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Objectives: To compare mutations in the quinolone resistance-determining region of the gyrA gene and
flanking sequences with the MICs of ofloxacin and moxifloxacin for Mycobacterium tuberculosis.

Methods: The presence of mutations in 177 drug-resistant M. tuberculosis isolates was determined by DNA
sequencing and the MICs quantified by MGIT 960.

Results: Single nucleotide polymorphisms were detected at codons 94 (n=30), 90 (h=12), 91 (n=3), 89
(n=1), 88 (n=1) and 80 (n=1). Four isolates with double mutations D94G plus ASOV (n=2) and D94G plus
D94N (n=2) reflect mixed populations. Agreement between genotypic and phenotypic susceptibility was
high (=97%) for both drugs. Mutant isolates had an MICsq of 8.0 mg/L and an MICyq of >10 mg/L for ofloxacin
compared with an MICsq and MICgq of 2.0 mg/L for moxifloxacin. Codons 94 and 88 were linked to higher levels
of fluoroquinolone resistance compared with codons 90, 91 and 89. The MIC distributions for the wild-type iso-
lates ranged from <0.5 to 2.0 mg/L for ofloxacin and from <0.125 to 0.25 mg/L for moxifloxacin. However, 96%
of the isolates with genetic alterations had MICs <2.0 mg/L for moxifloxacin, which is within its achievable
serum levels.

Conclusions: This study provides quantitative evidence that the addition of moxifloxacin to extensively drug-
resistant tuberculosis (XDR-TB) regimens based on a clinical breakpoint of 2.0 mg/L has merit. The use of moxi-
floxacin in the treatment of multidrug-resistant tuberculosis may prevent the acquisition of additional

mutations and development of XDR-TB.
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Introduction

Fluoroguinolones are commonly used in the treatment of
multidrug-resistant tuberculosis (MDR-TB), which is defined as
resistant to both isoniazid and rifampicin.? Extensively
drug-resistant tuberculosis (XDR-TB) arises when MDR strains
acquire resistance to any fluoroquinolone in addition to at least
one of the three injectable second-line drugs (SLDs), amikacin,
kanamycin or capreomycin.™? The design of individualized treat-
ment regimens for XDR-TB should be based on reliable in vitro
susceptibility results.’* However, uncertainties about SLD suscepti-
bility testing and the clinical interpretation of the test results need
to be clarified in order to optimize the limited treatment options.>

Cross-resistance  within  the fluoroquinolone group is
frequent.’™ However, it is unclear as to what extent this

compromises the compound’s antimycobacterial —activity.
Ofloxacin belongs to the older-generation fluoroquinolones and
has been widely used as a broad-spectrum antimicrobial agent
against various infections, including MDR-TB.> New and more
potent derivatives are now available, but ofloxacin is still being
used because of its relatively low cost as opposed to the
newer derivatives.® Moxifloxacin is one of the newer generation
fluoroquinolones with enhanced activity against Mycobacterium
tuberculosis.*’~*?

Moxifloxacin differs structurally from other fluoroquinolones,
such as ofloxacin, in that it contains a methoxy group at the
8-position and a diazabicyclononyl ring moiety with an
S,S-configuration at the 7-position.”® The large hydrophobic
moiety at C-7 reduces the ability of the bacterium to efflux the
drug across its cell wall and this modification is important for
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preventing the emergence of resistance.® These structural
changes lower the MIC of moxifloxacin (0.125-0.5 mg/L) com-
pared with that of ofloxacin (0.5-2.0 mg/L).**? The achievable
peak serum concentrations of moxifloxacin and ofloxacin are
434 and 4.0 mgl/L, respectively, after an oral dose of 400 mg.*
The elimination half-life ranges from 10.7 to 13.3 h for moxi-
floxacin and is 4-5 h for ofloxacin.* Moxifloxacin has therefore
been suggested for the therapy of ofloxacin-resistant TB.?*1°
However, it should only be used against strains with MICs that
are below the maximum serum concentration and in combin-
ation with at least two other active antituberculosis agents.”

The new-generation fluoroquinolones have also been consid-
ered for use in a first-line regimen that has the ability to shorten
the duration of TB treatment.* However, there are concerns that
mutations conferring fluoroquinolone resistance may accumu-
late more rapidly*® compared with other first-line antituberculo-
sis drugs, thereby compromising the efficacy of the first-line
treatment. An alternative view is to reserve the fluoroquinolones
for the treatment of MDR- and XDR-TB. M. tuberculosis acquires
resistance to the fluoroquinolones mainly through mutations in
the quinolone resistance-determining regions (QRDRs) of the
gyrA gene and, less frequently, in the gyrB gene.””*? The most
frequent QRDR mutations are found at positions 90 (A90V), 91
(S91P) and 94 (D94G, D94A, D94Y, D94N and DI4H).»?~ 1114

In this study, a large number of drug-resistant clinical
M. tuberculosis isolates were used to: (i) assess the frequency
of the different fluoroquinolone resistance mutations in gyrA in
a high burden area with TB disease linked to coinfection with
HIV;*®> and (ii) determine the association between nucleotide
alterations in the A subunit of DNA gyrase and the level of
phenotypic susceptibility to ofloxacin and moxifloxacin.

Materials and methods

Clinical isolates

M. tuberculosis isolates were collected from patients with drug-resistant
TB and who were resident in the Western Cape, South Africa during the
period 2007-09. These isolates have previously been subjected to
routine drug susceptibility testing on Middlebrook 7H11 agar and had
known IS6110 restriction fragment length polymorphism®® and spoligo-
type patterns.”*® One hundred and seventy-seven test isolates were
selected from this collection, of which 43 were XDR, 25 pre-XDR (MDR
with additional resistance to either a fluoroquinolone or an injectable),
54 MDR and 55 showed monoresistance to either isoniazid (n=52) or
rifampicin (n=3). Sixty-five of the 177 isolates belonged to the typical
Beijing family, 61 were atypical Beijing strains'® and 42 were identified
as members of the Low Copy Clade.?® The remaining nine isolates were
members of the Haarlem (n=4) and Latin American-Mediterranean
(n=5) sublineages.'® Each isolate represented a separate patient and
their routinely determined susceptibility profiles were confirmed by crit-
ical concentration testing using MGIT 960 (Becton Dickinson Diagnostic
Systems, Sparks, MD, USA).

DNA sequencing

A 345 bp region (codons 18-132) encompassing the QRDR of the gyrA
gene (codons 74-113)?" was PCR amplified with the QRDR primer set
(forward 5'-TGACATCGAGCAGGAGATGC-3' and reverse 5'-GGGCTTCGG
TGTACCTCATC-3') in combination with HotStarTag DNA polymerase
(Qiagen, Germany) under previously described conditions.?? The primers
were designed in-house using Primer3 software (v. 0.40).?> Amplification

products were sequenced with an ABI PRISM DNA sequencer (Applied
Biosystems, Foster City, CA, USA) and the resulting chromatograms
were analysed by use of Chromas software (Technelysium Pty Ltd).

Quantitative drug susceptibility testing and quality
control

MICs were determined by quantitative drug susceptibility testing using an
automated BACTEC MGIT 960 instrument (BD Bioscience, Sparks, MD,
USA) equipped with TBeXiST and EpiCentre™ V5.75A software (BD
Bioscience, Erembodegem, Belgium).?* Stock solutions of ofloxacin (pur-
chased from Sigma-Aldrich South Africa) and moxifloxacin (obtained
from Bayer Pharma) were prepared by dissolving the respective drugs
in 0.1 N NaOH before it was further diluted in distilled water. These
were then filter-sterilized and stored at —80°C for up to 6 months.
Ofloxacin was tested at 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10 and 50.0 mg/L,
and moxifloxacin at 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0 and
10.0 mg/L. The k coefficient was used to estimate the level of agreement
between the phenotypic and genotypic results. Critical concentrations of
2.0 mg/L for ofloxacin and 0.25 mg/L for moxifloxacin, as per WHO
criteria, were used to categorize isolates into susceptible and resistant
strains.” For quality control purposes, a drug-susceptible M. tuberculosis
reference strain H37Rv (ATCC 27294) was included as a control. Twenty-
seven (15%) of the test isolates were also processed at the University of
Zurich for genotypic and phenotypic susceptibility to monitor the
accuracy and reproducibility of our results. The MIC results were based
on at least duplicate findings.

Results

Mutations in the QRDR of gyrA

The genotypic and phenotypic findings of the 177 test isolates
for ofloxacin and moxifloxacin are summarized in Table 1.
Mutations in the QRDR were observed in 52 of the test iso-
lates. The remaining 125 isolates lacked mutations and were
considered wild-type for the sequenced region. The most
prevalent mutations were observed at codon 94 (n=30),
where aspartic acid was replaced with glycine (D94G; n=17),
alanine (D94A; n=7) or asparagine (D94N; n=6). Twelve iso-
lates harboured the ASOV mutation and three the S91P muta-
tion. Mutations G88C (n=1), D89G (n=1) and T80S (n=1)
were detected in three separate isolates. Double point muta-
tions were observed in four XDR isolates and their presence
was confirmed by repeated sequencing. Both the D94G and
A90V mutations were present in an atypical and a typical
Beijing isolate, while D94G and D94N were detected in two
atypical Beijing strains. The double mutants D94G/D94N can
only be present as a result of infection with different strains
(see the Discussion section).

Phenotypic resistance

The 55 selected monoresistant isolates were confirmed to be
susceptible to both fluoroquinolones in MGIT 960. Fifty-four of
these had a wild-type sequence in the fragment that was exam-
ined, while one isolate (a typical Beijing strain) carried a T80S
mutation. All 54 MDR and 16 of the pre-XDR isolates were pheno-
typically and genotypically susceptible to ofloxacin and moxi-
floxacin. One atypical Beijing isolate was phenotypically
classified as XDR, although no mutations were detected in the
amplified gyrA fragment. The remaining pre-XDR (n=9) and
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Table 1. MICs of ofloxacin and moxifloxacin for wild-type M. tuberculosis and mutated isolates with alterations in gyrA and flanking sequences

MIC (mg/L) MIC range (mg/L) MICsp (mg/L)  MICgo (mg/L)
Nucleotide Total number (%) with
Codon mutation change n  OFX MXF this mutation type OFX MXF OFX MXF OFX MXF
T80S ACC—TCC 1 <05 <0.125 1(1.9) <0.5 <0.125 <0.5 <0.125 <05 <0.125
G88C GGC—TGC 1 100 4.0 1(1.9) 10.0 2.0 10.0 2.0 10.0 2.0
D89G GAC—GGC 1 20 1.0 1(1.9) 2.0 1.0 20 1.0 20 1.0
A90V GCG—GTG 1 20 025 12 (23.1) 2.0-6.0 0.25-1.0 40 1.0 6.0 1.0
3 40 0.25
5 40 1.0
3 6.0 1.0
S91P TCG—CCG 1 40 05 3 (5.8) 4.0-6.0 0.5-1.0 40 1.0 40 1.0
1 40 1.0
1 6.0 1.0
D94A GAC—GCG 3 40 1.0 7 (13.5) 4.0-10.0 1.0-2.0 6.0 1.0 100 2.0
1 6.0 1.0
2 80 20
1 100 20
D94G GAC—GGC 1 6.0 1.0 17 (32.7) 6.0to >10.0 1.0-2.0 >10.0 2.0 >10.0 2.0
2 80 1.0
4 80 20
10 =100 2.0
D94N GAC—AAC 1 40 05 6 (11.5) 4.0-10.0 0.5-4.0 10.0 2.0 10.0 4.0
4 100 20
1 100 4.0
A90V +D94G GCG—GTG 1 40 1.0 2 (3.8) 4.0-8.0 1.0-2.0 40 1.0 80 20
GAC—GGC 1 80 20
D94N+D94G GAC—AAC 1 80 20 2 (3.8) 8.0to>10.0 2.0 8.0 20 10.0 2.0
GAC—GGC 1 >100 2.0
Mutants (N) 52 8.0 20 >10.0 2.0
Isolates with a 1° 80 20 8.0 2.0 8.0 20 80 20
wild-type gyrA 106 <05 <0.125 none <0.5-2.0 <0.125-0.25 <05 <0.125 1.0 <0.125
sequence 13 1.0 <0.125
5 20 025
Wild-type (N) 125
Total number of 177
isolates
H37RV° control 6 <05 <0.125 none <0.5 <0.125 <0.5 <0.125 <0.5 <0.125

OFX, ofloxacin; MXF, moxifloxacin.
°One isolate characterized as wild-type for gyrA had MICs of 8.0 and 2.0 mg/L for ofloxacin and moxifloxacin, respectively, but it may contain a mu-

tation elsewhere.

PH37Rv (ATCC 27294) was included as a susceptible reference strain for M. tuberculosis.

XDR isolates (n=42) displayed decreased susceptibility to the
two fluoroquinolones and all of them contained single nucleotide
polymorphisms in a 21 kb region (codons 88-94) of the gyrA
gene. Fluoroquinolone resistance occurred predominantly in
two Beijing subgroups [atypical Beijing (33/61) and typical

Beijing (17/65)], while only one (1/42) was from the Low Copy
Clade. The overall agreement between genotypic and phenotypic
susceptibility was 98% (174/177) for ofloxacin and 97% (172/
177) for moxifloxacin. The k values for agreement between the
phenotypic and genotypic results were 0.945 (0.892-0.998) for
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ofloxacin and 0.916 (0.851-0.982) for moxifloxacin. Minor
susceptibility differences between the two fluoroquinolones
were caused by borderline results rather than a lack of
cross-resistance.

Quality control

Repeated genotypic and phenotypic testing of 27 isolates
showed 100% agreement between the two laboratories. MIC
variation between biological duplicates did not exceed one MIC
dilution step, while the reference strain tested susceptible to
both drugs in all repeats (Table 1).

Discussion

Our data demonstrate good correlation between nucleotide
sequences in the A subunit of DNA gyrase and phenotypic
susceptibility to ofloxacin  and moxifloxacin in 177
M. tuberculosis isolates (see Table 1). Only one of the 125 isolates
with a wild-type gyrA sequence showed phenotypic resistance to
both drugs. This discrepancy is possibly caused by genetic
changes in regions that we have not examined. A clear distinc-
tion between the susceptibility levels of the wild-type isolates
compared with those harbouring fluoroguinolone-associated
mutations was observed. However, a proportion of the isolates
displayed decreased susceptibilities although the MICs were
still within or marginally outside the normal wild-type distribu-
tion. Some of these isolates were identified with mutations asso-
ciated with fluoroquinolone resistance, such as A90V and D89G,
while others lacked nucleotide substitutions in the gyrA gene (see
Table 1). Moderate increments in MICs may not result in thera-
peutic failure, but could possibly facilitate the accumulation of
additional mutations in the QRDR and subsequently the selection
of high-level resistant subpopulations. Mutations associated with
fluoroquinolone resistance were found in 51 of the 177 isolates,
which resulted from amino acid substitutions in codons 94, 90,
91, 89 and 88 and included four double mutations. One muta-
tion in codon 80 (T80S) did not exhibit phenotypic resistance to
either of the two fluoroquinolones. A previous study could also
not associate a T8OA mutation in GyrA of M. tuberculosis with
fluoroguinolone resistance.!! One isolate with a D89G substitu-
tion was resistant to moxifloxacin with an MIC (1.0 mg/L) 4-
fold above the critical concentration (0.25 mg/L), although it
remained susceptible to ofloxacin with an MIC equivalent to its
critical concentration (2.0 mg/L). Based on our findings, this
mutation, which was recently described,?® confers borderline
resistance to both drugs in M. tuberculosis. Twelve isolates har-
boured the A90V mutation. Eight of these had decreased suscep-
tibilities to both fluoroquinolones and three to ofloxacin only,
while one was susceptible to both drugs. A similar finding of
an isolate susceptible to both ofloxacin and ciprofloxacin in the
presence of the resistance-associated AS0V mutation was previ-
ously reported.?® Nine (9/12) isolates with an A90V mutation had
MICs ranging from 2.0 to 4.0 mg/L for ofloxacin and from 0.25 to
1.0 mg/L for moxifloxacin. These MICs are scattered around the
respective critical concentrations of the two drugs and implicate
borderline susceptibility.”? Conventional qualitative susceptibility
testing is based on single critical concentrations, which are not
suitable to distinguish between borderline (low-level), moderate-
level and high-level resistance.?® The MICs for four isolates with

double mutations in codons 90 and 94 were not distinctively
higher than those containing only single mutations (see
Table 1). This is in contrast to previous reports that indicated a
substantial decrease in susceptibility levels when multiple fluoro-
quinolone mutations are present in the same organism.'*?/?8
The presence of different populations either as variants of the
same strain or as a mixture of two genetically independent
strains was not established in this study. However, the double
mutants D94G/D94N must be the result of mixed populations
as two mutations cannot be present in the same codon, but
the situation with the D94G/A90V combination is unclear.

Our data provide further evidence that decreased suscepti-
bility to ofloxacin and moxifloxacin in M. tuberculosis isolates
may occur from any one of several point mutations in the
A subunit of DNA gyrase. Cross-resistance between ofloxacin
and moxifloxacin was confirmed, although it was evident that
the two drugs were not equally affected by mutations associated
with fluoroquinolone resistance. The gyrA mutant isolates had an
MICso of 8.0 mg/L and an MICyq of >10 mg/L for ofloxacin, as
opposed to an MICso and an MICgg of 2.0 mg/L for moxifloxacin.
Only two isolates (MIC 4.0 mg/L) had an MIC of >2.0 mg/L
for moxifloxacin with a corresponding MIC of 10.0 mg/L for
ofloxacin. The susceptibility levels for moxifloxacin in all of the
isolates were below the peak serum concentration. In contrast,
96% of the ofloxacin-resistant isolates had MICs equivalent to or
above the achievable serum concentration.” In view of enhanced
moxifloxacin activity, a clinical breakpoint of 2.0 mg/L is sug-
gested for this drug to match the WHO’s recommendation for
ofloxacin.»>19 A well-defined clinical breakpoint for moxifloxacin
is important to guide MDR-TB treatment and should not be con-
fused with an epidemiological cut-off (ECOFF) or critical concen-
tration, which differentiates wild-type and non-wild-type
strains.'#?® The recommended ECOFF for moxifloxacin in MGIT
960 is 0.25 mg/L." MDR-TB patients in South Africa are treated
with ofloxacin prior to moxifloxacin and it is therefore likely
that the test strains acquired fluoroquinolone resistance due to
ofloxacin exposure. Based on our findings and the results of
other in vitro studies,”!® we conclude that the use of moxi-
floxacin in the treatment of ofloxacin-resistant TB is justified, in
particular as a component in combination with other drugs. A
recent meta-analysis provided additional clinical evidence that
the inclusion of new-generation fluoroquinolones in XDR-TB regi-
mens significantly improved treatment outcomes.”

Judged by MICso and MICgq values, mutations in codons 94
and 88 were linked to higher levels of resistance to both drugs
compared with those in codons 90, 91 and 89, as shown in
Table 1. This association is not absolute, since the MICs of fluor-
oquinolones for isolates with the same mutation may vary
widely. Additional mechanisms other than gyrA mutations are
likely to affect the level of fluoroquinolone resistance.”

Conclusions

Moxifloxacin is primarily administered against pre-XDR and
XDR-TB, and its use is challenged by strains that have already
acquired gyrA and/or gyrB mutations. The rationale of using
moxifloxacin under these conditions is based on its enhanced
antimycobacterial activity and favourable pharmacokinetic and
pharmacodynamic characteristics.*”#'? Our findings demon-
strated that moxifloxacin may still have clinical relevance in
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the treatment of ofloxacin-resistant TB. However, a lack of
effective companion drugs in a failing XDR regimen increases
the risk of exposing TB infections to subinhibitory moxifloxacin
concentrations.’® Inappropriate use of this important drug
class will radically worsen current attempts to control XDR-TB.
Moxifloxacin has the potential to eliminate both wild-type and
first-step mutants more effectively than ofloxacin, which is
important to prevent additional mutations and thus the develop-
ment of XDR-TB. Bacteriological failure is generally associated
with increased MICs*® and for this reason we suggest that moxi-
floxacin is used as first-choice fluoroguinolone against MDR-TB.
Sound scientific and clinical evidence should, however, be
obtained and analysed to optimize treatment strategies.
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