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The pathogenesis of fatal cerebral malaria (CM) is not well understood, in part because data from patients

in whom a clinical diagnosis was established prior to death are rare. In a murine CM model, platelets accumulate

in brain microvasculature, and antiplatelet therapy can improve outcome. We determined whether platelets

are also found in cerebral vessels in human CM, and we performed immunohistopathology for platelet-specific

glycoprotein, GPIIb-IIIa, on tissue from multiple brain sites in Malawian children whose fatal illness was

severe malarial anemia, CM, or nonmalarial encephalopathy. Platelets were observed in 3 locations within

microvessels: between malaria pigment and leukocytes, associated with malaria pigment, or alone. The mean

surface area of platelet staining and the proportion of vessels showing platelet accumulation were significantly

higher in patients with CM than in those without it. Platelet accumulation occurs in the microvasculature of

patients with CM and may play a role in the pathogenesis of the disease.

Malaria remains a major threat to life, and the treat-

ment of severe disease is unsatisfactory [1]. Progress in

preventing and treating malaria is hampered by our

ignorance of pathogenic mechanisms and the causes of

death. None of the existing animal or in vitro models
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exactly mimic the human disease [2], and most infor-

mation to date has come from autopsy studies of adults.

Ninety percent of malaria-associated mortality oc-

curs in African children [3]. In the clinical manifes-

tations of severe malaria, there are important differ-

ences between children and adults, so the findings in

adult postmortem studies may not be entirely appli-

cable to children [4]. None of the autopsy studies con-

ducted to date has contained all of the elements re-

quired for description of malaria pathogenesis in Af-

rican children [4].

Cerebral malaria (CM) is characterized by an accu-

mulation of parasitized red blood cells (pRBCs) in brain

microvessels. The mechanism of this accumulation has

been extensively studied, but its role in the pathogenesis

of fatal disease remains incompletely understood [5–7],

in part because of the paucity of histopathologic studies,

particularly in children. It is likely that the accumula-

tion of pRBCs interferes with microcirculation, leading

to ischemia, but other mechanisms may further con-

tribute to pathogenesis. In addition to pRBCs [8], se-

questered cells such as leukocytes (macrophages and
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monocytes) have been described in brain vessels in patients

with CM [9–11].

In a mouse model of CM, platelet deposition appears to be

a major contributor to death, given that platelets accumulate

in microvessels and that antiplatelet therapy can improve out-

come [12, 13]. In murine CM, however, pRBC accumulation

is not a major histopathologic feature, although it has been

described [14, 15]. In vitro, platelets have been shown to act

as effectors of vascular damage, when endothelial cells have

been prestimulated by tumor necrosis factor (TNF) [16]. In

histopathologic studies of human CM, the presence of platelets

in brain vessels has been described [17]. However, because no

comparisons have been made between patients who were co-

matose before death and those who were not, the relationship

to cerebral dysfunction has not been established.

The aims of the present study were to investigate whether

platelets selectively accumulate in the cerebral microvessels in

fatal human malaria, to ascertain whether platelets are asso-

ciated with malaria pigment or leukocytes in these sites, and,

finally, to determine whether the pattern or intensity of platelet

deposition differs in children dying of CM compared with chil-

dren dying of severe malarial anemia (SMA) and nonmalarial

diseases.

PATIENTS AND METHODS

Patients

Postmortem sampling was performed during autopsies of chil-

dren in whom the following diagnoses were determined during

life.

Group 1: SMA. All patients with SMA ( ) had Plas-n p 5

modium falciparum parasitemia and severe anemia (hematocrit,

!12%) and were conscious until �2 h before death. At the

time of death, 2 were judged to have congestive cardiac failure,

1 was acidotic and hypoglycemic, and 1 had Salmonella enter-

itidis bacteremia. There was no evidence of renal failure, jaun-

dice, bleeding tendency, pulmonary infection, or meningitis in

any of this group.

Group 2: CM. Patients with CM ( ) were admittedn p 7

to the hospital while in a coma (Blantyre coma score �2/5)

and had P. falciparum parasitemia and no other clinically ev-

ident cause of unconsciousness. The median duration of coma

prior to death was 20 h (range, 14–56 h). In 3 patients, hy-

poglycemia was identified at some point during the illness and

was corrected without an effect on the depth of coma. Two

patients developed severe anemia (hematocrit, !12%) and re-

ceived blood transfusions; 1 child became severely anemic

(packed cell volume, 13%) and died before a blood transfusion

could be given. Lumbar puncture yielded normal cerebrospinal

fluid in 4 patients but was not performed in 3 others because

of the presence of papilloedema (in 2 cases) or respiratory

distress (in 1 case). All patients had hypertonicity, opisthotonos,

seizures, or posturing of limbs. Several were clinically and/or

biochemically acidemic. None had jaundice, renal failure, he-

moglobinuria, or abnormal bleeding.

Group 3: nonmalarial encephalopathies (NMEs). Patients

with NME ( ) had altered consciousness (Blantyre coman p 5

score, 0–3/5) in the absence of malaria parasitemia. Two were

hypoglycemic and acidotic, with no clinical response to treatment

and, at autopsy, no evident cause of death; Reye’s syndrome was

considered to be a possible diagnosis in these 2 cases. Another

patient had the characteristic history and features of organo-

phosphate poisoning, 1 had tuberculous meningitis, and 1 had

Haemophilus influenzae meningitis.

Details of the autopsy procedure in the study have been

described elsewhere [18]. The interval between death and sam-

pling was recorded. In the present study, after macroscopic

appearances of the intact and transected brain were noted, 2-

mm cubes of brain tissue were placed in optimum-cutting-

temperature medium (Tisse TEK; Leica) and immediately were

immersed in liquid nitrogen. Three forebrain areas (frontal,

parietal, and temporal lobes) and cerebellum were studied. Im-

munohistochemical analyses showed consistent results in these

areas, and the data shown herein are from the parietal lobe.

All vessels were analyzed: there was no selection. Both gray and

white matter were studied, with identical results. Brain samples

from the parietal lobe were also fixed in formalin and were

processed for staining with hematoxylin and eosin. At least 100

brain capillaries from each patient were observed under oil,

and the contents of each capillary were counted (unpigmented

parasites, pigmented parasites, and extra-erythrocytic pigment

globules). The proportion of capillaries containing any of these

was included to determine one measure of sequestration, the

percentage of vessels parasitized; the sum of unpigmented plus

pigmented parasites was calculated and used as a second mea-

sure of sequestration (R.A.C., unpublished data). All histo-

pathologic studies were performed blinded—that is, without

knowledge of the clinical diagnosis.

Immunohistochemical Staining and Quantitative Image Analysis

Mouse anti-human GPIIb-IIIa monoclonal antibodies (mAbs)

(anti-CD61 [DAKO] and anti-CD41 [Immunotech]) were used

to stain cryopreserved brain samples, with each of the mAbs

showing identical staining patterns. After a 30-min incubation

at 10 mg/mL, sections were washed and revealed by a peroxi-

dase-labeled goat anti-mouse Ig antibody, according to the

manufacturer’s recommendations (Vector). Herein, the term

“malaria pigment” refers to all pigment, whether within or

outside pRBC and white blood cells (WBCs). Mouse anti-hu-

man anti-CD36 (FA6 clone; Immunotech) was used. Controls

for immunohistochemistry consisted of irrelevant, isotype-

matched mAbs as a first step and of labeled secondary antibody
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Figure 1. Platelet accumulation in brain vessels of patients with cerebral malaria: different patterns of distribution. A–C, Immunostaining with
anti-CD41 (GPIIb-IIIa) monoclonal antibodies (mAbs), showing platelets between leukocytes and malaria pigment (A), platelets with malaria pigment
(B), platelets alone (C), and staining with anti-CD36 mAb (D). Scale bars, 50 mm (A) and 25 mm (B–D).

alone. Control brain samples were from road-accident victims

without brain injury. Samples were analyzed by a Zeiss Axio-

phot microscope coupled to a quantitative image-analysis de-

vice, SAMBA 2005 (Faculty of Medicine, Université de la

Méditerranée).

Statistical Analyses

Groups were compared by the nonparametric Mann-Whitney

U test. Correlations were evaluated by the nonparametric Spear-

man test.

RESULTS

In the children studied, malaria pigment was seen not just

within pigmented trophozoites and intact schizonts but also

seemingly free lying within vessels—or, perhaps more likely,

within “pigmented ghosts” and aggregated within intravascular

WBCs [19].

In brain capillaries and postcapillary venules of patients with

CM, the lumen showed a marked staining with anti–GPIIb-

IIIa mAb (figure 1). Three patterns of platelet accumulation

were observed: platelets were clustered between malaria pig-
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Figure 2. Quantitation of platelet sequestration in different clinical
groups: surface of GPIIb-IIIa staining present in 130 vessels per brain
site, normalized on the surface of the lumen (data normalized on the
surface of CD31 are similar; not shown). Confidence intervals: cerebral
malaria (CM) vs. severe malarial anemia (SMA), 0.92–17.79; CM vs.
nonmalarial encephalopathy (NME), 17.33–1.35. * , vs. SMA.P p .03

Figure 3. Quantitation of intravascular pigments in different clinical
groups. Computerized image analysis of the number of malaria pigments,
as described. Clinical groups are as in figure 2. Confidence intervals:
cerebral malaria (CM) vs. severe malarial anemia (SMA), 1.58–4.49; CM
vs. nonmalarial encephalopathy (NME), �5.50 to �3.31. * , vs.P p .0007
SMA.

ment and leukocytes (figure 1A), were associated with malaria

pigment (figure 1B), or occurred alone (figure 1C). These pat-

terns were not mutually exclusive, and there was no predom-

inant pattern in any patient with CM. Staining with anti-CD36

mAb revealed a platelet pattern inside the vessel lumens that

was similar to that obtained with anti–GPIIb-IIIa (figure 1D).

Prior to quantitative image analysis, we documented the

proportions of vessels in each sample that were sectioned

transversely, obliquely, and longitudinally—long:short axes

!2:1, 2–4:1, and 14:1, respectively—to ensure comparabil-

ity between patients. The mean � SD of the transverse/lon-

gitudinal/oblique proportion was similar in the 3 groups

of patients: 47.54�5.25/11.72�4.14/40.74�5.08 in group

1, 47.74�4.26/11.27�3.52/40.97�3.03 in group 2, and

50.42�8.65/11.36�4.69/38.24�9.52 in group 3. We also

quantitated the vessel density in each tissue section, using

immunostaining for CD31 and, similarly, found no difference

between the 3 groups of patients: the mean � SD surface of

CD31 staining, expressed in mm2/100 mm2 of vessel lumen

surface, was 29.27 � 4.32 in group 1, 27.67 � 4.13 in group

2, and 32.83 � 4.12 in group 3.

To evaluate the relationship between platelet accumulation

and clinical syndrome, the GPIIb-IIIa immunostaining in the

3 groups of patients was quantitated and compared. Brain ves-

sels were individually delineated. The surface area of immu-

nostaining (red channel) and the area of the lumen surface

were calculated by planimetry in each vessel. At least 30 mi-

crovessels (capillaries and postcapillary venules) were measured

in each patient. Data are expressed as immunostained surface

(in mm2) per 100 mm2 of lumen surface and as the number of

vessels presenting a platelet immunostaining 15 mm2 in their

lumen, in the whole length of vessel visible. Intravascular leu-

kocytes were counted in the same length of vessel. Intravascular

malaria pigment was estimated by dividing the total pigment

surface area (black channel) by the mean of individual pigment

surface areas. Globules of malaria pigment were readily count-

able on frozen sections, whereas intact trophozoites and schiz-

onts were not.

As shown in figure 2, platelet accumulation was significantly

more abundant in patients with CM than in those who died

from either SMA ( ) or NME ( ). In addition,P p .03 P p .001

the proportion of vessels with platelet accumulation, defined

as an area 15 mm2, was significantly higher in patients with CM

(26.6% � 6.5%) than in those with SMA (8.6% � 2.5%)

( ) but was similar in patients with CM and in patientsP p .022

with NME (26.8 � 5.8%).

Malaria-pigment sequestration was significantly higher in pa-

tients with CM (figure 3 and table 1). Because platelet accu-

mulation was commonly accompanied by malaria pigment and/

or leukocytes and because the distribution of these elements

was not uniform between vessels in a given patient, the rela-

tionship between these elements was analyzed. In each brain,

the densities of platelets, malaria pigment, and leukocytes were

recorded for each of �30 microvessels, and correlations were

calculated to assess colocalization of platelets with the other

cell types. Platelet accumulation was found to colocalize with

malaria pigment, as determined by a significant ( ) cor-P ! .01

relation (Spearman test) in 6 of 7 patients in group 2 but in

none of the patients in the other 2 groups.

In 5 of 7 patients with CM, the area of intravascular platelet

staining was correlated significantly with the number of leu-

kocytes, but this was not the case in the CM group as a whole.

In patients with either SMA or NME, there was no correlation

between either platelets and malaria pigment or platelets and
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Table 1. Proportion of vessels with platelet accumulation in
brain vessels of patients from the 3 clinical groups.

Cases

GPIIb-IIIa-
positive
vessels

upp � pp/
100 cross-
sectioned
vessels

Total vessels
(fevera) [comab]

Percentage
of vessels with

Platelets Parasites

SMA

MP2 12 0 199 (100) [0] 6 18

MP4 13 110 223 (12) [0] 6 67

MP7 33 10 176 (25) [0] 19 15

MP12 4 2 122 (74) [0] 3 23

MP19 46 0 1006 (76) [0] 5 3

CM

MP5 52 588 632 (90) [30] 8 89

MP6 74 202 153 (73) [20] 48 86

MP11 96 209 248 (99) [56] 39 94

MP13 48 361 168 (96) [15] 29 96

MP15 42 206 214 (33) [19] 20 84

MP16 12 318 195 (30) [28] 6 77

MP21 134 697 368 (30) [14] 36 97

NME

MP8 17 0 152 (54) [7] 11 1

MP10 83 8 182 (9) [9] 46 13

MP17 24 6 120 (32) [20] 20 8

MP18 58 0 158 (64) [14] 37 0

MP20 20 0 100 (90) [30] 20 0

NOTE. A vessel was defined as positive for platelets if it contained a
surface of GPIIb-IIIa staining 15 mm2 in its lumen. CM, cerebral malaria; NME,
nonmalarial encephalopathies; pp, pigmented parasites; SMA, severe ma-
larial anemia; upp, unpigmented parasites.

a Duration of fever (h) from reported onset until time of death.
b Duration of coma (h) from reported onset until time of death.

leukocytes, except patient 18. In no patient group was there

any discernible relationship between the duration of either fever

or coma and the presence or intensity of platelet staining in

cerebral vessels.

DISCUSSION

We have shown that the degree of platelet accumulation in

microvessels is significantly greater in patients with CM than

in those with either SMA or NME and that, in most patients

with CM, platelets are colocalized with malaria pigment and

white cells. The proportion of vessels showing platelet accu-

mulation is significantly higher in patients with CM than in

those with SMA.

Platelet changes have long been known in malaria, throm-

bocytopenia being a usual feature of plasmodial infections. The

pathogenesis of malaria-induced thrombocytopenia appears to

involve immune mechanisms. This has been described in P.

falciparum [20] and P. vivax [21] malaria, as well as in a murine

CM model, P. berghei ANKA (PbA) infection [22]. In addition

to immune-mediated damage, a direct interaction between

platelets and the parasite has been observed—namely, mero-

zoite engulfment by platelets [23, 24]. Fajardo [25] has reviewed

evidence suggesting that platelets may play important roles,

both beneficial and deleterious, in infections.

The presence of platelets in human CM has been described

by electron microscopy [17], but its relation to different disease

syndromes has not been defined. Platelet sequestration has been

demonstrated in murine CM [12]. In this case, the presence

of platelets is 1 of 3 arguments in favor of their role in the

pathogenesis of the syndrome; the other 2 arguments include

the capacity of anti–LFA-1 mAb to ablate platelet trapping in

the brain and the beneficial effect of decreasing platelet counts

in PbA-infected mice [12]. The patterns of platelet sequestra-

tion described herein are identical to those found in mice with

CM, and the phenomenon is quantitatively comparable [26].

Platelets can bind to endothelial cells by various molecules

[27]; among these is CD36, a counterreceptor for pRBCs [28,

29]. In our patients, CD36 was found on brain microvessels

from all patients, including control subjects (data not shown),

which confirms the data reported by Barnwell et al. [29]. In

addition to endothelial cells and monocytes, human erythro-

cytes express CD36 [30] and therefore can bind platelets. In

turn, CD36 may serve as a receptor for some pRBCs and,

indirectly, may have a role in platelet and leukocyte arrest in

brain vessels. It has been shown that pRBCs that bind to CD36

can activate platelets and monocytes [31]. Recently, platelets

have been shown to mediate the clumping of pRBC, a phe-

nomenon that is associated with severe malaria [32]. In addition

to platelet-endothelial interactions, platelet-leukocyte interac-

tions may be important in CM, as suggested by the correlation

found between these 2 cell types in brain vessels.

Platelet accumulation may have deleterious effects on en-

dothelial-cell viability. Although platelets exert a trophic role

on endothelium in physiological conditions [33], it has been

proposed that an amplification of this phenomenon, particu-

larly when endothelial cells are prestimulated by TNF, can lead

to endothelial injury [16]. A possible role of platelets in mi-

crovascular pathology is supported by data in an experimental

CM model in vivo and by the numerous mechanisms by which

platelets can alter endothelial functions [27]; these mechanisms

include an induction of the adhesiveness of endothelial cells

for leukocytes, an enhancement of TNF-induced killing, and

the modulation of leukocyte functions, notably the induction

of their chemokine synthesis.

Taken together, the data presented herein are the first dem-

onstration of the presence of platelets in human CM in a con-

trolled study. On the basis of a study of this kind we are unable

to determine whether platelet deposition makes an important

contribution to the pathogenesis of either coma or death in
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severe malaria. An alternative possibility is that platelet depo-

sition occurs as an end-stage consequence of endothelial dam-

age, after the sequestration and eventual rupture of parasitized

erythrocytes, and that other parasite-induced mechanisms or

host responses are responsible for pathogenesis and clinical

disease. Distinguishing among these possible mechanisms will

be important in the search for new therapies for life-threatening

malaria.
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