑

p=1

(−1)p

p!
B (p)

n Sp−1
n �

(
p − 1

2

)
U

(
p − 1,

1

2
,

B2
n

2Sn

)]
+ O(Bn − δn)2 , (74)

where the term p = 1 can be written in a more elementary form
using U(0, b, z) = 1 and �(1/2) = √

π. Along the same lines, we
have also computed the generic mth order (m ≥ 1) of the expansion
of �ε=0 (see Appendix D), at the linear order in Bn − δn, and it is
given by

�
(m)
ε=0 = (Bn − δn)e− B2

n
2Sn

m! 2
m
2 −1π

3−m
2

∞∑
p1,...,pm=1

(−1)
∑m

k=1 pk+m+1

× B (p1)
n · · · B (pm)

n

p1! · · · pm!
cp2,...,pmS

∑m
k=1 pk− m

2 −1
n

× �

(
m∑

k=1

pk − m

2

)
U

(
m∑

k=1

pk − m + 1

2
,

1

2
,

B2
n

2Sn

)
+ O(Bn − δn)2, (75)

where the coefficients cp,q,... can be computed by the recursion rela-
tions (D10)–(D11). This expression is useful for numerical evalua-
tion, but not very illuminating from an analytic point of view. So it
can be useful to keep in mind that in the limit 2Sn � B2

n, i.e. for large
halo masses, the confluent hypergeometric U function simplifies to

U

(
k,

1

2
,

B2
n

2Sn

)
�

(
2Sn

B2
n

)k [
1 + O

(
2Sn

B2
n

)]
. (76)

The total probability is given by � = ∑∞
m=0 �(m). We have not been

able to resum all the terms of the expansion, but the first few terms
are sufficient for the first-crossing rate. In fact, the first-crossing
rate is readily evaluated through equation (39). The zeroth-order
contribution from �

(0)
ε=0 is given by equation (68) while higher-

order contributions F (m) are obtained from �
(m)
ε=0 in equation (75),

and are easily evaluated numerically. In Fig. 4, we plot F (0) (blue)
and F (0) + F (1) + F (1) + · · · (red), for the ellipsoidal barrier given
in equation (2). We deduce that the sum for � converges quickly
and the terms after the second one contribute negligibly to the first-
crossing rate. It is therefore an excellent approximation to consider
the first-crossing rate for a generic moving barrier B(S) as given by
F (0) + F (1), i.e.

F (S) = e−B2(S)/(2S)

√
2πS3/2

[
B(S)

+
∞∑

p=1

(−S)p

p!

∂pB(S)

∂Sp

�
(
p − 1

2

)
√

π
U

(
p − 1,

1

2
,

B2
n

2Sn

)]
.

(77)
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Figure 4. First-crossing rate for the ellipsoidal barrier (2). FST (dashed
black), F (0) (solid blue), F (0) +F (1) +F (2) +· · · (solid red). The spherical
collapse model, with the same value of a = 0.707, corresponds to the dotted
black line.

For comparison, we also report in Fig. 4 the first-crossing rate
of the spherical collapse model (dotted line) and the Sheth &
Tormen (2002) result of equation (51) (dashed line). Note also that
equation (77) reproduces the exact known results for the cases of
constant and linear barrier shapes. It is also interesting to note that
F (S) in equation (77) and the rate F (2)

der(S) computed in the previous
section differ by less than 5 per cent for ν ≥ 0.2, for the ellipsoidal
barrier (2). It is then reassuring to see that our two approaches to the
computation of the first-crossing rate lead to consistent results, and
their difference allows us to get a quantitative idea of the theoretical
error in the computation. The fact that both results are numerically
quite close to the ST mass function also provides a more satisfying
justification of the ST mass function itself.

Armed with these results, we may now proceed to evaluate the
halo mass function in the case in which NG is present.

4 THE ELLIPSOIDAL COLLAPSE
A N D N O N - G AU S S I A N I T Y

Deviations from Gaussianity are encoded, e.g., in the connected
three- and four-point correlation functions which are dubbed the
bispectrum and the trispectrum, respectively. A phenomenological
way of parametrizing the level of NG is to expand the fully non-
linear primordial Bardeen gravitational potential � in powers of the
linear gravitational potential �L

� = �L + fNL

(
�2

L − 〈
�2

L

〉)
. (78)

The dimensionless quantity f NL sets the magnitude of the three-point
correlation function (Bartolo et al. 2004). If the process generating
the primordial NG is local in space, the parameter f NL in Fourier
space is independent of the momenta entering the corresponding
correlation functions; if instead the process which generates the
primordial cosmological perturbations is non-local in space, like in
models of inflation with non-canonical kinetic terms, f NL acquires
a dependence on the momenta. The strongest current limits on
the strength of local NG set the f NL parameter to be in the range
−4 < f NL < 80 at 95 per cent confidence level (Smith, Senatore &
Zaldarriaga 2010).

In MR3, the effect of primordial NG on the halo mass function
was computed, using excursion set theory, for the case of a spherical
collapse with constant barrier. In the presence of NG the stochastic
evolution of the smoothed density field, as a function of the smooth-
ing scale, is non-Markovian and beside ‘local’ terms that generalize

PS theory, there are also ‘memory’ terms, whose effect on the mass
function has been computed using the formalism developed in MR1.
When computing the effect of the three-point correlator on the mass
function, a PS-like approach which consists in neglecting the cloud-
in-cloud problem and in multiplying the final result by a fudge factor
�2, is in principle not justified. Indeed, when computed correctly
in the framework of excursion set theory, the ‘local’ contribution
vanishes (for all odd-point correlators the contribution of the image
Gaussian cancels the PS contribution rather than adding up), and
the result comes entirely from non-trivial memory terms which are
absent in PS theory. However, it turns out that, in the limit of large
halo masses, where the effect of NG is more relevant, these memory
terms give a contribution which is the same as that computed naively
with PS theory, plus subleading terms depending on derivatives of
the three-point correlator.

The goal of this section is to compute, using excursion set theory,
the halo mass function in the presence of NG and for the ellipsoidal
collapse, thus extending the findings of MR3 obtained for the spher-
ical collapse. This computation is motivated by the fact that in the
literature the halo mass function for the more realistic case of the
ellipsoidal collapse is obtained, when NG is present, by multiplying
the first-crossing rate (51) by a form factor R(fNL, S) obtained by
dividing the first-crossing rates with and without NG for the PS
spherical collapse case

FST(fNL, S) = FST(fNL = 0, S)R(fNL, S)

= FST(fNL = 0, S)
FPS(fNL, S)

FPS(fNL = 0, S)
. (79)

This procedure has, however, no rigorous justification and its valid-
ity should be tested with an explicit computation.

Similarly to the Gaussian case, the probability of arriving in δn

in a ‘time’ Sn, starting from the initial value δ0 = 0, without ever
going above the threshold, in the presence of NG, is given by

�ε(δn; Sn) ≡
∫ B(S1)

−∞
dδ1 . . .

∫ B(Sn−1)

−∞
dδn−1

× WNG(δ0; δ1, . . . , δn−1, δn; Sn), (80)

where

WNG(δ0; δ1, . . . , δn; Sn) =
∫

Dλ

× exp

{
i

n∑
i=1

λiδi − 1

2

n∑
i,j=1

λiλj min(Si, Sj )

}

× exp

{
(−i)3

6

n∑
i,j ,k=1

〈δiδj δk〉cλiλjλk

}
. (81)

We now perform the shift (42) in the δi (i = 1, . . . , n − 1) variables
and expand the NG contribution to the first order

�ε(δn; Sn) = �
(0)
ε=0(δn; Sn) + �

(1)
ε=0(δn; Sn)

+ �
(2)
ε=0(δn; Sn) + · · ·

− 1

6

∫ Bn

−∞
dδ1 . . .

∫ Bn

−∞
dδn−1

n∑
i,j ,k=1

×〈δiδj δk〉c∂i∂j∂kWmb(δ0; δ1, . . . , δn−1, δn; Sn), (82)
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where Wmb is the probability density in the space of trajectories
with a moving barrier, so that∫ Bn

−∞
dδ1 . . .

∫ Bn

−∞
dδn−1 Wmb(δ0; δ1, . . . , δn−1, δn; Sn)

= �
(0)
ε=0 + �

(1)
ε=0 + �

(2)
ε=0 + · · · . (83)

In principle, the contribution from NG can be computed separating
the various contributions to the sum according to whether an index is
equal or smaller than n. In this way, however, the computations face
some technical difficulties. Fortunately, as discussed in MR3, the
problem simplifies considerably in the limit of large halo masses,
which is just the physically interesting limit. Large masses mean
small values of Sn. The arguments Si, Sj and Sk in the correlator
〈δiδjδk〉 ≡ 〈δ(Si)δ(Sj)δ(Sk)〉c range over the interval [0, Sn] and, if
Sn goes to zero, we can expand the correlator in a multiple Taylor
series around the point Si = Sj = Sk = Sn. We introduce the notation

G
(p,q,r)
3 (Sn)

≡
[

dp

dS
p
i

dq

dS
q
j

dr

dSr
k

〈δ(Si)δ(Sj )δ(Sk)〉c

]
Si=Sj =Sk=Sn

. (84)

Then

〈δ(Si)δ(Sj )δ(Sk)〉 =
∞∑

p,q,r=0

(−1)p+q+r

p!q!r!
(Sn − Si)

p

× (Sn − Sj )q (Sn − Sk)rG(p,q,r,s)
3 (Sn) .

(85)

The leading contribution to the halo mass function is given by the
term in equation (85) with p = q = r = 0 and we neglect subleading
contributions, which can be computed with the same technique de-
veloped in MR3. The discrete sum reduces to 〈δ3

n〉c

∑n
i,j ,k=1 ∂i∂j∂k

and we can split it as

∑n
i,j ,k=1 ∂i∂j∂k = ∂3

n + 3
n−1∑

i,j=1

∂i∂j∂n + 3
n−1∑
i=1

∂i∂
2
n

+
n−1∑

i,j ,k=1

∂i∂j∂k .
(86)

When applying these derivatives to the Wmb, one can use the iden-
tities proven in MR1 and MR3, namely

n−1∑
i=1

∫ Bn

−∞
dδ1 . . . dδn−1 ∂iWmb = ∂

∂Bn

�ε=0 , (87)

n−1∑
i,j=1

∫ Bn

−∞
dδ1 . . . dδn−1 ∂i∂jWmb = ∂2

∂B2(Sn)
�ε=0 (88)

and

n−1∑
i,j ,k=1

∫ Bn

−∞
dδ1 . . . dδn−1 ∂i∂j∂kWmb = ∂3

∂B3(Sn)
�ε=0 . (89)

The probability density (82) calculated in this way vanishes at the
barrier point δn = Bn, when one properly expands the �ε=0 accord-
ing to one of the two methods described in the previous sections.
This is a good check of the procedure we adopted and is necessary
when evaluating the first-crossing rate.

The calculation of the first-crossing rate proceeds by integrating
the probability density over δn and then taking the derivative with

respect to Sn. This is fortunate because we can directly compute
n∑

i,j ,k=1

∫ Bn

−∞
dδ1 . . . dδn ∂i∂j∂kWmb

= ∂3

∂B3(Sn)

∫ Bn

−∞
dδn�ε=0.

(90)

We choose two different expansions for �. The expansion in deriva-
tives of Section 3.2 gives

∂3

∂B3(Sn)

∫ Bn

−∞
dδn

(
�

(0)
ε=0 + �

(a)
ε=0 + �

(b)
ε=0 + �

(c)
ε=0 + · · ·

)
= 2√

2πS5/2
e− B2

2S

[−S + B2 + SB ′ (B + 2SB ′)]
− 3

2
Erfc

[
B√
2S

]
B ′′ , (91)

while the expansion using the approximation of Lam & Sheth (2009)
(and discussed in Appendix A) gives

∂3

∂B3(Sn)

∫ Bn

−∞
dδn

(
�

(0)
ε=0 + �

(1,ST)
ε=0 + �

(2,ST)
ε=0 + · · ·

)
= −

√
2

πS3
n

(
1 − B2(Sn)

Sn

+ Bn

Sn

P(Sn) − 2
P2(Sn)

Sn

)
× e−B2(Sn)/(2Sn) , (92)

where

P(S) ≡
5∑

p=1

(−S)p

p!

∂pB(S)

∂Sp
. (93)

Notice that the sum runs only up to p = 5 to provide a good fit to
the data, as mentioned earlier in Section 3.1. If we now normalize
the bispectrum as

S3(S) ≡ 1

S2
〈δ3(S)〉 , (94)

we finally obtain the leading NG contribution to the first-crossing
rate with a generic moving barrier. Using (91) we obtain

FNG(S) = F (0) + F (a) + F (b) + F (c)

+ S3

12
√

2πS5/2
[−2(S2 + 2SB2 − B4 + SBB ′(−7S + B2)

− 8S3B ′2 + 4S3BB ′3) + S3B ′′(B + 22SB ′)]e−B2/(2S)

+ S2S ′
3

3
√

2πS5/2
[B2 + SBB ′ + S(−1 + 2SB ′2)]e−B2/(2S)

− S

4
((2S3 + SS ′

3)B ′′ + SS3B
′′′)Erfc

[
B√
2S

]
, (95)

while using (92) we obtain

FNG(S) = B + P√
2πS3/2

e−B2/(2S)

+ S3

6
√

2πS5/2
[B4 − B3(P + 2SB ′) + 2B2(−S + P2

+ SPB ′) + SB(P + 6SB ′ − 4P2B ′ − 2SP ′)

− S(S + 2P(P + SB ′ − 4SP ′))]e−B2/(2S)

+ S2S ′
3

3
√

2πS5/2
[B2 − BP − S + 2P2]e−B2/(2S) , (96)

where the prime denotes differentation with respect to S.
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Both formulae (95)–(96) can be further improved using a saddle-
point technique in order to resum the largest contributions from NG,
as in D’Amico et al. (2010). Limiting this procedure to the leading
terms of (96) and treating P(S) and the derivatives of B(S) as small
parameters, we find for instance

FNG(S) = Be− B2
2S√

2πS3/2
e

1
6 S3

B3
S

(
1 − 1

3
S3B − 1

6

SS3

B

)
+ P√

2πS3/2
e−B2/(2S)

+ S3

6
√

2πS5/2
[−B3(P + 2SB ′) + 2B2(P2

+ SPB ′) + SB(P + 6SB ′ − 4P2B ′ − 2SP ′)

− 2SP(P + SB ′ − 4SP ′)]e−B2/(2S)

+ S2S ′
3

3
√

2πS5/2
[B2 − BP − S + 2P2]e−B2/(2S) . (97)

Notice that, in the limit of constant barrier, our formulae are slightly
different from those of D’Amico et al. (2010); we believe that the
origin of this difference is due to the fact that they assumed a very
specific form for the cumulants 〈δiδjδk〉 ∝ (SiSjSk)1/2. With this
assumption, one can find relations between the various derivatives
of the cumulants, which otherwise are independent.

In the limit of constant barrier B(S) = √
aδc one recovers the

spherical collapse result of MR3 (neglecting the terms proportional
to S ′

3)

F sph
NG (S) =

√
aδc√

2πS3/2
e−aδ2

c /(2S)

[
1

+ S S3

6
√

aδc

(
(
√

aδc)4

S2
− 2

(
√

aδc)2

S
− 1

)]
. (98)

In Fig. 5, we show the first-crossing rates (95) and (96), applied
to the case of the ellipsoidal barrier (2). The two curves differ by
O(10) per cent at most in the small halo mass regime. In Fig. 6
we plot the ratio between the NG first-crossing rate deduced from
equations (95) and the Gaussian one. In Fig. 7, we show the ratios
between the first-crossing rate given in (97) and the first-crossing
rates (79) built up from two different commonly used form factors
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Figure 5. The first-crossing rate deduced from equations (95) (dashed blue
line) and (96) (solid red line), for the case of ellipsoidal barrier (2). We used
S3 given by equation (101) with local f NL = 100.
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Figure 6. The ratio between the NG first-crossing rate f NG deduced from
equations (96) and the Gaussian one f G. We used S3 given by equation (101)
with local f NL = 100.
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Figure 7. Ratio of the FNG(S) in (97) to the first-crossing rate given by the
FST(S) in (51) times a form factor RNG, as a function of the halo mass M
for f NL = 100. The form factors are those in equation (99) (red lines) and
equation (100) (blue lines). We considered redshifts z = 1 (solid lines) and
z = 2 (dashed lines).

RNG, the one of Matarrese et al. (2000):

RNG = exp

[S3(
√

aδc)3

6S

] [√
1 − 1

3
(
√

aδc)S3

+ 1

6

(
√

aδc)2√
1 − 1

3 (
√

aδc)S3

dS3

d ln
√

S

]
, (99)

and the one of LoVerde et al. (2008):

RNG = 1 + 1

6

S√
aδc

[
S3

(
(
√

aδc)4

S2
− 2

(
√

aδc)2

S
− 1

)
+ dS3

d ln
√

S

(
(
√

aδc)2

S
− 1

)]
. (100)

In the plots, we used the conversion from the variable S to the
variable M given in eq. (A2) of Neistein & Dekel (2008), while
for the scale-dependence of S3 we used the following simple fitting
formula

S3(S) = 2.4 × 10−4

S0.45
fNL , (101)

which agrees well with LoVerde et al. (2008).
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As we can see, the first-crossing rate in the case of an ellipsoidal
collapse and when NG is present is not generically given by the
Gaussian first-crossing rate for the ellipsoidal model multiplied
by the form factor obtained from the PS approach and can differ
significantly from it by O(10−50) per cent or more at high redshift
and large halo masses.

5 C O N C L U S I O N S

Excursion set theory provides an elegant analytical technique to
describe the distribution of dark matter in our universe. When sup-
plemented with various improvement concerning the physical mod-
ellization of halo formation [such as the ellipsoidal barrier of Sheth
& Tormen (1999) to take into account the triaxiality of halo collapse
and the diffusing barrier of MR2 to take into account the stochastic-
ity inherent to the process], as well as with improvements on some
technical aspects (such as the inclusion of the non-Markovian dy-
namics introduced by the filter function), it provides a quantitative
agreement with N-body simulations at the level of about 10 per cent
in most of the interesting mass range. While even more accurate
results might be needed for precision cosmology, it is still remark-
able that such a relatively simple theory catches quantitatively a
significant part of the physics of such a complicated dynamical
process as the formation of dark matter haloes. The same is true if
the excursion set method is applied to describe the abundances of
cosmic sheets and filaments. In this paper, we have extended the
path-integral approach proposed in MR1 for the spherical collapse
case to the case of generic moving barriers using a top-hat window
function in wavenumber space. We have shown that, using a well-
controlled and systematic expansion, we can reproduce the ST halo
mass function very well, therefore putting it on firmer grounds. We
have also performed the computation of the first-crossing rate for
the ellipsoidal barrier in the presence of NG initial conditions. Our
result is given in equation (97): it is fully consistent in the sense that
it does not require the introduction of any form factor artificially
obtained from the PS formalism based on the spherical collapse,
and in fact it provides a halo mass function which quantitatively
differs from the one obtained from the form factor procedure.
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APPENDI X A : R EPRO DUCI NG THE
FI RST-CROSSI NG RATE OF SHETH
& TO R MEN

We first compute �(1). Using equations (24), (29) and (30), the
expression of �(1)

ε (δn; Sn) in equation (48) can be rewritten as

�
(1)
ε=0(δn; Sn) = Bn(Bn − δn)

π

∞∑
p=1

(−1)p

p!
B (p)

n

×
∫ Sn

0
dSi

(Sn − Si)
p−(3/2)

S
3/2
i

× e−B2
n/(2Si )e−(Bn−δn)2/[2(Sn−Si )] . (A1)

Instead of computing this integral directly, we now recall that to
compute the first-crossing rate (39) we need to compute the first
derivative of �ε(δn; Sn) evaluated at δn = B(Sn). Since the integral
in equation (A1) is finite in the limit δn → B(Sn), taking the ap-
proximation (Sn − Si)p−1 � (Sn)p−1 does not alter the convergence
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properties of the integral, but simplifies significantly its computa-
tion. This is equivalent to the approximation made by Lam & Sheth
(2009) [see in particular the discussion below their equation (20)].
Exploiting the fact that∫ Sn

0
dSi

1

S
3/2
i (Sn − Si)1/2

× e−B2(Sn)/(2Si )e−(B(Sn)−δn)2/(2(Sn−Si ))

=
√

2π

B(Sn)

1

S
1/2
n

exp

{
− (2B(Sn) − δn)2

2Sn

}
,

(A2)

we find that �
(1,ST)
ε=0 (δn; Sn) (where the superscript reminds us that

we have approximated the integral) is given by

�
(1,ST)
ε=0 (δn; Sn) = 2(B(Sn) − δn)√

2πS
3/2
n

e−(2B(Sn)−δn)2/(2Sn)

×
∞∑

p=1

(−Sn)p

p!
B (p)

n . (A3)

Next, we compute �(2)
ε (δn; Sn). The sum over i, j in equation (49) can

be split into a sum over i = j and a sum over i < j. The former does
not contain a finite part in the continuum limit and its divergence
cancels against the divergent part of the latter sum (see appendix
B of MR1). Thus, we are reduced to compute the finite part of the
sum over i < j. Proceeding as before for the calculation of �(1)

ε (δn;
Sn), and taking again (Sn − Si)p−1 � Sp−1

n we obtain

�
(2,ST)
ε=0 (δn; Sn) = B(Sn)(B(Sn) − δn)

π
√

2π

×
∞∑

p,q=1

B (p)
n

p!

B (q)
n

q!
(−Sn)p−1 (−Sn)q−1

×
∫ Sn

0
dSi

(Sn − Si)e
− B2(Sn )

2Si

S
3/2
i

×
∫ Sn

Si

dSj

e−(B(Sn)−δn)2/(2(Sn−Sj ))

(Sj − Si)3/2(Sn − Sj )1/2
. (A4)

Let us indicate the integral by A(δn, Sn). It is convenient to perform
the inner integral by deriving with respect to δn

∂nA(δn, Sn) =
∫ Sn

0
dSi

(Sn − Si)e
− B2(Sn )

2Si

S
3/2
i

×
∫ Sn

Si

dSj

(B(Sn) − δn)e
− (B(Sn )−δn )2

2(Sn−Sj )

(Sj − Si)3/2(Sn − Sj )3/2

=
√

2π

∫ Sn

0
dSi

e
− B2(Sn )

2Si
− (B(Sn )−δn )2

2(Sn−Si )

S
3/2
i (Sn − Si)1/2

×
[

1 − (B(Sn) − δn)2

Sn − Si

]
= 2π

B(Sn)

1

S
1/2
n

e−(2B(Sn)−δn)2/(2Sn)

×
[

1 − (2B(Sn) − δn)(B(Sn) − δn)

Sn

]
, (A5)

where we used equation (B.26) of MR1 in the second line and
equations (A5) of MR1 and (A2) in the third line. Integrating over
δn we find

A(δn, Sn) = − 2π

S
1/2
n

(B(Sn) − δn)

B(Sn)
e−(2B(Sn)−δn)2/(2Sn) , (A6)

which can then be inserted into equation (A4) to give

�
(2,ST)
ε=0 (δn; Sn) = −2(B(Sn) − δn)2

√
2πS

5/2
n

× e−(2B(Sn)−δn)2/(2Sn)

[ ∞∑
p=1

(−Sn)p

p!
B (p)

n

]2

. (A7)

A similar procedure can be used to show that higher-order contri-
butions �

(n,ST)
ε=0 (n > 2) vanish as (B(Sn) − δn)n when δn approaches

the barrier value B(Sn).
The calculation of the first-crossing rate is then straightforward,

through equation (39). The zeroth-order contribution from �
(0)
ε=0

is given by equation (68), while the first-order contribution from
�

(1,ST)
ε=0 reads

F (1,ST)(S) = 1√
2πS3/2

e−B2(S)/(2S)
∞∑

p=1

(−S)p

p!

∂pB(S)

∂Sp
. (A8)

Higher-order contributions to the first-crossing rate vanish. This is
already clear from the contribution arising from the second-order
�

(2,ST)
ε=0

F (2,ST)(Sn) = −
[ ∞∑

p=1

(−Sn)p

p!

∂pBn

∂S
p
n

]2
e−(2Bn−δn)2/(2Sn)

√
2πS

7/2
n

× (Bn − δn)
(
3Bnδn + 2Sn − 2B2

n − δ2
n

)
,

(A9)

which vanishes for δn = Bn. The total first-crossing rate for a moving
barrier, in the approximation discussed above, is therefore given by

FST(S) = e−B2(S)/(2S)

√
2πS3/2

∞∑
p=0

(−S)p

p!

∂pB(S)

∂Sp
. (A10)

APPENDI X B: C OMPUTATI ON
O F �

(a)
ε=0, �

(b)
ε=0, �

(c)
ε=0

In this Appendix, we compute the contribution to �ε=0 in the deriva-
tive expansion discussed in Section 3.2. The first, using the tech-
niques discussed in MR1, is simply computed as

�
(a)
ε=0(δn; Sn) = − 1

π

dBn

dSn

Bn(Bn − δn)

×
∫ Sn

0
dSi

1

S
3/2
i (Sn − Si)1/2

exp

{
− B2

n

2Si

− (Bn − δn)2

2(Sn − Si)

}

= −
(

2

π

)1/2
dBn

dSn

(Bn − δn)

S
1/2
n

exp

{
− (2Bn − δn)2

2Sn

}
. (B1)

The second term is

�
(b)
ε=0(δn; Sn) = 1

2π

d2Bn

dS2
n

Bn(Bn − δn)

×
∫ Sn

0
dSi

(Sn − Si)1/2

S
3/2
i

exp

{
− B2

n

2Si

− (Bn − δn)2

2(Sn − Si)

}
= 1

2π

d2Bn

dS2
n

(Bn − δn)

×
[√

2πS1/2
n e−(2Bn−δn)2/(2Sn) − πBnErfc

(
2Bn − δn√

2Sn

)]
,

(B2)

where the integral has been computed using equation (109) of MR1.
The last term is the most complicated. Using the α-regularization
and the finite-part prescription developed in appendix B of MR1,
we find as usual that the terms in the sum with i = j have a vanishing
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finite part, while the contribution from the terms with i < j (plus an
equal contribution from i > j) can be written as

�
(c)
ε=0(δn; Sn) = Bn(Bn − δn)

π
√

2π

(
dBn

dSn

)2

× FP
∫ Sn

0
dSi

∫ Sn

Si

dSj

(Sn − Si)

S
3/2
i (Sj − Si)3/2(Sn − Sj )1/2

× exp

{
− B2

n

2Si

− αε

2(Sj − Si)
− (Bn − δn)2

2(Sn − Sj )

}
= Bn(Bn − δn)

π
√

2π

(
dBn

dSn

)2 ∫ Sn

0
dSi

(Sn − Si)

S
3/2
i

(B3)

× exp

{
− B2

n

2Si

}
FP

∫ Sn

Si

dSj

1

(Sj − Si)3/2(Sn − Sj )1/2

× exp

{
− αε

2(Sj − Si)
− (Bn − δn)2

2(Sn − Sj )

}
, (B4)

where FP denotes the finite-part prescription developed in ap-
pendix B of MR1. The integral over dSj is performed using MR1,
equation (108), and is equal to
√

2π√
αε

1

(Sn − Si)1/2
exp

{
− (Bn − δn + √

αε)2

2(Sn − Si)

}
. (B5)

Expanding the exponential we therefore get a singularity 1/
√

ε

(which is cancelled by a similar singularity in the term of the sum
with i = j; see MR1), and a finite part, given by

−
√

2π
(Bn − δn)

(Sn − Si)3/2
e−(Bn−δn)2/[2(Sn−Si )] . (B6)

The remaining integral over dSi is performed again using MR1,
equation (108), so finally

�
(c)
ε=0(δn; Sn) = −

(
2

π

)1/2

(Bn − δn)2

(
dBn

dSn

)2 1

S
1/2
n

× exp

{
− (2Bn − δn)2

2Sn

}
. (B7)

APPENDIX C : C OMPUTATION O F �
(1)
ε=0

In this Appendix we fill the missing step in the computation of
�

(1)
ε=0. The issue is the computation of the integral

Ip(a, b, Sn) ≡
∫ Sn

0
dSi S

−3/2
i (Sn − Si)

p− 3
2

× exp

{
− a2

2Si

− b2

2(Sn − Si)

}
, (C1)

where a ≡ Bn > 0 and b ≡ (Bn − δn) > 0. Changing the integration
variable to z = (Sn/Si) − 1 we get

Ip(a, b, Sn) = Sp−2
n exp

{
−a2 + b2

2Sn

}∫ ∞

0
dz

×
(

1

z3/2
+ 1

z1/2

)(
z

1 + z

)p

× exp

{
−

(
a2

2Sn

)
z −

(
b2

2Sn

)
1

z

}
. (C2)

For p = 0, 1 the integral can be performed exactly (see equa-
tion 9.471.12 of Gradstein & Ryzhik 1980) and we get3

I0(a, b, Sn) = (2π)1/2

S
3/2
n

a + b

ab
e−(a+b)2/(2Sn) , (C3)

I1(a, b, Sn) = (2π)1/2

S
1/2
n

1

a
e−(a+b)2/(2Sn) . (C4)

For p ≥ 2, we have not been able to compute the integral exactly.
However, as discussed in the text, for computing the first-crossing
rate it is sufficient to evaluate it at b = 0. The resulting integral
can be computed (e.g. using Mathematica) in terms of the confluent
hypergeometric function U(a, b, z),

Ip(a, 0, Sn) = Sp−2
n

√
2Sn

a
e−a2/(2Sn)

× �

(
p − 1

2

)
U

(
p − 1,

1

2
,

a2

2Sn

)
. (C5)

Observe that U(0, b, z) = 1 and �(1/2) = √
π, so equation (C5)

also reproduces correctly Ip(a, 0, Sn) when p = 1. It is also useful
to consider the limit

Ip(0, 0, Sn) ≡ FP lim
a→0

Ip(a, 0, Sn) = −πcpSp−2
n , (C6)

where the coefficients cp are given by

cp = 2√
π

�
(
p − 1

2

)
� (p − 1)

. (C7)

A P P E N D I X D : C O M P U TAT I O N O F T H E
G E N E R A L T E R M �

(m)
ε=0 I N THE LI MI T

(Bn − δn) → 0

The general term �
(m)
ε=0 is given by

�
(m)
ε=0 = 1

m!

∞∑
p1,...,pm=1

B (p1)
n · · · B (pm)

n

p1! · · · pm!

×
n−1∑

i1,...,im=1

(Si1 − Sn)p1 · · · (Sim − Sn)pm

×
∫ Bn

−∞
dδ1 · · · dδn−1∂i1 · · · ∂imW gm . (D1)

The last integral is equal to∫ Bn

−∞
dδ1 · · · dδn−1∂i1 · · · ∂imW gm

= �gm(δ0, Bn, Si1 )�gm(Bn, Bn, Si2 − Si1 )

· · · �gm(Bn, Bn, Sim − Sim−1 )�gm(Bn, δn, Sn − Sim ).

Using equations (29)–(31) for �gm, equation (D1) becomes

�
(m)
ε=0 = 1

m!

Bn(Bn − δn)

2
m−1

2 π
m+1

2

∞∑
p1,...,pm=1

(−1)p1+···+pm

×B (p1)
n · · · B (pm)

n

p1! · · · pm!
J (m)

p1,...,pm
(Bn, Sn)

+ O(Bn − δn)2 , (D2)

3 These integrals were already computed exactly in a different way in MR1.
We thank Ruth Durrer for suggesting this more direct derivation.
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where

J (m)
p1,...,pm

(Bn, Sn) ≡ FP
∫ Sn

0
dSi1

(Sn − Si1 )p1

S
3/2
i1

e
− B2

n
2Si1

×
∫ Sn

Si1

dSi2

(Sn − Si2 )p2

(Si2 − Si1 )3/2
× (. . .)

×
∫ Sn

Sim−1

dSim

(Sn − Sim )pm−3/2

(Sim − Sim−1 )3/2
. (D3)

We have only considered the finite parts from the sum with i1 <

i2 < . . . < im, because the divergent parts all cancel. A priori, we
cannot exclude that there may be other finite contributions to the
sum coming from terms with i1 < . . . < ik = ik+1 < . . . im. However,
we expect the contribution we compute here as representative of the
correct result.

The integral J (m)
p1,...,pm

(Bn, Sn) satisfies the recursion relation

J (m)
p1,...,pm

(Bn, Sn) =
∫ Sn

0
dSi

e−B2
n/(2Si )(Sn − Si)p1

S
3/2
i

× J (m−1)
p2,...,pm

(0, Sn − Si) .
(D4)

Let us set

J (m)
p1,...,pm

(0, y) = (−π)mcp1,...,pm yp1+···+pm− m+3
2 , (D5)

where the coefficients c are now to be determined. We insert the
ansatz above into the recursion relation (D4) for J (m+1)

p1,...,pm
(Bn, Sn)

and obtain

J (m+1)
p1,...,pm+1

(Bn, Sn) = (−π)mcp2,...,pm+1

×
∫ Sn

0
dSi(Sn − Si)

p1+···+pm+1− m+3
2 S

−3/2
i e−B2

n/(2Si ). (D6)

The previous integral is solved with the substitution z = (Sn/Si) −
1 and it evaluates to

S
∑m+1

k=1 pk− m
2 −2

n

∫ ∞

0
dz

z
∑m+1

k=1 pk− m+3
2

(1 + z)
∑m+1

k=1 pk− m
2 −1

e− B2
n

2Sn
(1+z)

= S
∑m+1

k=1 pk− m
2 −2

n e− B2
n

2Sn

√
2Sn

B2
n

�

(
m+1∑
k=1

pk − m + 1

2

)

×U

(
m+1∑
k=1

pk − m + 1

2
,

1

2
,

B2
n

2Sn

)
,

(D7)

therefore equation (D6) becomes

J (m+1)
p1,...,pm+1

(Bn, Sn) = (−π)mcp2,...,pm+1S
∑m+1

k=1 pk− m
2 −2

n

×
√

2Sn

B2
n

e− B2
n

2Sn �

(
m+1∑
k=1

pk − m + 1

2

)

× U

(
m+1∑
k=1

pk − m + 1

2
,

1

2
,

B2
n

2Sn

)
. (D8)

We can evaluate equation (D8) in the limit B2
n/(2Sn) → 0, and retain

the finite part only (as the divergent terms all cancel in the end):

J (m+1)
p1,...,pm+1

(0, y) = −2
√

π(−π)mcp2,...,pm+1

×
�

(∑m+1
k=1 pk − m

2 − 1
2

)
�

(∑m+1
k=1 pk − m

2 − 1
) y

∑m+1
k=1 pk− m

2 −2 .

(D9)

On the other hand, the left-hand side of the previous relation can
be expressed by (D5) and we then arrive at a recursion relation for
the coefficients c (after relabelling m → m − 1 for convenience):

cp1,...,pm = 2√
π

�
(∑m

k=1 pk − m
2

)
�

(∑m
k=1 pk − m+1

2

) cp2,...,pm , (D10)

which is valid for m ≥ 2, while for m = 1 we have already found in
(C7)

cp = 2√
π

�
(
p − 1

2

)
� (p − 1)

. (D11)

Equations (D10)–(D11) define, recursively, the coefficients c and
it is possible to find them easily up to any desired order. As the c
appears in the generic integral (D8), which in turn appears in (D2),
it is then possible to write down the result for the generic term �(m):

�
(m)
ε=0 = (Bn − δn)e− B2

n
2Sn

m! 2
m
2 −1π

3−m
2

∞∑
p1,...,pm=1

(−1)
∑m

k=1 pk+m+1

× B (p1)
n · · · B (pm)

n

p1! · · · pm!
cp2,...,pmS

∑m
k=1 pk− m

2 −1
n

× �

(
m∑

k=1

pk − m

2

)
U

(
m∑

k=1

pk − m + 1

2
,

1

2
,

B2
n

2Sn

)
+ O(Bn − δn)2. (D12)
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