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To explore the pathological substrates of mixed dementia, we performed a detailed analysis of lacunar and
microvascular pathology in 156 autopsied, elderly individuals with various degrees of Alzheimer’s disease (AD)
pathology. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale;
neuropathological evaluation included Braak neurofibrillary tangle (NFT) and A�-protein deposition staging
and bilateral semi-quantitative assessment ofmicrovascular ischaemic pathology and lacunes; statistics included
univariate and multiple regression models controlling for age, and receiver-operating characteristic analysis.
Sensitivity analysis was performed in a randomized derivation sub-sample and tested in a validation
sub-sample.White matter lacunes, periventricular and diffuse white matter demyelination and focal and diffuse
cortical gliosis were not associated with cognition. Braak NFT, A� deposition, cortical microinfarcts (CMI)
and thalamic and basal ganglia lacunes (TBGL) predicted 27% of CDR variability and 49% of the presence of
dementia. Braak NFT, CMI and TBGL thresholds determined in a derivation sample yielded 0.88 sensitivity,
0.79 specificity and 0.85 correct classification rate for dementia in a validation sample. The same thresholds
distinguished three groups of demented cases consistent with mixed dementia, pure vascular dementia and
AD. These findings indicate that the clinical expression of the vascular component in mixed cases is highly
dependent on lesion type and location as well as severity of concomitant AD-related pathology. Proposed
thresholds for vascular and degenerative lesions predict the presence of dementia with great accuracy and
provide a basis for distinguishing pure vascular dementia or AD frommixed cases.
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Introduction
Brain ageing is characterized by the progressive develop-

ment of both AD-related lesions and vascular pathology

within the cerebral cortex of cognitively intact individuals.

Clinically, these neuropathological changes remain silent

in the vast majority of elderly people. Since Tomlinson’s

first observations (Tomlinson et al., 1968), several

neuropathological studies have confirmed that neurofibril-

lary tangles (NFT) and amyloid deposits may be present in

restricted regions of the cerebral cortex in the absence

of cognitive decline [for review see (Price and Morris, 1999;

Knopman et al., 2003)]. Classical neuropathological studies

in the past two decades have also pointed to the cardinal
role of massive NFT formation within adjacent components
of the medial and inferior aspects of the temporal cortex in
clinically overt AD [for review see (Giannakopoulos et al.,
2007)]. Contrasting with the Braak’s hierarchical scheme of
NFT development which makes it possible to predict at
least partly the transition between normal ageing and
dementia (Braak and Braak, 1991; Gold et al., 2000;
Giannakopoulos et al., 2003), relating structural changes
to cognitive findings has proven quite difficult with regard
to vascular lesions (Pantoni et al., 2006; Jellinger and
Attems, 2007). Although early studies have acknowledged
the negative impact of large macrovascular lesions on
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cognition (Tomlinson et al., 1970; Hachinski et al., 1974),

cognitive impairment of vascular origin is to date thought

to be mostly related to the frequent presence of lacunes and

other microvascular pathology such as cortical microin-

farcts (CMI) and white matter lesions (WML) in the brains

of elderly individuals (Vinters et al., 2000; Roman et al.,

2002; Kalaria et al., 2004; Jellinger, 2006). However, since

these lesions may frequently occur in cognitively intact

individuals, the interpretation of their clinical significance is

fraught with difficulty (Ylikoski et al., 1995;

Neuropathology Group of the Medical Research Council

Cognitive Function and Aging Study, 2001; Roman et al.,

2002; Vermeer et al., 2003; van der Flier et al., 2005).
The concept of mixed dementia covers a wide spectrum

of combinations between AD and vascular pathology
including at one extreme, cases with minimal AD-related
pathology and substantial small macrovascular and micro-
vascular changes and at the other cases with severe AD
pathological changes and only slight vascular involvement.
Mixed dementia was initially diagnosed in the presence of
both AD pathology and large infarcts (Jellinger, 2005), yet
the importance of lacunes and small vessel disease for the
development of clinically overt dementia in individuals who
also presented with AD lesions is also well documented
(Snowdon et al., 1997; Esiri et al., 1999). Despite
considerable efforts, to date there are no widely accepted
neuropathological criteria for this condition. Two main
reasons may explain this lack. First, the marked hetero-
geneity of the type and location of microvascular lesions
renders difficult the development of a simple and reliable
approach to assess them in routine neuropathological
settings. Second, the definition of threshold values for AD
and microvascular lesions that may predict dementia needs
the analysis of large autopsy series. We had the opportunity
to investigate a series of 156 prospectively documented
cases with various degrees of AD pathology, lacunes and
different types of microvascular pathology (i.e. CMI, diffuse
and focal gliosis, periventricular and deep white matter
demyelination). Using systematic semi-quantitative assess-
ment of various types of vascular lesions and multivariate
models that control for the possible confounding effect of
age, we report here the identification of threshold values for

AD and microvascular pathology that permits a highly
accurate diagnosis of mixed dementia.

Patients and Methods
Patients
The initial autopsy series included 1355 patients who were
autopsied at the Geriatric and Psychiatric Hospitals of the
University of Geneva during the period 1993–2003. Three criteria
were used to define the final sample. First, a cognitive assessment
including the Clinical Dementia Rating (CDR) Scale had to be
performed at most three months prior to death. The CDR is a
validated scale that is widely used for the clinical staging of
dementia.(Hughes et al., 1982) It assigns cognitive function to five
levels defined as no dementia (CDR 0), questionable dementia
(CDR 0.5), mild dementia (CDR 1), moderate dementia (CDR 2)
and severe dementia (CDR 3). The rating is based on both
intellectual functions and abilities to perform activities of daily
living. It includes six subscores (memory, orientation, judgement
and problem solving, community affairs, home and hobbies and
personal care). An algorithm is applied to the subscores to yield
the total score (Morris, 1993). Second, cases with other central
nervous system disorders (i.e. tumours, inflammation, Parkinson’s
disease, Lewy body disease) were excluded from the present study.
Third, all cases with macroscopic infarcts or non-AD-related
pathology such as Lewy bodies, Pick bodies, a-synuclein and
ubiquitin-positive inclusions as well as argyrophilic grains in the
routine neuropathological examination were also excluded from
the present series. The final sample included 156 patients aged
73 to 101 years. Gender and age distribution of the cases
according to CDR score are listed in Table 1. All CDR 0 and 0.5
patients, 10 CDR1 and 25 CDR2 cases were admitted to the
Geneva Geriatric Hospital for acute medical conditions such as
bronchopneumonia (40%), cardiovascular (46%) and gastroin-
testinal disorders (14%). The remaining demented cases were
admitted to the Psychiatric Hospital because of the presence of
major behavioural disturbances such as psychomotor agitation,
feeding difficulties, marked aggressiveness and delusional thoughts.
There was no case with past history of psychiatric illnesses such as
schizophrenia, major depression and bipolar disorder. The main
causes of death were infectious disorders (38.7%), heart failure
(37.7%), pulmonary embolism (15%) and cancer (8.6%).

Tissue processing
Brains obtained at autopsy were fixed in 15% formaldehyde for at
least 4 weeks and cut into 1-cm-thick coronal slices. Lacunes,

Table 1 Demographic data and CDR scores in the entire sample and both sub-samples

Derivation Validation All

CDR Number of
cases (F/M)

Mean age,
years� SD

Number of
cases (F/M)

Mean age,
years� SD

Number of
cases (F/M)

Mean age,
years� SD

0 9 (8/1) 80.2� 9.7 11 (5/6) 78.6�9.8 20 (13/7) 79.4� 9.5
0.5 14 (6/8) 81.0� 9.6 17 (10/7) 87.4� 6.6 31 (16/15) 84.5� 8.6
1 7 (4/3) 84.9�5.2 7 (3/4) 87.6� 6.0 14 (7/7) 86.2� 5.5
2 19 (11/8) 87.8� 6.8 18 (9/9) 89.0� 6.8 37 (20/17) 88.4� 6.7
3 29 (23/6) 88.8� 6.4 25 (14/11) 89.3� 6.3 54 (37/17) 89.0� 6.3
All cases 78 (52/26) 85.8� 8.1 78 (41/37) 87.1�7.7 156 (93/63) 86.5� 7.9
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defined as small definitive ischaemic necrosis, ranging from 1mm
to 1.5 cm, located in the white matter or basal ganglia and
thalamus, were identified on macroscopic examination and
controlled on Luxol–van Gieson (LVG)-stained coronal sections
(see later). To visualize CMI as well as focal cortical and white
matter gliosis, 1-cm-thick tissue blocks from the anterior
hippocampus, inferior temporal cortex (area 20), frontal cortex
(area 9), and parietal cortex (area 40) bilaterally were cut into
20 mm-thick serial sections of approximately 3� 2 cm2. Every
50 sections, one section was stained with Globus silver impreg-
nation for a total of 10 sections per area which have been
subsequently considered for semi-quantitative analysis
(Vallet et al., 1992). To assess diffuse white matter and
periventricular demyelination, whole coronal sections at the level
of anterior commissure were embedded in paraffin, cut into
20 mm-thick sections and stained with LVG. Adjacent sections
stained with Bodian silver stain demonstrated the relative
preservation of axon integrity in our cases. In order to keep
variation in LVG staining to a minimum, all cases were processed
by the same highly experienced technical assistant under the
same standard conditions. To visualize AD-type lesions, Pick
bodies, ubiquitin-positive inclusions of frontotemporal dementia,
argyrophilic grains and Lewy bodies, additional blocks from
hippocampus, temporal, frontal, parietal and occipital cortex were
embedded in paraffin, and 12 mm-thick sections were processed
with highly specific and fully characterized antibodies to the
phosphorylation-dependent tau AT8 (1/1000, Immunogenetics)
(Goedert et al., 1995), core amyloid ß protein A4 4G8 (1/1000,
Signet Laboratories) (Bussière et al., 2002), a-synuclein (1/20 000
courtesy of Dr Y. Charnay) and ubiquitin (1/100, Sigma).
The tissues were incubated overnight at 4�C. Following
incubation, sections were processed by the PAP method using
3,30-diaminobenzidine as a chromogen (Vallet et al., 1992). As a
part of the routine neuropathological analysis, the presence or
absence of cerebral amyloid angiopathy (CAA) was assessed on
20 mm-thick Globus silver stained sections in all cases.
Subsequently, all cases were classified neuropathologically

according to Braak–NFT staging system (Braak and Braak,
1991). Aß-protein deposition staging was performed according
to the amyloid nomenclature proposed by Thal and collaborators
(Thal et al., 2000). Lacunes, CMI and focal cortical gliosis were
assessed semiquantitatively in 10 sections per area using the
following score: 0 (absence of such lesions), 1 (<3 lesions
per slide), 2 (3–5 lesions per slide), 3 (>5 lesions per slide). Semi-
quantitative assessment of white matter gliosis was made in the
same number of sections using the following rating scale:
0 = absent, 1 =mild, 2 =moderate, 3 = severe. Although we
cannot exclude that additional pathology may be present mainly
in neocortical areas, the use of a high number of sections limits
this possibility. For each of these lesions, a total score was
obtained by adding the scores of each area. The severity of diffuse
white matter and periventricular demyelination in each hemi-
sphere was estimated in LVG-stained sections using the same
semi-quantitative scale. Scores for each hemisphere were added to
obtain a total score. The same semi-quantitative assessment of
lacunes and microvascular pathology has already been used in our
previous studies with a high inter-rater reliability (Fig. 1; Kövari
et al., 2004; Gold et al., 2005). In the present study, both vascular
pathology, Braak NFT, Aß-protein deposition staging (Braak and
Braak, 1991; Thal et al., 2000) and CAA were assessed by two
independent investigators (EK and CB), blind to the clinical

findings, with a high inter-rater reliability (kappa values ranging
from 0.88 to 0.95 for the different neuropathological variables).
In case of disagreement between the two raters, the final
determination was defined in a consensus meeting between both
the raters.

Statistical analysis
Maximal likelihood ordered logistic regression with proportional
odds was used to evaluate the association between CDR scores
(the dependent variable) and neuropathological parameters (Braak
NFT staging, Aß-protein deposition staging, presence of CAA and
lacunes and microvascular pathology scores) in a univariate
model. Subsequently, the same method was applied in a multiple
model to take into account the effect of age as well as the
interaction between the neuropathological variables. In addition,
cases were dichotomized as demented (CDR 1 to 3) or non-
demented (CDR 0 to 0.5) to build logistic regression models
exploring the impact of lacunes and microvascular pathology on
the presence of dementia. Braak NFT and Aß staging were entered
as dummy variables in all regression models. A predictive model
was derived from a randomized derivation sub-sample
(50% of the cases, N=78). Sensitivity analysis was performed in

Fig. 1 Representative examples of microvascular lesions
assessed in the present study. Macroscopic view of deep white
matter demyelination (arrows, a). Histological view of thalamic
lacunes (arrows, b). Multiple cortical microinfarcts in frontal
cortex (arrows, c). Material was stained with LVG (a), haematoxy-
lin^ eosin (b) and Globus silver staining (c). Scale bar: a: 1.5 cm,
b and c: 1000 mm.
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this sub-sample and corresponding receiver-operating character-
istic (ROC) curves were constructed. The best threshold
determined through this analysis of the derivation sub-sample,
was then similarly tested in the validation sub-sample (remaining
50% of the cases, N= 78). Statistical analyses were performed
using the Stata software package, release 9.2 (College Station, TX).

Ethical considerations
The present study has received the formal approval of the Local
Ethics Committee of the University of Geneva Hospitals.

Results
Table 2 summarizes the distribution of AD-related
pathology, lacunes and microvascular changes in the
present series. In univariate analyses, five independent
variables were significantly related to CDR scores. These
included Braak NFT staging (P< 0.001), Aß deposition
staging (P< 0.001), CMI score (P< 0.01) thalamic and
basal ganglia lacune score (TBGL; P< 0.05) and age
(P< 0.05). In contrast, presence of CAA, as well as white
matter lacunes, periventricular and diffuse white matter
demyelination scores as well as focal and diffuse cortical
gliosis scores were not significantly related to CDR scores.
We then tested a multiple model including all five variables
that proved significant in the univariate approach. Four of
the variables, Braak NFT staging, Aß deposition staging,
CMI and TBGL scores remained significant predictors of
cognitive status (Table 3). The concomitant assessment of
these neuropathological variables predicted 27% of the
CDR variability.
We then evaluated the relationship between the most

important clinical outcome (presence or absence of
dementia) and neuropathological parameters. In univariate
analyses, the same five independent variables, Braak NFT
staging, Aß deposition staging, CMI and TBGL scores and
age, proved to be significant predictors of the presence of
clinical dementia. Importantly, a multiple model which

included these five variables revealed that age was no longer
a significant predictor and that the four remaining
neuropathological scores explained 48.9% of the presence
of dementia. In a stepwise approach, the vascular scores
(CMI and TBGL) explained 15% of the variability of the
outcome variable (presence of dementia), Braak NFT
staging 30.4% and Aß deposition staging 3.5%.

ROC curves were constructed using the vascular score
(CMI + TBGL) and Braak NFT staging to determine the
threshold value with the best combination of sensitivity and
specificity. In the derivation sample, this corresponded to
cut-off scores of 2 (>2) for both the vascular score and
Braak NFT staging. The performance of this model was as
follows: sensitivity 0.93, specificity 0.52, positive predictive
value 0.82, negative predictive value 0.75 and correct
classification rate of 0.81. The area under the ROC curve
was 0.90 (Fig. 2A).

The same model was applied in the validation sample
yielding an area under the ROC curve of 0.92. Use of the
cut-off scores developed in the derivation model led to 0.88
sensitivity, 0.79 specificity, 0.88 positive predictive value,
0.79 negative predictive value and 0.85 correct classification
rate (Fig. 2B).

When the above threshold scores were applied to the
entire study population, 90% of the demented cases were
correctly classified. These could be divided into three
distinct groups (Fig. 3). The first includes cases with a
vascular score >2 and a Braak NFT score �2 in whom
dementia is associated with vascular lesions. The second
includes cases with a Braak NFT score >2 and a vascular
score �2 and represents cases in whom dementia is
associated with neurofibrillary tangle formation. The third
groups consists of neuropathologically mixed cases, with
both a Braak NFT score >2 and a vascular score >2, in
whom dementia may be related to both vascular and
degenerative disease.

Table 3 Multiple analysis of AD and vascular pathology
impact on CDR scores in the present series (maximum
likelihood ordered logistic regression)

OR CI P-value

NFT Braak I 1.00 ^ ^
II 0.81 [0.30, 2.12] 0.672
III 1.84 [0.63, 5.37] 0.265
IV 11.82 [3.17, 44.15] <0.001
V-VI 32.79 [2.39, 145.04] <0.001

Ab staging 1 1.00 ^ ^
2 2.13 [0.90, 5.01] 0.085
3 4.40 [1.79, 10.85] 0.001
4 4.93 [1.33, 18.30] 0.017

Age 1.03 [0.98, 1.08] 0.221
CMI 1.21 [1.12, 1.31] <0.001
TBGL 1.82 [1.73, 2.50] <0.001

OR=odds ratio; CI=confidence interval; CMI=cortical
microinfarct score; TBGL=thalamic and basal ganglia lacune score.

Table 2 Distribution of neuropathological findings in the
total sample

Neuropathological findings N %

Braak NFT I-II 72 46.2
Braak NFT III-IV 55 35.3
Braak NFT V-VI 29 18.6
Ab I-II 80 51.3
Ab III-IV 76 48.7
Cortical microinfarcts 65 41.7
Lacunes thalamus 12 7.7
Lacunes basal ganglia 36 23.1
Lacunes white matter 39 25.0
Periventricular demyelination 80 51.3
Diffuse white matter demyelination 121 77.6
Focal gliosis 47 30.1
Subcortical gliosis 47 30.1
Cerebral amyloid angiopathy 10 6.4
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Discussion
Completing our previous observations in cases with
minimal to moderate NFT pathology [Braak NFT staging
<4 (Kövari et al., 2004; Gold et al., 2005; Kövari et al.,
2007)], the present data show that the cognitive impact of
CMI is still present even when cases with concomitant
severe AD pathology were considered. In fact, a one-point
increase in the semi-quantitative scale of CMI used in
this study was associated with a 1.2-fold increase of the
risk for higher CDR scores. Unlike CMI, other forms of

microvascular pathology have no cognitive repercussions
when the entire spectrum of AD pathology is taken into
account. This observation is of particular importance in
respect to periventricular and diffuse white matter demye-
lination, two types of lesions thought to be closely related
to mixed dementia at least on the basis of earlier
neuroimaging studies (Barber et al., 1999; Garde et al.,
2000; de Groot et al., 2000, 2001, 2002). We previously
reported that in cases with pure microvascular pathology,
periventricular demyelination is a better correlate of
dementia than diffuse white matter demyelination
(Kövari et al., 2004). Although weaker, the negative
influence of this neuropathological parameter was still
present in Braak NFT III mixed cases (Kövari et al., 2007)
but does not persist in higher Braak NFT stages suggesting
that the assessment of periventricular demyelination in
mixed dementia should be confined to cases with
intermediate stages of NFT pathology. However and as
usual in neuropathological studies, both types of demyelin-
ation were assessed only at the level of the anterior
commissure in the present cohort. We cannot thus formally
exclude that the total volume of white matter lesions
may be a more robust predictor of cognitive decline in this
particular group.

Another significant determinant of cognition in mixed
cases is the development of TBGL. The Nun study has first
demonstrated that cognitive function was markedly influ-
enced by thalamic, basal ganglia and deep white matter
lacunes in individuals with AD neuropathology (Snowdon
et al., 1997). More recent studies challenged this point of
view showing that many lacunes may have no cognitive
repercussions (Jellinger and Attems, 2003; Vermeer et al.,
2003). Giving additional support to the recent notion of
subcortical vascular dementia (Reed et al., 2001;
Erkinjuntti, 2002; Roman et al., 2002), one recent
neuropathological study of cases with minimal AD lesions
revealed that the assessment of TBGL may predict as much
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Fig. 2 Receiver-operating characteristic curves in the derivation and validation sub-samples.

Fig. 3 Scatterplot of demented (red circle) and non-demented
(blue triangle) cases according to Braak NFT stage and vascular
score. The thresholds determined by sensitivity analysis (dotted
lines) delineate four sectors. Demented cases are consistent with
pure Alzheimer disease in sector A, pure vascular dementia in
sector C and mixed dementia in sector B; most cases in sector D
are not demented. In order to avoid superimposition of multiple
cases random noise was applied to all points; brackets on the
y-axis indicate the magnitude of the jitter (all points within the
bracketed range correspond to the exact CDR value indicated to
the left of the bracket).
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as 17% of the cognitive variability (Gold et al., 2005).
In our series, a one-point increase in the 6-point
semiquantitative scale used for the assessment of TBGL
corresponded to a 1.8-fold increase in the risk for higher
CDR scores, indicating that, in terms of cognition, the
disruption of subcortical frontal circuits must be considered
in mixed cases.
Given the unusually high number of autopsy cases in

the present series, it was possible to define randomly two
independent samples: that of derivation where the clin-
icopathological correlations and thresholds were established
and that of validation in order to test the performance
of the proposed semi-quantitative neuropathological
approach. Based on a simple model that includes only
Braak NFT staging and CMI+TBGL scores, we were able to
identify correctly the vast majority of demented cases. The
areas under the ROC curve reached 90% in the derivation
sample and 92% in the validation sample implying that the
concomitant consideration of these neuropathological
variables is sufficient for a highly accurate discrimination
of demented cases. Although significantly associated with
cognitive decline, Aß deposits contributed only marginally
to this discrimination since their assessment explained only
an added 3.5% of the cognitive variability.
In routine neuropathological settings, the identification

of a single cut-off value that can separate demented from
non-demented cases in mixed conditions is a very
challenging issue. We report here sensitivity values of
0.93 in the derivation sample and 0.88 in the validation
sample when using a single cut-off point corresponding to
Braak NFT II stage or CMI+TBGLs score of 2. The
extremely high sensitivity value obtained with the simple
semi-quantitative approach applied in the present study
is encouraging in the perspective of developing widely
accepted neuropathological criteria for mixed dementia.
This is further supported by the quite high positive and
negative predictive values in both derivation and validation
samples that ranged from 0.75 to 0.88. Of course, it should
be remembered that these latter values are also related to
dementia prevalence.
Based on these observations, one can propose an

operational definition of mixed dementia within the
spectrum of degenerative and vascular changes occurring
in brain ageing. Demented cases with Braak NFT staging
>II and CMI+TBGL score >2 may be classified as
having mixed dementia. Demented cases with Braak NFT
staging �II and CMI+TBGL score >2 should be
considered pure vascular dementia. Finally, a CMI +TBGL
score �2 in the presence of substantial NFT pathology
(Braak NFT staging >II) characterizes pure AD cases.
Several limitations should be considered when interpret-

ing these data. First, our hospital-based neuropathological
sample cannot be considered as fully representative of the
whole spectrum of mixed dementia. Second, we excluded
cases with macroinfarcts that correspond to a rarer and
different type of vascular pathology and can make no

conclusion in such cases. Third, although we carefully
assessed microvascular changes in several neocortical
association areas bilaterally, the obtained results are based
on the sampling strategy used and needs further validation
in other neuropathological centres. Fourth, the specificity
values of the proposed cut-off values (i.e. 0.52 in the
derivation sample and 0.79 in the validation sample) are
suboptimal. Finally, a small number of patients were
demented in the absence of both significant vascular and
degenerative pathology (CMI + TBGL score �2 and Braak
NFT staging �II), and the assessment of AD and vascular
pathology explained �50% of the presence of dementia in
our series. Methodological biases related to the semi-
quantitative approach used may partly account for this
(Giannakopoulos et al., 2003). Alternatively, other neuro-
pathological variables such as neuronal and synaptic loss or
microvascular morphometry may also contribute to cogni-
tive decline in these cases. In this respect, a recent
stereological analysis of capillary morphometric parameters
demonstrated that cortical capillary diameters may be a
powerful and independent predictor of cognitive impair-
ment in the elderly (Bouras et al., 2006).

In conclusion, the present findings demonstrate that a
systematic semi-quantitative assessment of CMI and TBGL
coupled with the traditional Braak NFT staging not only
makes it possible to predict with a high sensitivity the
presence of dementia in cases with various combinations of
vascular and degenerative changes but can serve to
distinguish mixed dementia from AD and pure vascular
dementia. Additional studies in independent prospectively
assessed autopsy series are needed to confirm the validity of
the proposed approach and define easily applicable and
consensual neuropathological procedures to improve its
specificity.
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Gold G, Kövari E, Herrmann FR, Canuto A, Hof PR, Michel JP, et al.

Cognitive consequences of thalamic, basal ganglia, and deep white

matter lacunes in brain aging and dementia. Stroke 2005; 36: 1184–8.

Hachinski VD, Lassen NA, Marshall J. Multi-infarct dementia. A cause of

mental deterioration in the elderly. Lancet 1974; 2: 207–10.

Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical

scale for the staging of dementia. Brit J Psychiat 1982; 140: 566–72.

Jellinger KA. Understanding the pathology of vascular cognitive impair-

ment. J Neurol Sci 2005; 229–230: 57–63.

Jellinger KA. Clinicopathological analysis of dementia disorders in the

elderly–an update. J Alzheimers Dis 2006; 9: 61–70.

Jellinger KA, Attems J. Incidence of cerebrovascular lesions in Alzheimer’s

disease: a postmortem study. Acta Neuropathol (Berl) 2003; 105: 14–7.

Jellinger KA, Attems J. Neuropathological evaluation of mixed dementia.

J Neurol Sci 2007; 257: 80–7.

Kalaria RN, Kenny RA, Ballard CG, Perry R, Ince P, Polvikoski T. Towards

defining the neuropathological substrates of vascular dementia. J Neurol

Sci 2004; 226: 75–80.

Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ,

et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp

Neurol 2003; 62: 1087–95.

Kövari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, et al.

Cortical microinfarcts and demylination affect cognition in cases at high

risk for dementia. Neurology 2007; 68: 927–31.
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