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S U M M A R Y
An existing time-domain spectral-finite element approach for the forward modelling of elec-
tromagnetic induction vector data as measured by the CHAMP satellite is, in this paper,
supplemented by a new method of computing the sensitivity of the CHAMP electromagnetic
induction data to the Earth’s mantle electrical conductivity, which we term the adjoint sensi-
tivity method. The forward and adjoint initial boundary-value problems, both solved in the
time domain, are identical, except for the specification of prescribed boundary conditions.
The respective boundary-value data at the satellite’s altitude are the X magnetic component
measured by the CHAMP vector magnetometer along the satellite track for the forward method
and the difference between the measured and predicted Z magnetic component for the adjoint
method.

The squares of these differences summed up over all CHAMP tracks determine the misfit.
The sensitivities of the CHAMP data, that is the partial derivatives of the misfit with respect
to mantle conductivity parameters, are then obtained by the scalar product of the forward and
adjoint solutions, multiplied by the gradient of the conductivity and integrated over all CHAMP
tracks. Such exactly determined sensitivities are checked against numerical differentiation of
the misfit, and good agreement is obtained. The attractiveness of the adjoint method lies in
the fact that the adjoint sensitivities are calculated for the price of only an additional forward
calculation, regardless of the number of conductivity parameters. However, since the adjoint
solution proceeds backwards in time, the forward solution must be stored at each time step,
leading to memory requirements that are linear with respect to the number of steps undertaken.

Having determined the sensitivities, we apply the conjugate gradient method to infer 1-D
and 2-D conductivity structures of the Earth based on the CHAMP residual time series (after
the subtraction of static field and secular variations as described by the CHAOS model) for the
year 2001. We show that this time series is capable of resolving both 1-D and 2-D structures
in the upper mantle and the upper part of the lower mantle, while it is not sufficiently long to
reliably resolve the conductivity structure in the lower part of the lower mantle.

Key words: Inverse theory; Geomagnetic induction; Satellite magnetics.

1 I N T RO D U C T I O N

Electromagnetic (EM) induction methods are often used to determine the electrical conductivity of the Earth’s interior. On a planetary scale,
information about the conductivity distribution is traditionally extracted from permanent geomagnetic observatory recordings by applying
inverse theory (e.g. Eckhardt et al. 1963; Banks 1969; Schultz & Larsen 1987, 1990, and others). Although electrical conductivity depends
on the temperature, pressure and chemical composition of the Earth’s interior with many degrees of freedom, we are always forced to
parameterize the conductivity by only a few parameters so that the inverse modelling can be carried out with a certain degree of uniqueness.
A major difficulty in the choice of model parameterization is to introduce those parameters that are most important for interpreting the data.
Strictly, this information cannot be known a priori, but can be inferred from the analysis of the sensitivities, that is partial derivatives of
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the data with respect to model parameters. Once the sensitivities to all parameters are available, they can subsequently be used for ranking
the relative importance of conductivity parameters to a forward-modelled response, for refining an initial conductivity model to improve the
fit to the observed data, and for assessing the uncertainty of the inverse-modelled conductivity distribution due to the propagation of errors
contaminating the data.

A straightforward approach to compute the sensitivities is the so-called brute-force method, whereby the partial derivatives with respect to
model parameters are approximated by the centred difference of two forward model runs. Although the brute-force method is not particularly
elegant, it is useful for computing the sensitivities with respect to a small number of model parameters, or for testing the accuracy of faster
algorithms (which is the case in this paper). However, it becomes impractical for a conductivity model with a large number of parameters.

There are two advanced formal techniques for calculating the sensitivities: the forward sensitivity method and the adjoint sensitivity
method. In the forward sensitivity method, the forward model is differentiated with respect to model parameters and the resulting forward
sensitivity equations are solved for the partial derivatives of the field variables. If there are M model parameters, then the solutions of M
forward sensitivity equations are required. Although this is an excellent method when M is small, it, however, becomes computationally
expensive for larger values of M . The mathematical foundations of the forward and adjoint sensitivities for linear and nonlinear dynamical
systems are presented by Marchuk (1995), Cacuci (2003) and Sandu et al. (2003), while its application to EM induction modelling is described
by Jupp & Vozoff (1977), Rodi (1976), Oldenburg (1990) and McGillivray et al. (1994).

The adjoint sensitivity method, applied also hereafter, is a powerful complement to the forward sensitivity method. In this method,
the adjoint sensitivity equations are solved by making use of nearly identical forward modelling code, but running it backwards in time.
For a physical system that is linearly dependent on its model parameters, the adjoint sensitivity equations are independent of the original
(forward) equations (Cacuci 2003), and hence the adjoint sensitivity equations are solved only once in order to obtain the adjoint solution.
The sensitivities to all model parameters are then obtained by a subsequent integration of the product of the forward and adjoint solutions.
Thus, there is no need to solve repeatedly the forward sensitivity equations, as in the forward sensitivity method. The adjoint sensitivity
method is thus the most efficient for sensitivity analysis of models with large numbers of parameters. The adjoint sensitivity method for a
general physical system was, for example, described by Morse & Feshbach (1953), Lanczos (1961), Marchuk (1995), Cacuci (2003) and
Tarantola (2005), and its application to EM induction problems was demonstrated by Weidelt (1975), Madden & Mackie (1989), McGillivray
& Oldenburg (1990), Oldenburg (1990), Farquharson & Oldenburg (1996), Newman & Alumbaugh (1997, 2000), Dorn et al. (1999),
Rodi & Mackie (2001), Avdeev & Avdeeva (2006) and Kelbert et al. (2008).

The recent magnetic missions, Ørsted and CHAMP provide a global coverage of high-precision vector and scalar measurements of the
geomagnetic field from low-altitude orbits. Unlike land-based observatories, satellites acquire data without regard for oceans and continents,
hemispheres, or political boundaries. On the other hand, the mixed spatial and temporal character of satellite signals makes their analysis
more difficult than that of their terrestrial counterparts, which manifest only temporal variations. However, significant progress has already
been made in separating the signals due to EM induction in the Earth from satellite magnetic data (Didwall 1984; Oraevsky et al. 1993; Olsen
1999; Tarits & Grammatica 2000; Grammatica & Tarits 2002; Korte et al. 2003; Constable & Constable 2004; Kuvshinov & Olsen 2006).

In this paper, we deal with the CHAMP vector magnetic time series due to EM induction in the Earth and interpret them by making
use of the existing time-domain 2-D approach for the global EM induction for low-orbit satellite magnetic observations, as proposed
by Martinec & McCreadie (2004). Our aim is to rigorously formulate the adjoint sensitivity method associated with the Martinec &
McCreadie forward method and demonstrate its power for solving the parametric inverse problem of global EM induction. We first derive the
adjoint sensitivity equations using the Green’s integral theorem expressed in the form of the bilinear identity. Next, the adjoint sensitivities
are validated with respect to the brute-force sensitivities. Once the sensitivities are known, we use them for ranking the relative importance
of the Earth’s mantle conductivity parameters in the interpretation of the 2001-CHAMP satellite magnetic data. Finally, we apply conjugate
gradient minimization by employing the adjoint sensitivities to solve the inverse problem of EM induction for the 2001-CHAMP data. The
last section summarizes our results and suggests some directions for future research.

2 F O RWA R D M E T H O D O F E M I N D U C T I O N F O R T H E X C O M P O N E N T O F C H A M P
M A G N E T I C DATA

In this section, we formulate the forward method of EM induction for the case where the X component of CHAMP magnetic data is used as
the boundary-value data at satellite altitude.

2.1 Assumptions on EM induction modelling for CHAMP magnetic data

In the following, the magnetic signals induced by equatorial ring currents in the magnetosphere and measured by a CHAMP vector
magnetometer are considered. To obtain these signals, the CHAMP magnetic data are processed in a specific manner, and several assumptions
for the EM induction modelling are made. The data processing steps and assumptions (see Martinec & McCreadie 2004; Velı́mský et al.
2006, for more details) are as follows:

(1) The CHAOS model of the Earth’s magnetic field (Olsen et al. 2006) is first subtracted from the CHAMP vector magnetic data. The
residual magnetic time series are only considered along night-side satellite tracks at low and mid-latitudes, allowing the reduction of the
magnetic effects of ionospheric currents and field-aligned currents in the polar regions.
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1374 Z. Martinec and J. Velı́mský

(2) The satellite is assumed to orbit the Earth sufficiently fast (one CHAMP orbit takes approximately 90 min) compared to the time
variations of the ring current. This assumption allows the separation of the spatial and temporal changes of the magnetic field observed by
the single satellite to be performed in a simple way. Each night-side satellite track is considered to sample a snapshot of the magnetic field at
the time when the satellite crosses the magnetic equator.

(3) Since the CHAMP satellite orbit is nearly polar (the inclination of the CHAMP orbit is approximately 87.3◦), magnetic signals sampled
along a track are dominantly influenced by latitudinal changes in the electrical conductivity of the Earth’s mantle. We will not consider the
effect of longitudinal variations in electrical conductivity on track data and assume that the electrical conductivity σ of the Earth is axially
symmetric, that is

σ = σ (r, ϑ) in B, (1)

where B is a conducting sphere approximating a heterogeneous Earth, r is the radial distance from the centre of B and ϑ is the colatitude.
(4) Since ring-current magnetospheric excitation has nearly an axially symmetric geometry, we will assume that, for a given satellite track,

the inducing and induced magnetic fields possess axial symmetry, that is

G(e)
jm(t) = G(i)

jm(t) = 0 for m �= 0, (2)

where G(e)
jm (t) and G(i)

jm (t) are the time-dependent, spherical harmonic Gauss expansion coefficients of the magnetic field generated by external
equatorial ring currents and the magnetic field generated by the induced eddy currents in the Earth, respectively.

2.2 Forward method

The conducting sphere B is assumed to be surrounded by an insulating atmosphere, approximated by a spherical layer A with the inner
boundary coinciding with the surface ∂B of the sphere B with the mean Earth radius r = a and the outer boundary with the mean-orbit sphere
∂A of radius r = b. The solution domain G for EM induction modelling is the unification of the conducting sphere B and the insulating
spherical layer A, that is G = B ∪ A, bounded by the mean-orbit sphere ∂G = ∂A.

The magnetic field in G is induced by time-varying electrical currents in the magnetosphere with characteristic timescales ranging from
several hours to tens of days. For the axisymmetric geometry of external ring-current sources and conductivity models, it is convenient to
formulate the initial, boundary-value problem (IBVP) of global EM induction in terms of the toroidal vector potential A such that the magnetic
induction vector is expressed in the form B = curl A. The mathematical formulation is as follows: find the toroidal vector potential A such
that
1

μ
curl curl A + σ

∂ A

∂t
= 0 in G (3)

with the boundary condition

n × curl A = Bt on ∂G, (4)

where the magnetic permeability μ of G is assumed to be constant. In this paper, eqs (3) and (4) are applied for times t ∈ (0, T ). The
term Bt represents the tangential component of the magnetic induction vector B at the satellite altitude and n is the unit normal to ∂G. The
axisymmetric geometry allows us (see Section 4) to determine Bt from the horizontal northward X component of the magnetic induction
vector B measured by the CHAMP magnetometer. Moreover, the toroidal vector potential A is considered divergence-free, that is div A = 0.
Note that the conductivity σ = 0 in the insulating atmosphere A implies that the second term in eq. (3) vanishes in A. Eq. (3) is yet subject
to the initial condition

A|t=0 = A0 in G, (5)

where A0 is the generating potential for the initial magnetic induction B0 such that B0 = curl A0.

3 A D J O I N T S E N S I T I V I T Y M E T H O D O F E M I N D U C T I O N F O R T H E Z C O M P O N E N T
O F C H A M P M A G N E T I C DATA

In this section, we formulate the adjoint sensitivity method of EM induction for computing the sensitivity of the Z component of CHAMP
magnetic data with respect to mantle-conductivity structure.

3.1 Misfit function and its gradient in the parameter space

Let us first consider the conductivity σ (r , ϑ) of the conducting sphere B to be represented in terms of an M-dimensional system of r-
and ϑ-dependent base functions and let the expansion coefficients of this representation be σ1, σ2, . . . , σ M . Defining the parameter vector
�σ := (σ1, σ2, . . . , σM ), the dependence of the conductivity σ (r , ϑ) on the conductivity parameters �σ can be made explicit as

σ = σ (r, ϑ ; �σ ). (6)

C© 2009 The Authors, GJI, 179, 1372–1396

Journal compilation C© 2009 RAS



The adjoint method for EV induction 1375

Martinec & McCreadie (2004) showed that the solution of the IBVP for CHAMP magnetic data formulated in the previous section
enables the modelling of the time evolution of the normal component Bn := n · B of the magnetic induction vector on the mean-orbit sphere
∂ G along the satellite tracks. These predicted data Bn(�σ ) can be compared with the observations B(obs)

n of the normal component of the
magnetic induction vector by the CHAMP onboard magnetometer. The differences between observed and predicted values can be used as
a misfit for the inverse EM-induction modelling. The adjoint method of EM induction presented in this paper calculates the sensitivity of
the forward-modelled data Bn(�σ ) on the conductivity distribution σ by making use of the differences B(obs)

n − Bn(�σ ) as boundary-value
data.

Let the observations B(obs)
n be made for times t ∈ (0, T ) such that, according to assumption (ii), B(obs)

n (ϑ, ti ) at a particular time instance
ti ∈ (0, T ) corresponds to the CHAMP observations along the ith satellite track. The least-squares misfit is therefore defined as

χ 2(�σ ) := b

2μ

∫ T

0

∫
∂G

w2
b

[
B(obs)

n − Bn(�σ )
]2

d S dt, (7)

where the weighting factor wb = wb(ϑ , t) is chosen to be dimensionless such that the misfit has the SI unit m3 sT2/[μ], [μ] = kg m s−2 A−2. If
the observations B(obs)

n contain random errors, which are statistically independent, the statistical variance of observations may be substituted
for the reciprocal value of w2

b (e.g. Bevington 1969, section 6-4). In Section 4.2, the ϑ dependence of wb allows us to eliminate the track
data from the polar regions which are contaminated by signals from field-aligned currents and polar electrojets while the time dependence of
wb allows us to eliminate the track data for time instances when other undesirable magnetic effects at low and mid-latitudes contaminate the
signal excited by equatorial ring currents.

The sensitivity analysis or inverse modelling requires the computation of the partial derivative of the misfit with respect to the model
parameters, that is the derivatives ∂χ 2/∂ σm , m = 1, . . . , M , often termed the sensitivities of the misfit with respect to the model parameters
σm (e.g. Sandu et al. 2003). To abbreviate the notation, the partial derivatives with respect to the conductivity parameters are ordered in the
gradient operator in the M-dimensional parameter space,

∇�σ :=
M∑

m=1

σ̂m
∂

∂σm
(8)

where the hat in σ̂m indicates a unit vector.
Realizing that the observations B(obs)

n are independent of the conductivity parameters �σ , that is ∇�σ B(obs)
n = �0, the gradient of χ 2(�σ ) is

∇�σ χ 2 = − b

μ

∫ T

0

∫
∂G

�Bn(�σ )∇�σ Bn d S dt, (9)

where �Bn(�σ ) are the weighted residuals of the normal component of magnetic induction vector, that is,

�Bn(�σ ) := w2
b

[
B(obs)

n − Bn(�σ )
]
. (10)

The straightforward approach to find ∇�σ χ 2, is to approximate ∂χ 2/∂σm by a numerical differentiation of forward model runs. Due to the size
of the parameter space, this procedure is often extremely computationally expensive.

3.2 The forward sensitivity equations

The forward sensitivity analysis computes the sensitivities of the forward solution with respect to the conductivity parameters, that is the
partial derivatives ∂ A/∂σm , m = 1, . . . , M . Using them, the forward sensitivities ∇�σ Bn are computed and substituted into eq. (9) for ∇�σ χ 2.

To form the forward sensitivity equations, also called the linear tangent equations of the model (e.g. McGillivray et al. 1994; Cacuci
2003; Sandu et al. 2003, 2005), let us consider the conductivity model (6) in eq. (3) and differentiate the forward model eqs (3)–(5) with
respect to the conductivity parameters �σ
1

μ
curl curl ∇�σ A + σ

∂∇�σ A

∂t
+ ∇�σ σ

∂ A

∂t
= 0 in G (11)

with homogeneous boundary and initial conditions

n × curl ∇�σ A = 0 on ∂G (12)

and

∇�σ A

∣∣∣∣
t=0

= 0 in G, (13)

where ∇�σ Bt = ∇�σ A0 = 0 have been substituted because the boundary data Bt and the initial condition A0 are independent of the conductivity
parameters �σ . In the forward sensitivity analysis, for each parameter σm and associated forward solution A, a new source term ∇�σ σ ∂ A/∂t
is created and the forward sensitivity eqs (11)–(13) are solved to compute the partial derivative ∂ A/∂σm . The forward sensitivity analysis is
known to be very effective when the sensitivities of a larger number of output variables are computed with respect to a small number of input
parameters (Sandu et al. 2003; Petzold et al. 2006).
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1376 Z. Martinec and J. Velı́mský

3.3 The adjoint sensitivity equations

The adjoint method provides an efficient alternative to the forward sensitivity analysis for evaluating ∇�σ χ 2 without explicit knowledge of
∇�σ A, that is without solving the forward sensitivity equations. Hence, the adjoint method is more efficient for problems involving a large
number of model parameters.

The adjoint sensitivity analysis proceeds by forming the inner product of eqs (11) and (12) with a yet unspecified adjoint function Â.
Because the forward sensitivity equations are linear in ∇�σ A, an adjoint equation exists (Cacuci 2003). To derive it, eqs (11) and (12) are
multiplied by an adjoint function Â(r, ϑ, t), then integrated over G and ∂ G, respectively, and subtracted from each other:
1

μ

∫
G

curl curl ∇�σ A · Â dV − 1

μ

∫
∂G

(n × curl ∇�σ A) · Â d S +
∫

G
σ

∂∇�σ A

∂t
· Â dV +

∫
G

∇�σ σ
∂ A

∂t
· Â dV = 0, (14)

where dot stands for the scalar product of vectors.
In the next step, the integrals in eq. (14) are transformed such that ∇�σ A and Â interchange. To achieve this, let us consider the Green’s

theorem for two sufficiently smooth functions f and g in the form∫
G

curl f · curl g dV =
∫

G
curl curl f · g dV −

∫
∂G

(n × curl f ) · g d S. (15)

Interchanging the functions f and g and subtracting the new equation from the original one results in the integral identity∫
G

curl curl f · g dV −
∫

∂G
(n × curl f ) · g d S =

∫
G

curl curl g · f dV −
∫

∂G
(n × curl g) · f d S. (16)

By this, the positions of ∇�σ A and Â can be exchanged in the first two integrals in eq. (14):
1

μ

∫
G

curl curl Â · ∇�σ A dV − 1

μ

∫
∂G

(n × curl Â) · ∇�σ A d S +
∫

G
σ

∂∇�σ A

∂t
· Â dV +

∫
G

∇�σ σ
∂ A

∂t
· Â dV = 0. (17)

To perform the same transformation in the third integral, we integrate eq. (17) over the time interval t ∈ (0, T ), that is

1

μ

∫ T

0

∫
G

curl curl Â · ∇�σ A dV dt − 1

μ

∫ T

0

∫
∂G

(n × curl Â) · ∇�σ A d Sdt

+
∫ T

0

∫
G

σ
∂∇�σ A

∂t
· Â dV dt +

∫ T

0

∫
G

∇�σ σ
∂ A

∂t
· Â dV dt = 0. (18)

Then we exchange the order of integration over the spatial variables and time in the third integral and perform the time integration by partes:∫ T

0

∂∇�σ A

∂t
· Â dt = ∇�σ A · Â

∣∣∣∣
t=T

− ∇�σ A · Â

∣∣∣∣
t=0

−
∫ T

0
∇�σ A · ∂ Â

∂t
dt. (19)

The second term on the right-hand side is equal to zero because of homogeneous initial condition given by eq. (13). Finally, eq. (18) takes the
form
1

μ

∫ T

0

∫
G

curl curl Â · ∇�σ A dV dt − 1

μ

∫ T

0

∫
∂G

(n × curl Â) · ∇�σ A d S dt

+
∫

G
σ∇�σ A · Â

∣∣∣∣
t=T

dV −
∫ T

0

∫
G

σ∇�σ A · ∂ Â

∂t
dV dt +

∫ T

0

∫
G

∇�σ σ
∂ A

∂t
· Â dV dt = 0. (20)

Remembering that ∇�σ Bn is the derivative that we wish to eliminate from ∇�σ χ 2, we add the homogeneous eq. (20) to eq. (9) (note the physical
units of eq. (20) are the same as ∇�σ χ 2, namely m3sT2/[μσ ] provided that the physical units of Â are the same as of A, namely, Tm):

∇�σ χ 2 = 1

μ

∫ T

0

∫
G

curl curl Â · ∇�σ A dV dt − 1

μ

∫ T

0

∫
∂G

(n × curl Â) · ∇�σ A d S dt

+
∫

G
σ∇�σ A · Â

∣∣∣∣
t=T

dV −
∫ T

0

∫
G

σ
∂ Â

∂t
· ∇�σ A dV dt +

∫ T

0

∫
G

∇�σ σ
∂ A

∂t
· Â dV dt

− b

μ

∫ T

0

∫
∂G

�Bn∇�σ Bn d S dt.
(21)

The adjoint function Â has been considered arbitrary so far. Our aim is now to impose constraints on it such that the originally arbitrary
Â transforms to the well-defined adjoint toroidal vector potential. We first eliminate the volume integrals over G proportional to ∇�σ A by
requiring that

1

μ
curl curl Â − σ

∂ Â

∂t
= 0 in G, (22)

with the terminal condition on Â:

Â

∣∣∣∣
t=T

= 0 in G. (23)

The boundary condition for Â on ∂G is derived from the requirement that the surface integrals over ∂G in eq. (21) cancel each other, that is∫
∂G

(n × curl Â) · ∇�σ A d S + b

∫
∂G

�Bn∇�σ Bn d S = 0 (24)
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at any time t ∈ (0, T ). We will elaborate on this condition in the next section. Under these constraints, the gradient of χ 2(�σ ) takes the form

∇�σ χ 2 =
∫ T

0

∫
G

∇�σ σ
∂ A

∂t
· Â dV dt. (25)

3.4 Boundary condition for the adjoint potential

To relate ∇�σ A and ∇�σ Bn in the constraint described by eq. (24) and, subsequently, to eliminate ∇�σ A from it, a parameterization of A is
necessary. For global EM induction, it is convenient to parameterize A in terms of vector spherical harmonics. Such a parameterization is
described in detail by Martinec (1997) and Martinec et al. (2003). Here, we only introduce the final form of the representation of A, which is
also employed for the adjoint potential Â:{

A(r, ϑ, t)

Â(r, ϑ, t)

}
=

∞∑
j=1

{
A j

j (r, t)

Â
j

j (r, t)

}
Y j

j (ϑ), (26)

where Y j
j (ϑ) are the zonal toroidal vector spherical harmonics. Their definition and some properties are given in the Appendix A.

We first aim to express the gradient ∇�σ χ 2 in terms of spherical harmonics. Since the upper boundary ∂G of the solution domain G is the
mean-orbit sphere of radius b, the external normal n to ∂G coincides with the unit vector er , that is n = er . Applying the gradient operator
∇�σ on the equation Bn = er · curl A and using eq. (A14), we obtain

∇�σ Bn(r, ϑ, t) = −1

r

∞∑
j=1

√
j( j + 1) ∇�σ A j

j (r, t)Y j (ϑ). (27)

Moreover, applying a two-step least-squares analysis (Martinec & McCreadie 2004) on the residual satellite-track data � Bn defined by
eq. (10), these observables can, at a particular time t ∈ (0, T ), be represented as a series of the zonal scalar spherical harmonics

�Bn(ϑ, t ; �σ ) =
∞∑
j=1

�Bn, j (t ; �σ )Y j (ϑ) (28)

with spherical harmonic coefficients of the form

�Bn, j (t ; �σ ) = 1

b2

∫
∂G

w2
b

[
B(obs)

n (ϑ, t) − Bn(b, ϑ, t ; �σ )
]

Y j (ϑ) d S. (29)

Substituting eqs (27) and (28) into eq. (9) and employing the orthonormality property (A2) of the zonal scalar spherical harmonics Y j (ϑ),
the gradient of the misfit χ 2 becomes

∇�σ χ 2 = b2

μ

∫ T

0

∞∑
j=1

√
j( j + 1) �Bn, j (t ; �σ )∇�σ A j

j (b, t) dt. (30)

We now return to the constraint (24) and express it in terms of spherical harmonics. By the parameterization (26) and the assumption
n = er , the differential relation (A16) applied to Â yields

n × curl Â =
∞∑
j=1

[
n × curl Â(r, t)

] j

j
Y j

j (ϑ), (31)

where[
n × curl Â(r, t)

] j

j
= −

(
d

dr
+ 1

r

)
Â j

j (r ). (32)

The first constituent in the first integral of the constraint (24) is expressed by eq. (31), while the second constituent can be obtained by
applying the gradient operator ∇�σ to eq. (26). The two constituents in the second integral of the constraint (24) are expressed by eqs (27) and
(28), respectively. Performing all indicated substitutions, we obtain∫ 2π

ϕ=0

∫ π

ϑ=0

∞∑
j1=1

[n × curl Â(b, t)] j1
j1

Y j1
j1

(ϑ) ·
∞∑

j2=1

∇�σ A j2
j2

(b, t) Y j2
j2

(ϑ) b2 sin ϑdϑdϕ

= b

∫ 2π

ϕ=0

∫ π

ϑ=0

∞∑
j1=1

�Bn, j1 (t ; �σ )Y j1 (ϑ)
1

b

∞∑
j2=1

√
j2( j2 + 1) ∇�σ A j2

j2
(b, t)Y j2 (ϑ) b2 sin ϑdϑdϕ. (33)

Interchanging the order of integration over the full solid angle and summations over j’s, and making use of the orthonormality properties (A2)
and (A7) of the zonal scalar and vector spherical harmonics, respectively, eq. (33) reduces to
∞∑
j=1

[n × curl Â(b, t)] j
j∇�σ A j

j (b, t) =
∞∑
j=1

√
j( j + 1) �Bn, j (t ; �σ )∇�σ A j

j (b, t), (34)
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which is to be valid at any time t ∈ (0, T ). To satisfy this constraint independently of ∇�σ A j
j (b, t), one last condition is imposed upon the

adjoint potential Â, namely

[n × curl Â(b, t)] j
j =

√
j( j + 1) �Bn, j (t ; �σ ) on ∂G (35)

at any time t ∈ (0, T ).

3.5 Adjoint method

We can now summarize the formulation of the adjoint method of EM induction for CHAMP satellite magnetic data.
Given the electrical conductivity model σ (r , ϑ) in the sphere B, the forward solution A(r , ϑ , t) in B and the atmosphere A for

t ∈ (0, T ) and the observations B(obs)
n (t) on the mean-orbit sphere ∂ G of radius r = b with uncertainties quantified by weighting factor wb,

find the adjoint potential Â(r, ϑ, t) in G = B ∪ A by solving the adjoint problem:

1

μ
curl curl Â − σ

∂ Â

∂t
= 0 in G (36)

with the boundary condition

[n × curl Â(b, t)] j
j =

√
j( j + 1) �Bn, j (t) on ∂G (37)

and the terminal condition

Â

∣∣∣∣
t=T

= 0 in G. (38)

The gradient of the misfit χ 2(�σ ) is then expressed as

∇�σ χ 2 =
∫ T

0

∫
G

∇�σ σ
∂ A(t)

∂t
· Â(t)dV dt. (39)

The set of eqs (36)–(38) is referred to as the adjoint problem of the forward problem specified by eqs (3)–(5). Combining the forward solution
A and the adjoint solution Â according to eq. (39) thus gives the exact derivative of the misfit χ 2.

3.6 Reverse time

The numerical solution of eq. (36), solved backwards in time from t = T to t = 0, is inherently unstable. Unlike the case of the forward
model equation and the forward sensitivity equation, the adjoint equation effectively includes negative diffusion, which enhances numerical
perturbations instead of smoothing them, leading to an unstable solution. To avoid such numerical instability, we change the sign of the
diffusive term in eq. (36) by reversing the time variable. We introduce the reverse time τ = T − t , τ ∈ (0, T ), and the reverse-time adjoint
potential Ǎ(τ ) such that

Â(t) = Â(T − τ ) =: Ǎ(τ ). (40)

Hence,

∂ Â

∂t
= −∂ Ǎ

∂τ
, (41)

and eq. (36) transforms to the diffusion equation for the reverse-time adjoint potential Ǎ(τ ):

1

μ
curl curl Ǎ + σ

∂ Ǎ

∂τ
= 0 in G (42)

with the boundary condition

[n × curl Ǎ(b, τ )] j
j =

√
j( j + 1) �Bn, j (T − τ ) on ∂G. (43)

The terminal condition (38) for Â becomes the initial condition for the potential Ǎ:

Ǎ

∣∣∣∣
τ=0

= 0 in G. (44)

With these changes, the adjoint equations become similar to those of the forward method, and thus nearly identical numerical methods can be
applied. In Appendix B, we demonstrate the way of how the adjoint method for Ǎ can be reformulated in a weak sense.

The gradient (39) transforms to

∇�σ χ 2 =
∫ T

0

∫
G

∇�σ σ
∂ A(t)

∂t
· Ǎ(T − t)dV dt. (45)
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The importance of eq. (45) is that, once the forward problem (3)–(5) is solved and the misfit χ 2 is evaluated from eq. (7), the gradient ∇�σ χ 2

may be evaluated for little more than the cost of a single solution of the adjoint system (42)–(44) and a single scalar product in eq. (45),
regardless of the dimension of the conductivity vector �σ . This is compared to other methods of evaluating ∇�σ χ 2 that typically require the
solution of the forward problem (3)–(5) per component of �σ . In Appendix C, the method for numerical evaluation of misfit gradient ∇�σ χ 2 is
shown.

We now explain the specific steps involved in the adjoint computations. First, the forward solutions A (ti ) are calculated at discrete time
levels 0 = t0 < t1 < · · · < tn = T by solving the forward problem (3)–(5), and each solution A (ti ) must be stored. Then the reverse-time
adjoint solutions Ǎ(ti ), i = 0, . . . , n, are calculated, proceeding again forwards in time according to eqs (42)–(44). As each adjoint solution
is computed, the misfit and its derivative are updated according to eq. (7) and (45), respectively. When Ǎ(T ) has finally been calculated, both
χ 2 and ∇�σ χ 2 are known. The forward solutions A (ti ) are stored because eqs (43) and (45) depend on them for the adjoint calculation. As a
result, the numerical algorithm has memory requirements that are linear to the number of timesteps. This is the main drawback of the adjoint
method.

3.7 Spherical harmonic parameterization of CHAMP magnetic data

The spherical harmonic representation of the tangential component Bt of magnetic data at satellite altitudes, used in the forward method of
EM induction, can be obtained by substituting eq. (B2) into eq. (A16):

Bt (ϑ, t) = −
∞∑
j=1

√
j( j + 1)X j (t)Y

j
j (ϑ), (46)

where

X j (t) :=
(

b

a

) j−1

G(e)
j (t) +

(a

b

) j+2
G(i)

j (t) (47)

are the spherical harmonic coefficients of the horizontal northward X component of the magnetic induction vector B measured at satellite
altitude r = b, that is

X (ϑ, t) := −eϑ · curl A|r=b =
∞∑
j=1

X j (t)
∂Y j (ϑ)

∂ϑ
. (48)

Similarly, the spherical harmonic representation of the normal component Bn of magnetic data at satellite altitudes, used in the adjoint method
of EM induction, can be obtained by substituting eq. (B2) into eq. (A14):

Bn(ϑ, t) = −
∞∑
j=1

Z j (t)Y j (ϑ), (49)

where

Z j (t) := j

(
b

a

) j−1

G(e)
j (t) − ( j + 1)

(a

b

) j+2
G(i)

j (t) (50)

are the spherical harmonic coefficients of the Z component of the magnetic induction vector B measured at satellite altitude r = b, that is

Z (ϑ, t) := −er · curl A|r=b =
∞∑
j=1

Z j (t)Y j (ϑ). (51)

Eqs (47) and (50) show that the coefficients X j (t) and Z j (t) are composed of two different linear combinations of the spherical harmonics
G(e)

j (t) of the external EM sources and the spherical harmonics G(i)
j (t) of the induced magnetic field inside the Earth. Consequently, there

is no need to specify these coefficients separately when X j (t) and Z j (t) are used as the boundary-value data for the forward and adjoint
modelling of EM induction, respectively.

4 C H A M P DATA A NA LY S I S

4.1 Selection and processing of vector data

The data analyzed in this paper were recorded by a three-component vector magnetometer on board of CHAMP. To demonstrate the
performance of the adjoint sensitivity method, we have selected, from all records spanning more than 8 years, the 1-year long time series from
January 1, 2001 (track no. 2610), to January 10, 2002 (track no. 8402). Judging from the Dst index (Fig. 2), there were about 10 events when
the geomagnetic field was significantly disturbed by geomagnetic storms or substorms. In order to minimize the effect of strong day-side
ionospheric currents, we use only night-side data recorded by the satellite between 18:00 and 6:00 local solar time.

In the first step of the data processing, we use the CHAOS model of the Earth’s magnetic field (Olsen et al. 2006) to isolate the signals
corresponding to EM induction by storm-time magnetospheric currents. Based on the CHAOS model, we remove the main and crustal fields
up to degree 50 and the secular variation up to degree 18 from the CHAMP data.
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1380 Z. Martinec and J. Velı́mský

Figure 1. CHAMP satellite magnetic data along track no. 6753 (red line on global map shows the satellite track), which samples the initial phase of a magnetic
storm on September 26, 2001, above the Pacific Ocean. Left panels: the original CHAMP data plotted along geographical colatitude. Xg , Yg and Z components
point, respectively, to the geographic north, the geographic east and downwards. Right panels: Black lines denote X - and Z-CHAMP components after the
removal of the CHAOS model and the rotation of the residual field to dipole coordinates. The red lines show the results of the two-step, track-by-track spherical
harmonic analysis, including the extrapolation into the polar regions by using data from the mid-colatitude interval (40◦, 140◦), as marked by dotted lines.

In the next step, the horizontal magnetic components (X , Y ) are rotated from geographic coordinates to dipole coordinates, assuming
that the north geomagnetic pole is at 78.8◦N, 70.7◦W. Since we assume an axisymmetric geometry of external currents and mantle electrical
conductivity, the dipolar longitudinal component Y is not considered hereafter and we use X and Z to describe, respectively, the northward
and downward magnetic components in dipolar coordinates. Fig. 1 shows an example of the original and processed data from CHAMP track
no. 6753.

4.2 Spherical harmonic analysis

The two-step, track-by-track spherical harmonic analysis (Martinec & McCreadie 2004) is applied to the X component of the CHAMP track
data, resulting in the least-squares estimate X (obs)

j (t) of the coefficients X j (t). This method allows us to exclude observations from the polar
regions, which are contaminated by signals from field-aligned currents and polar electrojets. Instead, the field in these regions is extrapolated
from the field at low and mid-latitudes in accordance with the assumption that global EM induction is driven by the equatorial ring current.
The extrapolation takes advantage of the fact that the parameterization (48) ensures the X component approaches zero at the northern and
southern magnetic poles.

The crucial points of the extrapolation are the selection of the truncation degree jmax of the parameterization (48) and the determination
of the colatitude interval (ϑ1, ϑ2) where the data are not disturbed by the polar currents. Velı́mský et al. (2006) imposed three criteria to
determine these two parameters. First, the power of the magnetic field from the external ring currents is concentrated in low-degree harmonic
coefficients, particularly in the j = 1 term, and the leakage of EM energy into higher-degree terms caused by the Earth’s conductivity and
electrical-current geometry is monotonically decreasing. Second, the first derivative of the X component with respect to colatitude does not
change sign in the polar regions to exclude unrealistic oscillatory behavior of the X component in these regions caused by a high-degree
extrapolation. Third, if the least-squares estimate of the X component of CHAMP data over the colatitude interval (ϑ1 − 5◦, ϑ2 + 5◦) differs
by more than 10 nT compared to the estimate over the interval (ϑ1, ϑ2), the field due to the polar currents is assumed to encroach upon the
field produced by near-equatorial currents, and the narrower colatitude interval (ϑ1, ϑ2) is considered to contain only the signature generated
by the near-equatorial currents. Applying these criteria to the CHAMP track data iteratively, starting from degree j = 1 and the colatitude
interval (10◦, 170◦) and proceeding to higher degrees and shorter colatitude intervals, we found that the maximum cut-off degree is equal to
jmax = 4 and the colatitude interval is (40◦, 140◦).

The same two-step, track-by-track analysis is applied to the Z component of CHAMP track data, providing the least-squares estimates
Z (obs)

j (t) of the coefficients Z j (t). However, the extrapolation of the Z component from the field at low and mid-latitudes is more problematic
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Figure 2. Time series of the spherical harmonic coefficients X (obs)
1 (t) (red) and Z (obs)

1 (t) (blue) of horizontal and vertical components obtained by the two-step,
track-by-track spherical harmonic analysis of CHAMP data for the year 2001. A mean and linear trend are removed following the arguments of Olsen
et al.(2005). The coefficients from the missing tracks are filled by cubic spline interpolation applied to the detrended time series. Note that the sign of the X1

component is opposite to that of the Dst index (black line). This is because this component is expressed in terms of the associated Legendre functions with the
norm by Varshalovich et al. (1989), which differs from the Schmidt quasi-normalization, except a different normalization, by the factor (−1)m , where m is the
azimuthal order of the associated Legendre functions. Time on the horizontal axis is measured from midnight of January 1, 2000.

than that for the X component. This is because (1) the second selection criterion cannot be applied since the Z component does not approach
zero at the magnetic poles as seen from parameterization eq. (51), and (2) the Z component of CHAMP magnetic data contains a larger
portion of high-frequency noise than the X component, which, in principle, violates the assumption of the third selection criterion. Fig. 3
shows that the leakage of EM energy from the j = 1 into higher-degree terms is not monotonically decreasing for the Z component. That is
why the least-squares estimates Z (obs)

j (t) are extrapolated to polar regions from the colatitude interval (ϑ1, ϑ2) and up to the spherical degree
jmax determined for the X component.

The procedure applied to the 2001-CHAMP track data results in the time series of spherical harmonic coefficients X (obs)
j (t) and

Z (obs)
j (t), j = 1, . . . , 4. As an example, the resulting coefficients for degree j = 1 are plotted in Fig. 2 as functions of time after January 1,

2001. As expected, there is a high correlation between the first-degree harmonics X (obs)
1 (t) and Z (obs)

1 (t) and the Dst index for the days with
magnetic-storm occurrence.
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Figure 3. The maximum-entropy power-spectrum estimates of the spherical harmonic coefficients of X (obs)
j (t) (top panel) and Z (obs)

j (t) (bottom panel)
components. Degrees of 1, 2, 3 and 4 are, respectively, shown by black, red, blue and green lines. The spectra have peaks at higher harmonics of the 27-day
solar rotation period, that is at periods of 9 days, 6.8 days, 5.6 days, 4.8 days etc.

4.3 Power-spectrum analysis

Although the method applied in this paper is based on the time-domain approach, it is valuable to inspect the spectra of the X (obs)
j (t) and

Z (obs)
j (t) time series. Fig. 3 shows the maximum-entropy power-spectrum estimates (Press et al. 1992, section 13.7) of the first four spherical

harmonics of the horizontal and vertical components. We can see that the magnitudes of the power spectra of the X component monotonically
decrease with increasing harmonic degree, which is a consequence of the first selection criterion applied in the two-step, track-by-track
analysis. For instance, the power spectrum of the second-degree terms are about two orders of magnitude smaller than that of the first-degree
term. As already introduced, and also seen in the bottom panel of Fig. 3, this is not the case for the Z component. The magnitude of the
maximum-entropy power-spectrum of the Z component is larger than that of the X component for j > 1, which demonstrates that the Z
component of CHAMP magnetic data contains a larger portion of high-frequency noise than the X component.

Despite analyzing only night-side tracks, there is a significant peak at the period of 1 day in the power spectra of higher degree harmonics
( j ≥ 2), but, surprisingly, missing in the spectra of the first-degree harmonic. To eliminate the induction effect of residual dawn/dusk
ionospheric electrical currents, we shrink the night-side local-solar time interval from (18:00, 6:00) to (22:00, 4:00). However, a 1-day period
signal remains present in the CHAMP residual signal (not shown here). To locate a region of potential inducing electrical currents, time series
of X (obs)

j (t) and Z (obs)
j (t) coefficients are converted to time series of spherical harmonic coefficients of external and internal fields counted

with regard to the CHAMP satellite altitude. To obtain these coefficients, denoted by Ĝ(e)
j and Ĝ(i)

j , the Gaussian expansion of the external
magnetic potential is taken at satellite orbit of radius r = b, which results in eqs (47) and (50) where the mean Earth’s radius a is replaced by
b. The straightforward derivation then yields

Ĝ(e)
j = 1

2 j + 1

[
( j + 1)X (obs)

j + Z (obs)
j

]
,

Ĝ(i)
j = 1

2 j + 1

[
j X (obs)

j − Z (obs)
j

]
. (52)

The maximum-entropy power-spectrum estimates of external and internal coefficients Ĝ(e)
j and Ĝ(i)

j are shown in Fig. 4. We can see that these

spectra for degrees j = 2 to 4 have also a peak at a period of 1 day. This means that at least part of Ĝ(e)
j originates in the magnetosphere or
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Figure 4. As Fig. 3, but for the external and internal field components, Ĝ(e)
j (t) and Ĝ(i)

j (t).

even magnetopause and magnetic tail, while Ĝ(i)
j may originate from the residual night-side ionospheric currents and/or electrical currents

in the Earth induced by either effect. The 1-day period signal may also result from the fact that we express the magnetospheric field in the
dipolar coordinate system while 1-day periodicities may be better represented in the solar magnetospheric coordinates related to the position
of the Sun (Kivelson & Rusell 1995; Maus & Lühr 2005).

In addition, Fig. 4 shows that, while the periods of peak values in the external and internal magnetic fields for degree j = 1 correspond
to each other, for the higher degree harmonic terms, such a correspondence is only valid for some periods, for instance 6.8, 5.6 or 4.8 days.
However, the peak for the period of 8.5 days in the internal component for j = 2 is hardly detectable in the external field. This could be
explained by a three-dimensionality effect in the electrical conductivity of the Earth’s mantle that causes the leakage of EM energy from
degree j = 1 to the second and higher degree terms. This leakage may partly shift the characteristic periods in the resulting signal due to
interference between signals with various spatial wavelengths and periods.

5 V E R I F I C AT I O N

Before the adjoint sensitivities are computed for the CHAMP data, we will, as a first step, verify the adjoint sensitivity method (ASM) against
the direct numerical differentiation of eq. (7) for a simple three-layer, 1-D conductivity model.

5.1 Brute-force sensitivities

Sensitivities generated with the adjoint sensitivity method, called hereafter as the adjoint sensitivities, are now compared to those generated
by direct numerical differentiation of the misfit, the so-called brute-force method (BFM) (e.g. Bevington 1969), in which the partial derivative
of misfit with respect to σm at the point �σ 0 is approximated by the second-order accuracy, centred difference of two forward model runs:[

∂χ 2

∂σm

]
�σ 0

≈ χ 2
(
σ 0

1 , . . . , σ 0
m + ε, . . . , σ 0

M

) − χ 2
(
σ 0

1 , . . . , σ 0
m − ε, . . . , σ 0

M

)
2ε

, (53)

where ε refers to a perturbation applied to the nominal value of σ 0
m .
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5.2 Model parameterization

According to eq. (C1), the electrical conductivity is parameterized by the functions σ�(ϑ), which vary only with co-latitude ϑ within the
interval R� ≤ r ≤ R�+1, � = 1, · · ·, L . Moreover, we parameterize σ�(ϑ) by the zonal scalar spherical harmonics Y j (ϑ). As a result, the
logarithm of the electrical conductivity is considered in the form

log σ (r, ϑ ; �σ ) =
√

4π

L∑
�=1

J∑
j=0

σ�jξ�(r )Y j (ϑ), (54)

where ξ�(r ) is equal to 1 in the interval R� ≤ r ≤ R�+1; 0 elsewhere. The number of conductivity parameters σ�j , that is the size of conductivity
parameter vector �σ , is M = L(J + 1).

5.3 Three-layer, 1-D conductivity model

Martinec et al. (2003) developed a time-domain spectral-finite element method (the TISFEM method) for ground magnetic data. This method
is governed by the variational equation

a1

(
i+1Ah, δ Ah

) + 1

�ti
b1

(
i+1Ah, δ Ah

) = 1

�ti
b1

(
i Ah, δ Ah

) + F1

(
i+1G(e)

j , δ Ah

)
∀δ Ah ∈ Vh, (55)

where the sesquilinear form a1(·, ·) and the functional F1(·, ·) are specified in Martinec et al. (2003). They tested the TISFEM method by
comparing it with the analytical and semi-analytical solutions of EM induction for the cases of two concentrically and eccentrically nested
spheres of different, but constant, electrical conductivities. They showed that the numerical code implementing the TISFEM method for
ground magnetic data performs correctly, and that the TISFEM method is particularly appropriate when the external current excitation is
transient. Martinec & McCreadie (2004) modified the TISFEM method for satellite magnetic data and used it for ground magnetic data to
verify this modification. We now use both the original and modified TISFEM methods to verify the ASM for computing the partial derivatives
of the misfit with respect to the conductivity parameters σ�0.

The complex structure of a magnetic storm will be described by a simple mathematical model that simulates a storm’s basic features.
The storm ring current is considered axisymmetric with a P10(cos ϑ) spatial structure. Consequently, all spherical harmonics of the external
scalar magnetic potential are equal to zero, except for the first-degree coefficient G(e)

1 (t). After the onset of a magnetic storm at t = 0, the
ring current quickly peaks and then decays exponentially. This time evolution is modelled by the function (Martinec et al. 2003)

G(e)
1 (t) =

√
4π

3
A t e−t/τ , (56)

where
√

4π/3 is the inverse norm of P10(cos ϑ), A is the amplitude and τ is the relaxation time describing the recovery phase of the storm.
We will use τ = 1 day and A = 0.003 nT s−1 in the following test example.

Consider a 1-D conducting sphere B, consisting of the lithosphere, the upper mantle (UM), the upper (ULM) and lower (LLM) parts
of the lower mantle, and the core. The interfaces between the conductivity layers are kept fixed at depths of 220, 670, 1500 and 2890 km,
respectively. The conductivities of the lithosphere and the core are 0.001 S/m and 10000 S/m, respectively, and fixed at these values for all
sensitivity tests, hence the number of conductivity parameters σ�0 is L = 3. The nominal values of the conductivity parameters are σ 0

10 = 1
(hence σLLM = 10 S/m), σ 0

20 = 0 (σULM = 1 S/m), and σ 0
30 = −1 (σUM = 0.1 S/m).

The strategy for verifying the ASM for satellite magnetic data consists of the following steps. First, the conducting sphere B is excited
by a source field with the time evolution (56) applied as the boundary-value data on the surface ∂B. The numerical code implementing
the TISFEM method for ground magnetic data, which is governed by the variational eq. (55), then computes the EM induction response
of B. This provides the coefficients G(i)

j (t), j = 1, 2, · · ·, of the induced magnetic field. Second, the external and internal coefficients are
used to generate the boundary-value data Bt at the satellite altitude according to eqs (46)–(47). These data are applied on the mean-orbit
sphere ∂A and excite an electromagnetic field in the model consisting of the conducting sphere B and non-conducting atmosphere A.
The numerical code implementing the forward TISFEM method for the X component of the satellite magnetic data, which is governed
by the variational eq. (B7) with the boundary-value data (B15)1, computes the Z component of the EM induction response of the model
G = B ∪ A. Thirdly, the conductivity parameters of the conducting sphere B are changed and the numerical code implementing the
forward TISFEM method for the X component of satellite magnetic data is again applied, yielding the Z component of the EM induction
response at satellite altitude. Since the conductivity structure of B has been changed, the new Z data differ from those computed in the
previous step for the structure of B with the nominal conductivities. Fourth, the differences in the Z component, computed according to
eq. (B15)2, are applied as the boundary-value data in the ASM and the adjoint sensitivities are computed. Finally, the derivatives of the misfit
obtained by the ASM are compared with those computed by the BFM. Note that the sensitivity tests are carried out in such a way that the
conductivity parameter of only one layer is varied at a time, with the conductivities of the other two layers kept fixed and equal to the nominal
values.

Both methods used to compute the partial derivatives of the misfit with respect to the conductivity parameters suffer from approximation
errors, which we will now compare. The approximation error of the BFM, which is based on the second-order differences (53), is proportional
to the third-order derivative of the misfit multiplied by the square of the change ε in the conductivity parameter σ�0. Consequently, the smaller
the value of ε, the smaller the approximation error of the BFM.
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Figure 5. The approximation error of the brute-force sensitivities ∇�σ χ2 computed by the BFM for various sizes of change ε in the conductivity parameters
σ�0 (blue diamonds stand for ε = 0.2, green plus signs for ε = 0.1, black crosses for ε = 0.01, and red dots for ε = 0.001) as a function of the conductivity
parameters σ�0 of the three-layer, 1-D conductivity model (lower and upper parts of the lower mantle (� = 1, 2) and upper mantle (� = 3), respectively).
The black dots show the adjoint sensitivities computed by the ASM for a fixed time step �t = 1.5 h. The panels show a cross-section through the respective
hypersurface |∇�σ χ2| in 3-D parameter space along one model parameter while the other two model parameters are kept fixed and equal to the nominal values
�σ 0 = (1, 0,−1). The results apply to the interface depths of 220, 670, 1500 and 2890 km, while the conductivity of the lithosphere and core are kept fixed and
equal to 0.001 and 104 S/m, respectively. In all figures, the SI units of χ2 and |∇�σ χ2| are kg m2s−1 and kg m2s−1/[σ ], respectively, and both are normalized
by a factor of 1034 to simplify the plotting.

Figure 6. As in Fig. 5, but for the approximation error of the adjoint sensitivities ∇�σ χ2 for various time steps � t (blue diamonds stand for �t = 90 min,
green plus signs for �t = 45 min and red crosses for �t = 22.5 min). The black dots show the brute-force sensitivities computed for a fixed value of ε = 0.01.

Fig. 5 shows a comparison between the brute-force sensitivities for various values of ε and the adjoint sensitivities. The forward and
adjoint solutions are computed for the mathematical model (56) of a storm with a time step �t = 1.5 h and the three-layer, 1-D conductivity
model described previously. We vary the size of ε in the conductivity parameters σ�0 used in the BFM while the time step �t used in the
ASM is kept fixed. Hence, the approximation error of the BFM is changing, while for the ASM it is fixed. Fig. 5 shows that the approximation
error of the BFM decreases when ε decreases, however, there is a threshold of ε (≈0.01, black crosses in Fig. 5), below which, the differences
between the BFM and ASM do not decrease in magnitude (for instance, for ε = 0.001, red dots in Fig. 5). This indicates that for this case,
the approximation error of the ASM prevails.

Martinec et al. (2003) approximated the time derivative of the toroidal vector potential, that is the term ∂ A/∂t which occurs in the
variational equality (B7), and the gradient of the misfit (C2) by the forward Euler differencing scheme

∂ A

∂t
≈ A(t + �t) − A(t)

�t
+ O

(∂2 A

∂t2
�t

)
, (57)

which introduces the approximation error proportional to the second-order derivatives of A multiplied by �t . This error, which propagates
into the forward and adjoint solutions, can be reduced by decreasing the size of either �t (Fig. 6), or ∂2 A/∂t2 (Fig. 13).

Fig. 6 compares the adjoint sensitivities for various sizes of �t with the brute-force sensitivities. The size of ε for the later ones is kept
fixed, equal to the threshold value taken from the previous case study. Fig. 6 demonstrates that the approximation error of the ASM decreases
with decreasing �t , and can be reduced to a level such that the differences between the adjoint and brute-force sensitivities are about two
orders of magnitude smaller than the sensitivities themselves. For the 2001-CHAMP magnetic data used in the next section, we will choose
ε = 0.01 and �t = 1 h.
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Figure 7. The misfit χ2 (top panels) and the magnitude of its sensitivities ∇�σ χ2 (bottom panels) as functions of the conductivity parameters σ�0 for the
three-layer, 1-D conductivity model consisting of the lower and upper parts of the lower mantle (� = 1, 2) and the upper mantle (� = 3). Two panels in a column
show a cross-section through the respective hypersurface χ2 and |∇�σ χ2| in 3-D model space along one model parameter while the other two model parameters
are kept fixed and equal to nominal values �σ 0 = (2, 0,−1). The adjoint sensitivities computed for � = 1 h (the solid lines in the bottom panels) are compared
with the brute-force sensitivities (ε = 0.01) and their differences are shown (the dashed lines).

6 S E N S I T I V I T Y A NA LY S I S F O R C H A M P DATA

The forward and adjoint solutions are now computed for the 2001-CHAMP data (see Section 4) with spherical-harmonic cut-off degree
jmax = 4 and time step �t = 1 h. We will perform the sensitivity analysis of the data with respect to two different conductivity models,
three-layer, 1-D conductivity model and two-layer, 2-D conductivity model. For each case, we first investigate the approximation error of the
ASM and then run the conjugate gradient inversion for searching an optimal conductivity model adjusting the Z component of CHAMP data
in least squares sense.

6.1 Three-layer, 1-D conductivity model

6.1.1 Sensitivity comparison

The first check of the adjoint sensitivities is performed for the three-layer, 1-D conductivity model described in Section 5.3. The results of the
sensitivity tests are summarized in Fig. 7, where the top panels show the misfit χ 2 as a function of one conductivity parameter σ�0 whereas
the other two are equal to the nominal values. The bottom panels compare the derivatives of the misfit obtained by the ASM with the BFM.
From these results, two conclusions can be drawn. First, the differences between the derivatives of the misfit obtained by the ASM and BFM
(the dashed lines in the bottom panels) are about one order (for σ30) and at least two orders (for σ10 and σ20) of magnitude smaller than
the derivatives themselves. Recalling the results of the verification test shown in Fig. 6, it justifies the validity of the ASM. The differences
between the adjoint and brute-force sensitivities are caused by the approximation error of time numerical differentiation (57). In Section 6.3.,
we will show the way of how this error can further be reduced. Second, both the top and bottom panels show that the misfit χ 2 is most
sensitive to the conductivity changes in the upper mantle and decreases with increasing depth of the conductivity layer, being least sensitive
to conductivity changes in the lower part of the lower mantle.

6.1.2 Conjugate gradient inversion

The sensitivity results in Fig. 7 are encouraging with regard to the solution of the inverse problem for a 1-D mantle conductivity structure.
We employ the conjugate gradient (CG) minimization with bracketing and line searching using Brent’s method with derivatives (Press et al.
1992, section 10.3) obtained by the ASM. The inverse problem is solved for the 3 parameters σ�0, with starting values equal to (1.5, 0, −1).

Fig. 8 shows the results of the inversion, where the left panel displays the conductivity structure in the three-layer mantle and the right
panel the misfit χ 2 as a function of the CG iterations. The blue line shows the starting model of the CG minimization, the dotted line the
model after the first iteration and the red line the model after 10 iterations. As expected from the sensitivity tests, the minimization first
modifies the conductivities of the UM and ULM, to which the misfit χ 2 is the most sensitive. When the UM and ULM conductivities are
improved, the CG minimization also changes the LLM conductivity. The optimal values of the conductivity parameters after 10 iterations
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Figure 8. Three-layer, 1-D conductivity model (left panel) best fitting the 2001-CHAMP data (red line), the starting model for the CG minimization (blue
line) and the model after the first iteration (dotted line). The right panel shows the misfit χ2 as a function of CG iterations.

are (σ10, σ20, σ30) = (1.990, 0.186, − 0.501). This corresponds to the conductivities σULM = 1.53 S/m and σUM = 0.32 S/m for ULM and
UM, which are considered to be well resolved, while the conductivity σLLM = 97.8 S/m should be treated with some reservation, because
of its poor resolution. A CHAMP time series longer than 1 year would be necessary to increase the sensitivity of CHAMP data to the LLM
conductivity.

6.2 Two-layer, 2-D conductivity model

6.2.1 Sensitivity comparison

The second check of the adjoint sensitivities is performed for the 2-D conductivity model, again consisting of the lithosphere, the upper
mantle, and the upper and lower parts of the lower mantle, with the interfaces at depths of 220, 670, 1500 and 2890 km. Now the conductivities
of the UM and ULM are considered to be ϑ-dependent, such that the cut-off degree J in the conductivity parameterization (54) is equal to
J = 1. The conductivity of the lithosphere is again fixed to 0.001 S/m. Because of the rather poor resolution of the LLM conductivity, as
demonstrated in the previous section, this conductivity is chosen to be equal to the optimal value obtained by the CG minimization, that is
97.8 S/m, and is kept fixed throughout the sensitivity tests and subsequent inversion. Complementary to the sensitivity tests for the zonal
coefficients σ�0 shown in Fig. 7, we now carry out the sensitivity tests for non-zonal coefficients σ�1 of the ULM (� = 1) and UM (� = 2) in a
way similar to that applied in Section 6.1.1 with the same nominal values for the zonal coefficients σ�0 and σ 0

11 = σ 0
21 = 0. The forward and

adjoint solutions are again computed for the 2001-CHAMP data (see Section 4) with spherical-harmonic cut-off degree jmax = 4 and time
step �t = 1 h. The earth model is again divided into 40 finite-element layers with layer thickness increasing with depth.

In Fig. 9, we summarize the results of sensitivity tests. The top panels show the misfit χ 2 as a function of the parameters σ11 and σ21,
where only one conductivity parameter is varied and the other to zero. The bottom panels compare the derivatives of the misfit obtained by
the ASM and the BFM. We can see that the adjoint sensitivities show very good agreement with the brute-force results, with differences not
exceeding 0.01 per cent of the magnitude of the sensitivities themselves. Moreover, the sensitivities to latitudinal dependency of conductivity
are significant, again more pronounced in the upper mantle than in the lower mantle. This tells us that the CHAMP data are capable of
revealing lateral variations of conductivity in the upper and lower mantle.

6.2.2 Conjugate gradient inversion

The sensitivity results in Fig. 9 encourage us in attempting to solve the inverse problem for lateral variations of conductivity in the mantle. For
this purpose, we again employ the CG minimization with derivatives obtained by the ASM. The inverse problem is solved for four parameters,
σ�0 and σ�1, � = 1, 2. The starting values of σ�0 are the nominal values of the three-layer, 1-D conductivity model (see Section 5.3), while the
values of σ�1 are put equal to zero at the start of minimization.

The results of the inversion are summarized in Fig. 10, where the left and centre panels show the conductivity structure in the ULM
and UM, while the right panel shows the misfit χ 2 as a function of CG iterations. The blue lines show the starting model of minimization,
the dotted lines the model of minimization after the first iteration and the red lines the final model of minimization after 8 iterations. These
models are compared with the optimal three-layer, 1-D conductivity model (black lines) found in Section 6.1.2 Again, as indicated by the
sensitivity tests, the minimization, at the first stage, adjusts the conductivity in the upper mantle, to which the misfit χ 2 is the most sensitive,
and then varies the ULM conductivity, to which the misfit is less sensitive. The optimal values of the conductivity parameters after eight
iterations are (σ10, σ11, σ20, σ21) = (0.192, −0.008, −0.476, 0.106). We conclude that the mantle conductivity variations in the latitudinal
direction reach about 20 per cent of the mean value in the upper mantle and about 4 per cent in the upper part of the lower mantle. Comparing
the optimal values of the zonal coefficients σ10 and σ20 with those found in Section 6.1.2 for a 1-D conductivity model, we also conclude
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Figure 9. As for Fig. 7, but with respect to the conductivity parameters σ�1 of the latitudinally dependent conductivities of the upper part of the lower mantle
(� = 1) and the upper mantle (� = 2). The nominal values of the conductivity parameters (σ 0

�0, σ 0
�1) = (0, 0, −1, 0). The results apply to conductivities of the

lithosphere, the lower part of the lower mantle and the core equal to 0.001, 97.8 and 104 S/m, respectively.

Figure 10. Two-layer, latitudinally dependent conductivity model of the upper part of the lower mantle and the upper mantle (left and middle panels). The
model best fitting the 2001-CHAMP data (red lines), the starting model for the CG minimization (blue lines) and the model after the first iteration (dotted line)
are compared to the best 1-D conductivity model from Fig. 8 (black lines). The right panel shows the misfit χ2 as a function of the number of CG iterations,
the dashed line shows the misfit χ2 for the best 1-D conductivity model.

that the averaged optimal 2-D conductivity structure closely approaches the optimal 1-D structure. This is also indicated in Fig. 10, where the
final 2-D conductivity profile (red lines) intersects the optimal 1-D conductivity profile (black lines) at the magnetic equator.

6.3 Low-pass spatial and frequency filtering of CHAMP data

So far, the sensitivity analysis has been performed for the time series of CHAMP spherical harmonic coefficients X (obs)
j (t) and Z (obs)

j (t) up to
spherical degree jmax = 4. However, the traditional approach of inferring the mantle conductivity structure from magnetic time series considers
only the first-degree spherical harmonics, X (obs)

1 (t) and Z (obs)
1 (t), or their linear combinations (e.g. Kuvshinov & Olsen 2006; Velı́mský et al.

2006). We are now interested in the question of how the cut-off degree of the spherical harmonics influences the sensitivity of the misfit with
respect to the mantle conductivity structure.

In order to assess this effect, we reduce the cut-off degree of the spherical harmonic expansion of the CHAMP time series to jmax = 1.
The resulting adjoint sensitivities of misfit χ 2 for the three-layer, 1-D mantle conductivity model employed in Section 5.3, are depicted in
Fig. 11. Comparing it with Fig. 7 for jmax = 4, we can see that decreasing the cut-off degree of the CHAMP data, which means applying a
low-pass spatial filter, reduces the sensitivity of the misfit with respect to the upper mantle conductivity, whereas the sensitivities with respect
to lower-mantle conductivities are changed only slightly. This is explained by the fact that the spherical harmonics of the Green’s function
of EM induction for an external excitation become localized closer to the Earth’s surface when increasing their spherical degree. Fig. 11
also shows that the misfit for jmax = 1 is mostly sensitive to conductivity variations in the upper part of the lower mantle, which was also
demonstrated by Velı́mský et al. (2006).
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Figure 11. As for Fig. 7, but for low-pass spatially filtered CHAMP data with the cut-off degree jmax = 1.

In the context of the approximation error of the ASM, a question arises as to how low-pass frequency filtering of CHAMP time series
influences the sensitivities of the misfit χ 2. To assess the effect of low-pass filtering of CHAMP time series on sensitivities, we apply the
Nutall four-term cosine low-pass filter (Marple 1987) with a cut-off period of 1.9 days on the CHAMP time series of X (obs)

j (t) and Z (obs)
j (t)

for j = 1, · · ·, 4. Fig. 12 shows the unfiltered and low-pass filtered Fourier amplitude spectrum of X (obs)
1 (t) (red lines) and Z (obs)

1 (t) (black
lines), respectively. Similarly to the maximum-entropy power spectrum (Fig. 3), we can see spectral peaks at higher harmonics of the 27-day
solar rotation period. The low-pass filtered CHAMP time series of X (obs)

j (t) and Z (obs)
j (t) are then used to compute the adjoint sensitivities

for the 3-layer, 1-D conductivity model, studied in Section 5.3. Comparing the resulting sensitivities depicted in Fig. 13 with those for the
CHAMP unfiltered time series shown in Fig. 7 we can see that applying the low-pass filter significantly reduced the approximation error
O(∂2 A/∂t2 �t) of the adjoint sensitivities with respect to the upper-mantle conductivity, because of the reduction of the magnitude of
∂2 A/∂t2. There is, however, a price to be paid for reducing this error, namely, the sensitivity of the misfit χ 2 with respect to the upper-mantle
conductivity is also reduced. On the other hand, the sensitivities with respect to lower-mantle conductivities are hardly changed. This is
explained by the skin effect, which, for a given conductivity structure, is the fast that the depth to which an electromagnetic signal can
penetrate decreases as the oscillation frequency of the signal increases. Hence, removing the high-frequency part of the CHAMP time series
by low-pass filtering reduces the ‘illumination’ of the upper mantle by an electromagnetic signal and, thus, reduces the sensitivity of EM
induction data to upper-mantle conductivity variations.

7 C O N C LU S I O N S A N D F U T U R E W O R K

Velı́mský et al. (2006) interpreted the CHAMP magnetic data recorded during eleven storm events in the time interval 2001–2003 in terms
of Earth’s 1-D electrical conductivity structure. They calculated the partial derivatives of the misfit with respect to conductivity parameters
by the BFM. Although only eleven shorter time intervals of the CHAMP time series were interpreted, the inverse modelling required long
computational time.

This paper has been motivated by efforts to find an advanced technique for interpreting the time series of CHAMP magnetic data such
that the complete time series, not only their parts, can be considered in inverse modelling and still be computationally feasible. It turned out
that these criteria are satisfied by a highly efficient method of sensitivity analysis—the adjoint method. We demonstrated this for the year 2001
CHAMP time series with a time step of 1 hr. To apply the adjoint sensitivity analysis to longer time series is straightforward, leading to memory
and computational time requirements that are linear with respect to the number of time steps undertaken. The analysis of the complete, more
than 8-year long, CHAMP time series is ongoing with the particular objective of detecting the perovskite/postperovskite conductivity contrast
in the boundary layer between the lower mantle and outer core. The results of this effort will be the subject of a forthcoming publication.

Velı́mský et al. (2006) showed that the CHAMP data for the period of magnetic storms are most sensitive to conductivity changes in
the upper part of the lower mantle. This result was explained by missing higher-frequency signals in the chosen eleven CHAMP records. The
sensitivity analysis shown here in Fig. 13 confirms this explanation. Moreover, if a time series longer than the record of a magnetic storm can
be taken into account, the spherical harmonic analysis of CHAMP data can be carried out up to higher spherical degrees than degree j = 1 as
considered by Velı́mský et al. (2006), for example, up to degree j = 4 for the 2001-CHAMP data. The sensitivity analysis for the complete
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Figure 12. Unfiltered (top panel) and low-pass filtered (bottom panel) Fourier amplitude spectrum of the 2001-CHAMP degree-one spherical harmonic time
series of the X (red) and Z (black) components, respectively.

Figure 13. As for Fig. 7, but for low-pass frequency filtered CHAMP data with a cut-off period of 1.9 days.
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CHAMP time series (see Fig. 7), which includes higher spherical degrees, demonstrates that the lack of sensitivity of CHAMP data to the
upper-mantle conductivity can be circumvented by increasing the spatial resolution of the CHAMP data.

The presented sensitivity analysis has shown that the 2001-CHAMP data are clearly sensitive to latitudinal variations in mantle
conductivity. This result suggests to modify the adjoint sensitivity method for an axisymmetric distribution of mantle conductivity to the case
where the CHAMP data will only be considered over particular areas above the Earth’s surface, for instance, the Pacific Ocean, allowing the
study of how latitudinal variations in conductivity differs from region to region. This procedure would enable us to find not only conductivity
variations in latitudinal direction, but also in longitudinal direction. This idea warrants further investigation, because it belongs to the category
of problems related to data assimilation and the methods of constrained minimization can be applied. Similar methods can also be applied to
the assimilation of the recordings at permanent geomagnetic observatories into the conductivity models derived from satellite observations.
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Velı́mský, J., Martinec, Z. & Everett, M.E., 2006. Electrical conductivity
in the Earth’s mantle inferred from CHAMP satellite measurements—
I. Data processing and 1-D inversion, Geophys. J. Int., 166, 529–
542.

Weidelt, P., 1975. Inversion of two-dimensional conductivity structure, Phys.
Earth Planet. Inter., 10, 282–291.

A P P E N D I X A : Z O NA L S C A L A R A N D V E C T O R S P H E R I C A L H A R M O N I C S

In this section, we define the zonal scalar and vector spherical harmonics, introduce their orthonormality properties and give some other
relations. All considerations follow the book by Varshalovich et al. (1989), which is referenced in details hereafter.

The zonal scalar spherical harmonics Y j (ϑ) can be defined in terms of the Legendre polynomials P j (cos ϑ) of degree j (ibid.,
p. 134, eq. (6)):

Y j (ϑ) :=
√

2 j + 1

4π
Pj (cos ϑ), (A1)

where j = 0, 1, . . . . The orthogonality property of the Legendre polynomials over the interval 0 ≤ ϑ ≤ π (ibid., p. 149, eq. (10)) results in
the orthonormality property of the zonal scalar spherical harmonics Y j (ϑ) over the full solid angle (0 ≤ ϑ ≤ π , 0 ≤ ϕ < 2π ):∫ 2π

ϕ=0

∫ π

ϑ=0
Y j1 (ϑ)Y j2 (ϑ) sin ϑdϑdϕ = δ j1 j2 , (A2)

where δi j stands for the Kronecker delta symbol. Note that the integration over longitude ϕ can be performed analytically resulting in the
multiplication by factor of 2π . However, we will keep the form of double integration since it is consistent with surface integrals considered
in the main text.

The zonal vector spherical harmonics Y �
j (ϑ), j = 0, 1, . . . , � = j ± 1, j , can be defined via their polar components (ibid.,

p. 211, eq. (10); p. 213–214, eqs (25)–(27)):√
j(2 j + 1) Y j−1

j (ϑ) = j Y j (ϑ) er + ∂Y j (ϑ)

∂ϑ
eϑ ,

√
( j + 1)(2 j + 1) Y j+1

j (ϑ) = −( j + 1) Y j (ϑ) er + ∂Y j (ϑ)

∂ϑ
eϑ ,

√
j( j + 1) Y j

j (ϑ) = −i
∂Y j (ϑ)

∂ϑ
eϕ,

(A3)

where i = √−1, and er , eϑ and eϕ are spherical base vectors. The vector functions Y j±1
j (ϑ) are called the zonal spheroidal vector spherical

harmonics and Y j
j (ϑ) are the zonal toroidal vector spherical harmonics. A further useful form of the zonal toroidal vector spherical harmonics

can be obtained considering ∂Y j (ϑ)/∂ϑ = √
j( j + 1)Pj1(cos ϑ) (ibid., p. 146, eq. (5)), where P j1(cos ϑ) is fully normalized associated

Legendre functions of order m = 1:

Y j
j (ϑ) = −i Pj1(cos ϑ)eϕ. (A4)

The orthonormality property of the spherical base vectors and the zonal scalar spherical harmonics combine to give the orthonormality
property of the zonal vector spherical harmonics (ibid., p. 227, eq. (121)):∫ 2π

ϕ=0

∫ 2π

ϑ=0
Y �1

j1
(ϑ) · [Y �2

j2
(ϑ)]∗ sin ϑdϑdϕ = δ j1 j2δ�1�2 , (A5)

where the dot stands for the scalar product of vectors and the asterisk denotes complex conjugation.
Since both the zonal scalar spherical harmonics and the spherical base vectors are real functions, eq. (A3) shows that the spheroidal

vector harmonics Y j±1
j (ϑ) are real functions, whereas the toroidal vector harmonics Y j

j (ϑ) are pure imaginary functions. To avoid complex

arithmetics, we redefine Y j
j (ϑ) in such a way that they become real functions (of colatitude ϑ):

Y j
j (ϑ) := Pj1(cos ϑ)eϕ. (A6)

C© 2009 The Authors, GJI, 179, 1372–1396

Journal compilation C© 2009 RAS



The adjoint method for EV induction 1393

Let us make a remark on this step. To avoid additional notation, we use the same notation for the real and complex versions of Y j
j (ϑ) since

the real version of Y j
j (ϑ) is exclusively used throughout this paper. It is in contrast to Martinec (1997), Martinec et al. (2003) and Martinec

& McCreadie (2004), where the complex functions Y j
j (ϑ), defined by eq. (A4) have been used. However, the re-definition (A6) only makes

sense for studying a phenomenon with an axisymmetric geometry. For a more complex phenomenon, the original definition (A4) is to be
used.

The orthonormality property (A5) for the real zonal vector spherical harmonics now reads as∫ 2π

ϕ=0

∫ 2π

ϑ=0
Y �1

j1
(ϑ) · Y �2

j2
(ϑ) sin ϑdϑdϕ = δ j1 j2δ�1�2 . (A7)

The formulae for the scalar and vector products of the radial unit vector er and the zonal vector spherical harmonics Y �
j (ϑ) follow from

eq. (A3):

er · Y j−1
j (ϑ) =

√
j

2 j + 1
Y j (ϑ),

er · Y j+1
j (ϑ) = −

√
j + 1

2 j + 1
Y j (ϑ),

er · Y j
j (ϑ) = 0, (A8)

and

er × Y j−1
j (ϑ) =

√
j + 1

2 j + 1
Y j

j (ϑ),

er × Y j+1
j (ϑ) =

√
j

2 j + 1
Y j

j (ϑ),

er × Y j
j (ϑ) = −

√
j + 1

2 j + 1
Y j−1

j (ϑ) −
√

j

2 j + 1
Y j+1

j (ϑ). (A9)

Any vector A (ϑ) which depends on colatitude ϑ and which is square-integrable on the interval 0 ≤ ϑ ≤ π may be expanded in a series
of the zonal vector spherical harmonics, that is

A(ϑ) =
∞∑
j=0

j+1∑
�=| j−1|

A�
j Y

�
j (ϑ) (A10)

with the expansion coefficients given by

A�
j =

∫ 2π

ϕ=0

∫ 2π

ϑ=0
A(ϑ) · Y �

j (ϑ) sin ϑdϑdϕ. (A11)

The curl of vector A (r , ϑ) is then

curl A =
∞∑
j=1

j+1∑
�= j−1

R�
j (r )Y �

j (ϑ), (A12)

where (ibid, p. 217, eq. (55))

R j−1
j (r ) = −

√
j + 1

2 j + 1

(
d

dr
+ j + 1

r

)
A j

j (r ),

R j+1
j (r ) = −

√
j

2 j + 1

(
d

dr
− j

r

)
A j

j (r ),

R j
j (r ) =

√
j + 1

2 j + 1

(
d

dr
− j − 1

r

)
A j−1

j (r ) +
√

j

2 j + 1

(
d

dr
+ j + 2

r

)
A j+1

j (r ).
(A13)

The radial and tangential components of curl A may be evaluated as

er · curl A = −1

r

∞∑
j=1

√
j( j + 1) A j

j (r )Y j (ϑ), (A14)

and

er × curl A = −
∞∑
j=1

(
d

dr
+ 1

r

)
A j

j (r )Y j
j (ϑ) +

∞∑
j=1

R j
j (r )

(
er × Y j

j (ϑ)
)
. (A15)
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In particular, for a toroidal vector A (ϑ), the coefficients A j±1
j (r ) = 0 and eq. (A15) reduces to

er × curl A = −
∞∑
j=1

(
d

dr
+ 1

r

)
A j

j (r )Y j
j (ϑ). (A16)

A P P E N D I X B : W E A K F O R M U L AT I O N O F T H E A D J O I N T M E T H O D

In this section, we will demonstrate that the adjoint method derived in a strong (differential) form (see Section 3.6) can be reformulated in
a weak sense. Such a generalized formulation have all advantages of a weak formulation of any boundary-value problem for the second-
order differential equation (e.g. Křı́žek & Neittaanmäki 1990), and is particularly suitable for a numerical implementation of finite-element
technique which is also applied in Section 5. We further aim at showing that the weak formulation can be set up in a unified manner for both
the forward and adjoint methods of EM induction for CHAMP magnetic data.

Let us start with the parameterization of toroidal vector potential A in the radial direction. Inside a conducting sphere B, of radius a, the
spherical harmonic expansion coefficients Aj

j (r , t) can be parameterized by P + 1 piecewise-linear finite elements ψk(r ) on the interval 0 ≤
r ≤ a such that

A j
j (r, t) =

P+1∑
k=1

A j,k
j (t)ψk(r ). (B1)

In an insulating atmosphere A, the toroidal vector potential A satisfies the Laplace equation, and thus the spherical harmonic expansion
coefficients Aj

j (r , t) can be parameterized in terms of zonal scalar solid spherical harmonics rjYj(ϑ) and r− j−1 Y j (ϑ) as follows:

A j
j (r, t) = a

[√
j

j + 1

( r

a

) j
G(e)

j (t) −
√

j + 1

j

(a

r

) j+1
G(i)

j (t)

]
, (B2)

where G(e)
j (t) and G(i)

j (t) are the zonal scalar-magnetic Gauss potential coefficients introduced by eq. (2). Note that the same parameterizations

as shown by eqs (B1) and (B2) are taken for the coefficients Â
j

j (r, t).
The IBVP (3)–(5) for the satellite magnetic data Bt has been formulated in a weak sense by Martinec & McCreadie (2004). We will

slightly modify this formulation such that the weak formulation of the forward and adjoint problems will have the same final algebraic forms,
and thus implementable in the same numerical way.

The modification concerns the way of how to involve the continuity of toroidal vector potential A on the boundary ∂B between
the conducting sphere B and the non-conducting atmosphere A. As seen from parameterizations (B1) and (B2), we apply a different
parameterization of A in the sphere B and the spherical layer A. That is why the continuity of A on ∂B must be ensured:

A = A0 on ∂B, (B3)

where A0 denotes the potential A in the non-conducting atmosphere A. Martinec & McCreadie (2004) implemented this continuity condition
in the construction of a solution space for A in the atmosphere. Here, we apply an alternative approach based on the Lagrange multiplier
method.

We introduce the solution spaces V and V 0 for the conducting sphere B and the non-conducting atmosphere A, respectively, as follows:

V := {A|A ∈ L2(B), curl A ∈ L2(B), divA = 0 in B} , (B4)

V0:={A0|A0 ∈ C2(A), divA0 = 0 in A} , (B5)

where L2(B) is the space of square-integrable functions in the domain B and C2(A) is the space of functions whose derivatives up to the
second order are continuous in the domain A. Note that the space V 0 differs from that used by Martinec & McCreadie (2004), such that the
continuity condition (B3) is now not imposed on the functions from V 0. Instead, we introduce the Lagrange multiplier vector λ and a solution
space for it:

Vλ := {λ|λ ∈ L2(∂B)} , (B6)

where L2(∂B) is the space of square-integrable functions on the boundary ∂B. Following the considerations of Martinec (1997) and Martinec
& McCreadie (2004), the weak formulation of the forward IBVP (3)–(5) consists of finding the potentials A ∈ V and A0 ∈ V 0 and the
Lagrange multipliers λ ∈ Vλ such that, at a fixed time t ∈ (0, T ), they satisfy the following variational equality:

a(A, δ A) + b(A, δ A) + a0(A0, δ A0) + c(δ A − δ A0, λ) + c(A − A0, δλ) = F(b, δ A0)

∀δ A ∈ V, ∀δ A0 ∈ V0, ∀δλ ∈ Vλ. (B7)

The bilinear forms a(·, ·), b(·, ·), a0(·, ·), c(·, ·) and the functional F(·, ·) are defined as follows:

a(A, δ A) := 1

μ

∫
B

(curl A · curl δ A)dV, (B8)

b(A, δ A) :=
∫
B

σ (r, ϑ)
(∂ A

∂t
· δ A

)
dV, (B9)
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a0(A0, δ A0) := 1

μ

∫
A

(curl A0 · curl δ A0)dV, (B10)

c(A − A0,λ) :=
∫

∂B
(A − A0) · λ d S, (B11)

F(b, δ A0) := − 1

μ

∫
∂A

(b · δ A0)d S. (B12)

For the adjoint IBVP eqs (42)–(44), the potentials A and A0 are replaced by the reverse-time adjoint potentials Ǎ and Ǎ0. Moreover, the
boundary data b in the functional F(·, ·) are given by Bt (t) and

∑
j

√
j( j + 1) �Bn, j (T − t)Y j

j (ϑ) for the forward and adjoint methods,
respectively. Substituting the spherical harmonic finite-element parameterization (B1) of A and the solid spherical harmonic parameterization
(B2) of A0 into eqs (B8)–(B10), Martinec et al. (2003) and Martinec & McCreadie (2004) derived the parameterization of the bilinear forms
a(·, ·), b(·, ·), and a0(·, ·), respectively. The same procedure applied to the bilinear form c(·, ·) results in

c(A − A0,λ) =
∞∑
j=1

[
1

a

√
j

j + 1
A j

j (a, t) + G(e)
j (t) − j

j + 1
G(i)

j (t)

]
λ

j
j (t), (B13)

where λ
j
j (t) are zonal toroidal vector spherical harmonic expansion coefficients of the Lagrange multiplier λ. For the functional F(·, ·), we

obtain

F(b, δ A0) = ab2

μ
D j (t)

[
j

(
b

a

) j

δG(e)
j − ( j + 1)

(a

b

) j+1
δG(i)

j

]
, (B14)

where

D j (t) =
{

X j (t) for the forward method,

�Z j (T − t) for the adjoint method,
(B15)

and �Z j (t) is the residual between the Z component of the CHAMP observations and the forward modelled data, that is �Z j (t) =
Z (obs)

j (t) − Z j (t ; �σ ). The discrete solution to the variational eq. (B7), the so-called time-domain, spectral finite-element solution, can be
constructed in the same way as by Martinec et al. (2003) and Martinec & McCreadie (2004).

A P P E N D I X C : E VA LUAT I O N O F M I S F I T G R A D I E N T

Once the forward and adjoint solutions are calculated, the integration for the misfit and its partial derivatives can be performed. The integration
over time is carried out by the trapezoidal rule, while the integration over radius r and colatitude ϑ is by the Gauss–Legendre numerical
quadrature.

To express explicitly the numerical quadrature formulae, we divide the radial interval 〈0, a〉 into L subintervals by the nodes 0 =
R1 < R2 < · · · < RL < RL+1 = a such that the radial dependence of the electric conductivity σ (r , ϑ) is approximated by piecewise constant
functions:

σ (r, ϑ) = σ�(ϑ), R� ≤ r ≤ R�+1, (C1)

where σ�(ϑ) for a given layer � = 1, · · ·, L does not depend on the radial coordinate r. Let σ�(ϑ) be parameterized by ϑ-dependent base
functions and let the expansion coefficients of this representation be σ�m , m = 1, · · ·, M . Then, the partial derivative of the misfit χ 2(�σ ) with
respect to the model parameters σ�m is

∂χ 2(�σ )

∂σ�m
= 2π

∫ T

0

∫ R�+1

R�

∫ π

0

∂σ�(ϑ)

∂σ�m

∂ A(r, ϑ, t)

∂t
· Ǎ(r, ϑ, t)r 2 sin ϑ dϑdrdt, (C2)

where the factor of 2π is the result of the integration over longitude.
Next, we consider the parameterization (B1) of the potential A and Â by piecewise-linear finite elements ψk(r ) on P subintervals of

the interval [0, a] with the nodes 0 = r1 < r2 < · · · < r P < r P+1 = a. We assume that the number of finite-element intervals is larger than
the number of conductivity intervals, that is P > L , and consider that the conductivity interval R� ≤ r ≤ R�+1 contains P� finite-element
subintervals such that the nodes R� and R�+1 coincide with the nodes rk�+1 and rk�+P�+1, respectively:

R� = rk�+1 < rk�+2 < · · · < rk�+P�
< rk�+P�+1 = R�+1. (C3)

As ∂ σ�(ϑ)/∂ σ�m does not vary with respect to r on the interval R� ≤ r ≤ R�+1, the integration over r in (C2) reduces to the computation of
integrals of the type∫ rk�+s+1

rk�+s

ψi (r )ψ j (r )r 2dr, (C4)

where the indices i and j are equal to k� + s and/or k� + s + 1, s = 1, · · · , P�. These integrals can be evaluated numerically, for example, by
means of the two-point Gauss–Legendre numerical quadrature with the weights equal to 1 and the nodes x1,2 = ±1/

√
3 (Press et al. 1992,
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section 4.5). The quadrature formula for the integral in eq. (C2) can then be written in the form

∂χ 2(�σ )

∂σ�m
=

∫ T

0

P�∑
s=1

2∑
α=1

D(rα, t ;
∂ A

∂t
(rα), Â(rα))

r 2
αhs

2
dt, (C5)

where hs := rk�+s+1 − rk�+s and rα := 1
2

(
hs xα + rk�+s+1 + rk�+s

)
, α = 1, 2, and the angular part of the integral (C2) stands for

D
(

r, t ;
∂ A

∂t
, Â

)
:= 2π

∫ π

0

∂σ�(ϑ)

∂σ�m

∂ A(r, ϑ, t)

∂t
· Â(r, ϑ, t)r 2 sin ϑ dϑ. (C6)

The integration over colatitude ϑ can also be carried out numerically by the Gauss–Legendre quadrature formula. Computational details of
this approach can, for example, be found in Orszag (1970) and Martinec (1989).
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