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ABSTRACT

Under new solvency regulations, general insurance companies need to calculate 
a risk margin to cover possible shortfalls in their liability runoff. A popular 
approach for the calculation of the risk margin is the so-called cost-of-capital 
approach. A comprehensive cost-of-capital approach involves the consideration 
of multiperiod risk measures. Because multiperiod risk measures are rather com-
plex mathematical objects, various proxies are used to estimate this risk  margin. 
Of course, the use of proxies and the study of their quality raises many ques-
tions, see IAA position paper [8]. In the present paper we provide a fi rst dis-
course on multiperiod solvency considerations for a general insurance liability 
runoff. Within a chain ladder framework, we derive analytic formulas for the 
risk margin which allow to compare the comprehensive approach to the dif-
ferent proxies used in practice. Moreover, a case study investigates and answers 
questions raised in [8].
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INTRODUCTION

The runoff of general insurance liabilities (outstanding loss liabilities) usually 
takes several years. Therefore, general insurance companies need to build appro-
priate reserves (provisions) for the runoff of these outstanding loss liabilities. 
Such reserves need to be incessantly adjusted according to the latest informa-
tion available. Under new solvency regulations, general insurance companies 
have to protect against possible shortfalls in these reserves adjustments with 
risk bearing capital. In this spirit, this work provides a fi rst comprehensive 
discourse on multiperiod solvency considerations for a general insurance lia-
bility runoff and answers questions raised in the IAA position paper [8]. This 
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416 R. SALZMANN AND M.V. WÜTHRICH

discourse involves the description of the cost-of-capital approach in a multi-
period risk measure setting. In a cost-of-capital approach the insurance com-
pany needs to prove that it holds suffi cient reserves fi rst to pay for the insurance 
liabilities (claims reserves) and second to pay the costs of risk bearing capital 
(cost-of-capital margin or risk margin), see Wüthrich et al. [20], Section 5.3. 
Hence, at time 0, the insurer needs to hold risk-adjusted claims reserves that 
comprise best-estimate reserves for the outstanding loss liabilities and an 
 additional margin for the coverage of the cashfl ow generated by the cost-of-
capital loadings. Such risk-adjusted claims reserves are often called a market-
consistent price for the runoff liabilities (in a marked-to-model approach), see 
e.g. Wüthrich et al. [20].

Because the multiperiod cost-of-capital approach is rather involved, state-
of-the-art solvency models consider a one-period measure together with a proxy 
for all later periods. In this paper we consider four different approaches denoted 
by RA,  …, RD: 

• RA: “The Regulatory Solvency Approach” (currently used in practice). This 
approach is risk-based with respect to the next accounting year k = 1, but it 
is not risk-based for all successive accounting years (it uses a proxy for later 
accounting years k  ≥  2).

• RB: “The Split of the Total Uncertainty Approach”. This approach presents 
a risk-based adaption of  the fi rst approach to all remaining accounting 
years. Particularly, the risk measures quantify the risk in each accounting 
year k  ≥  1 with respect to the initial information available at time 0.

• RC: “The Expected Stand-Alone Risk Measure Approach”. This approach 
incorporates risk measures for each accounting year which are risk-based, 
i.e. measurable with respect to the previous accounting year. Moreover, the 
risk-adjusted claims reserves are self-fi nancing in the average but they lack 
protection against possible shortfalls in the cost-of-capital cashfl ow.

• RD: “The Multiperiod Risk Measure Approach”. This approach gives a com-
plete, methodologically consistent view via multiperiod risk measures, but 
as a consequence, it is much more technical and complex compared to RA, 
RB, RC.

The numerical example in Section 5 will support RB to be a good approxima-
tion for RD and it will also show that the risk assessment of the regulatory 
solvency approach RA may not always be conservative.

Note that throughout this paper we only consider nominal values. A fi rst 
approach to discounted claims reserves for solvency considerations is provided 
in Wüthrich-Bühlmann [21]. They present a model for the one-year runoff with 
stochastic discounting which is similar to RA.

Organisation of the paper. In Section 2 we introduce the claims development 
result which describes the adjustments and we give a conceptual discussion 
about the cost-of-capital approach. The underlying claims reserving model
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 417

for the prediction of the outstanding loss liabilities is discussed in Section 3. 
In Section 4 we discuss the four different approaches in order to determine the 
cost-of-capital margins. Finally, Section 5 presents a case study for a general 
insurance liability runoff portfolio. All the results are proved either in the main 
body or in the appendix.

2. THE BASIC PROBLEM

2.1. The Claims Development Result

Let Ci,  j  >  0 denote the cumulative payments of accident year i  !  {0,  …, I } after 
development year j  !  {0,  …, J } with J  ≤  I. The ultimate claim of accident year i 
is then given by Ci, J, and for the information available at time k (for k  =  0,  …, J ) 
we write

DI + k   =   {Ci, j ;  i  +  j   ≤  I  +  k,  0  ≤  i  ≤  I, 0  ≤  j  ≤  J}.

We call the period (k  –  1,  k] accounting year k and DI  +  k is the information 
available after accounting year k (or at time k).

Since loss reserving is basically a prediction problem, we are mainly inter-
ested in the predictors ,i JC ( )k  of the ultimate claim Ci, J , given information DI  +  k. 
The outstanding loss liabilities for accident year i at time k are defi ned by 
Ci, J  –  Ci, I  –  i  + k (assume that I  +  k  ≤  i  +  J ). At time k these are predicted by the 
claims reserves

 ,i JCR C, ,i k i= I i k
(

- +-
)k ,

the index i will always denote accident years and k accounting years. Note that 
for every further accounting year more data become available and we have to 
adapt the predictors according to the latest information available. Therefore, 
we consider the successive predictions of the ultimate claims Ci, J, i.e.

 , , , ,i i i iJ J J JC C C C, , ..., , .C ,i= J
( ( ( () J i IJ i I0 1 1 + -+ - -) ) )  (2.1)

Their increments determine the so-called claims development result (CDR); 
see Bühlmann et al. [2] and Ohlsson-Lauzeningks [15]. Note that in an early 
work of  De Felice-Moriconi [4], the CDR was called year-end expectation 
(YEE) view. In new solvency regulations, the CDR is the central object of  
interest for the reserve risk and has to be thoroughly studied.

Defi nition 2.1. For accounting year k and accident year i the CDR is defi ned by

 , ,i i-J JC CCDR ,i k = .( ) (1 )k-k  (2.2)
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418 R. SALZMANN AND M.V. WÜTHRICH

It refers to the change in the balance sheet in accounting year k so that we 
always have best-estimate predictions, i.e. the outstanding loss liabilities are 
covered by claims reserves according to the latest information available. New 
solvency approaches (see e.g. Solvency II, Swiss Solvency Test [19] and AISAM-
ACME [1] ) require protection against possible shortfalls in this (one-year) CDR 
by risk bearing capital. This means that insurance companies give a yearly 
guarantee that the best-estimate predictions are always covered by a suffi cient 
amount of claims reserves (modulo the chosen risk measure). Therefore, in a 
business year or solvency view, we need to study the sequence of CDR’s, i.e. 
the uncertainty in this profi t & loss statement position, see also Merz-Wüthrich 
[13]. For a fi xed accident year i we consider the time-series

 CDRi, k,  …,   CDRi, J + i  –  I  , (2.3)

which in terms of the claims reserves satisfy

 iX ,, ,i i RJ JCCDR R, , ,i i i k i1= - +-I- + ,k k k=-
( (C1- ) )kk

_ i

where Xi, I  –  i  +  k   =  Ci, I  –  i  +  k  –  Ci, I  –  i  +  k  –  1 are the incremental payments for acci-
dent year i in accounting year k.

In conclusion, for accounting year k we need reserves (provisions) that cover 
both: 

1. the expected outstanding liabilities Ri, k , i.e. the best-estimate reserves at time k,

2. protection against the possible deviations from these best-estimate reserves.

2.2. A Conceptual Discussion of the Cost-of-Capital Loading

As already mentioned, we consider four different approaches RA,  …,  RD to cope 
with this problem. These four different approaches correspond to four different 
levels of complexity. Three of them serve as approximations to the methodo-
logically consistent approach denoted by RD. The following presents a conceptual 
discussion of the four different approaches.

For the time being we choose a fi xed accident year i. The update of  the 
available information in each accounting year k then gives a time-series of 
CDR’s as shown in Figure 1, see also (2.3). In order to protect against possible 
shortfalls in these CDR’s (adverse development of the claims reserves) we need 
to calculate an appropriate risk measure ri, k for each accounting year k. In the 
cost-of-capital approach we do not need to hold the risk measure ri, k itself, but 
rather the price for this risk measure denoted by Pi, k. The price Pi, k for the 
risk measure ri, k can be viewed as a cashfl ow towards the risk bearer (similar 
to a re-insurance premium). That is, we need to build reserves for both the 
claims cashfl ow Xi, I  –  i  +  k and the cost-of-capital cashfl ow Pi, k, see Wüthrich et 
al. [20], Section 5.3, and Pelsser [16].
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 419

First we consider RD
i , i.e. the multiperiod risk measure approach, see also 

Figure 2. This needs to be calculated recursively (see also Ohlsson-Lauzeningks 
[15] ). In the last accounting year J  +  i  –  I the risk measure ri, J  +  i  –  I has to 
account for the uncertainty in CDRi,  J  +  i  –  I which gives the cost-of-capital price 
Pi, J  +  i  –  I . For the previous accounting year J  +  i  –  I  –  1 we have not only to 
account for the uncertainty in CDRi, J  +  i  –  I  –  1 but also for the uncertainty of the 
cost-of-capital cashfl ow Pi, J  +  i  –  I  . Iterating this procedure reveals the recursive 
structure of  the multiperiod risk measure approach and leads to the risk-
adjusted claims reserves RD

i  at time 0. The difference RD
i   –  Ri, 0 measures the risk 

margin and corresponds to a risk aversion loading in an incomplete market 
setting. Since such a recursive problem is very complex and soon becomes too 

FIGURE 1: Time-series of the claims development results CDRi, k, for a fi xed accident year i 
with J  +  i  –  I  =  7, i.e. k  =  1,  …, 7.

FIGURE 2: Time-series of the multiperiod risk measure approach for J  +  i  –  I   =  7.
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420 R. SALZMANN AND M.V. WÜTHRICH

time-consuming for simulation (nested simulations), we look for alternative 
proxy solutions which are either analytically or numerically tractable.

Such a solution is provided by RC
i , i.e. the expected stand-alone risk meas-

ure approach. For each accounting year k, the risk measure ri, k accounts for 
the uncertainty in CDRi, k with respect to DI  +  k  –  1, the latest information avail-
able at the beginning of accounting year k. In order to determine the reserves 
at time 0, we then take the expectation of this DI  +  k  –  1 - measurable future cost-
of-capital with respect to the initial information i.e. DI . This approach then 
provides that the risk margin RC

i   –  Ri, 0 is in the average self-fi nancing, but it 
does not account for possible adverse developments in the cost-of-capital cash-
fl ow Pi, k itself. That is, we only build reserves for the expected cashfl ow of Pi, k.

A further simplifi ed approximation is given by RB
i , i.e. the split of the total 

uncertainty approach. Instead of considering the uncertainty of CDRi, k with 
respect to the information DI  +  k  –  1, we consider the uncertainty in CDRi, k with 
respect to the initial information DI . This approach has the advantage that it 
can often be calculated analytically and leads to simple formulas.

Finally, approach RA
i , i.e. the regulatory solvency approach, is the roughest 

approximation with respect to risk-adjustedness. It calculates a risk measure 
ri, 1 for the uncertainty of CDRi, 1 in the fi rst accounting year. The risk meas-
ures ri, k for the later accounting years k  ≥  2 are then simply calculated by 
volume scaling with the expected runoff  of  the outstanding loss liabilities.
This is the approach used e.g. in the Swiss Solvency Test [19] and it also cor-
responds to a special case considered in ISVAP [9], Section 1.2.4, called the 
“fl at case”.

In the next section we introduce the gamma-gamma Bayes chain ladder 
model for claims reserving. Restricting our remaining discussion to the con-
sideration of a standard deviation loading as risk measure, this claims reserving 
model will allow for explicit analytical solutions for all approaches RA

i ,  …,   RD
i 

as long as we fi x a single accident year i. We will see that the situation becomes 
more involved as soon as we start to aggregate over accident years i. The 
explicit analytical solutions then allow for a comparison between the compre-
hensive approach RD

i  and its proxies RA
i ,   RB

i ,   RC
i . Finally, we would like to 

mention that for other (more general) risk measures and other claims reserving 
models one cannot expect explicit closed form solutions and one needs to rely 
on simulation results. For this reason, we concentrate in the present work on 
this simple model, where we can directly calculate all terms and study sensi-
tivities of all the parameters involved.

3. OUTSTANDING LOSS LIABILITY MODEL

In the following, the claims reserving is described in a Bayesian chain ladder 
model framework. This Bayesian framework provides a unifi ed approach for 
a successive information update in each accounting year, i.e. new information is 
immediately absorbed by the Bayesian model (see also Bühlmann et al. [2]).
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 421

We defi ne the individual claims development factors Fi, j  =  Ci, j  / Ci, j  –  1 for 
j  =  1,  …, J. Then the cumulative payments Ci, j are given by

 F ,i .C C, ,i i m
m

j

0
1=

=j %

The fi rst payment Ci, 0 plays the role of the initial value of the process (Ci, j )j  =  0,  …,  J 
and Fi, j are the multiplicative changes. In a Bayesian chain ladder framework, 
we assume that the unknown underlying parameters are described by the ran-
dom variables Q1

–1,  …,  QJ
–1. Given these, we further assume that Ci, j satisfi es a 

chain ladder model.

Model Assumptions 3.1. (Gamma-Gamma Bayes Chain Ladder Model) 

• Conditionally, given Q  =  (Q1,  …,  QJ),

 –  the cumulative payments Ci,  j for different accident years i are independent.
 –  Ci, 0, Fi, 1,  …, Fi, J  are independent with 

  Fi, j | Q   +   G(sj
–2, Qj  sj

–2 ),  for  j  =  1,  …, J,

   where the sj ’s are given positive constants. 

• Ci, 0 and Q are independent and Ci, 0  >  0, � - a.s.

• Q1,  …,  QJ are independent with Qj   +   G(gj, fj (gj  –  1)) with given prior para-
meters fj  >  0 and gj  >  1.

Remarks

• We choose the following parametrisation for the gamma distribution: For 
X  +   G(a, b ) we have that � [X ]  =  a / b and Var(X )  =  a / b2.

• The gamma-gamma Bayes chain ladder model defi nes a model that belongs 
to the exponential dispersion family with associate conjugate priors (see e.g. 
Bühlmann-Gisler [3]). This family of distributions gives an exact credibility 
case because the Bayesian estimators coincide with the linear credibility esti-
mators. Hence, it is possible to explicitly calculate the posterior distribution 
of Q, given the observations Fi, j . We restrict ourselves to the gamma-gamma 
case because it allows for an explicit calculation of the prediction uncertainties 
which is essential for multiperiod risk measure decompositions. For most other 
models, only numerical solutions are available or one considers approximations 
similar to Theorem 6.5 in Gisler-Wüthrich [7].

• Note that the above model assumes that accident years are conditionally 
independent, i.e. it does not allow for the modelling of  accounting year 
effects and claims infl ation. In general, accounting year effects models can 
only be solved numerically, see Wüthrich [22].
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422 R. SALZMANN AND M.V. WÜTHRICH

Conditionally, given Q, we obtain a chain ladder model with fi rst two moments 
given by

� [Ci, j  | Q,  Ci, 0,  …,  Ci, j  –  1] = Ci, j  –  1 �[Fi, j  | Q]   =   Ci, j  –  1 Qj
–1, (3.1)

Var (Ci, j  | Q,  Ci, 0,  …,  Ci, j  –  1)   =   C2
i, j  –  1 Var (Fi, j  | Q) = C2

i, j  –  1 s
2
j  Qj

–2. (3.2)

Hence, for the conditional coeffi cient of variation of Ci, j , given Q, we fi nd that

 Vco (Ci, j  | Q, Ci, 0,  …,  Ci, j  –  1)   =   j
,

,

i

i

C

CVar

j

j

� ...,

...,
.

C C

C C

, ,

, ,

i i

i i

0

0
s=

,

,

1

1

,

,

Q

Q
/1 2

j

j -

-

` j

8

9

B

C

Henceforth, Qj
  –1 plays the role of the chain ladder factor (see Mack [11] ). Note 

that the variance is proportional to C2
i, j  –  1, this assumption is crucial for the 

calculation of feasible standard deviation loadings in the multiperiod cost-of-
capital approach (but it is different from Mack’s [11] classical distribution-free 
chain ladder model). This modifi cation of the classical chain ladder variance 
assumption is essential to have a tractable model (otherwise only numerical 
solutions are available). In the case study below, the numerical differences 
between these two different models are analysed (see Section 5 below). More-
over, for the prior moments we have

 j
1

j� ,f=
-

Q8 B   jf2
j
-

� 2
1

j

j2
Q =

-

-

g
g

8 B   and  jf1
jVar 2

1
j

2
=

-
-

Q .g` j

This shows that we have a prior mean for the chain ladder factor of fj . In order 
that the prior second moments exist, we need the additional assumption that 
gj  >  2.

3.1. The Parameter Update Procedure

At time k  ≥  0, we have information DI  +  k and we need to predict the outstand-
ing loss liabilities that correspond to the random variables Ci, J  –  Ci, I  –  i  +  k. This 
means that we have to update our model according to the information generated 
by the runoff portfolio for successive accounting years. The following proposi-
tion describes the parameter update procedure for the posterior distributions 
of Qj.

Proposition 3.2. Under Model Assumptions 3.1 we have that for k  ≥  0 the con-
ditional posterior distributions of Qj , given DI  +  k , are independent gamma distri-
butions G(gj, k,  cj, k) with updated parameters
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This implies that the posterior density of Q, given DI  +  k, satisfi es the following 
proportionality property (only relevant terms are considered)
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These are independent gamma densities which proves the proposition. ¡

The above result implies the following corollary.

Corollary 3.3. Under the assumptions of Proposition 3.2 we have
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424 R. SALZMANN AND M.V. WÜTHRICH

Remarks

• Note that the Fj
(k)’s differ from the chain ladder estimates resulting from 

volume weighting in Mack’s [11] model. For models where the variance is 
proportional to the mean squared (see (3.1) and (3.2)) the average of the 
individual development factors is the optimal estimate of the chain ladder 
factor as pointed out by Mack [12]. 

• In order that the second posterior moments exist, we need to assume that 
gj, k  >  2, e.g. this is guaranteed by the additional assumption that gj  >  2.

It is well-known that the parameter updating procedure can also be done 
recursively (see Gerber-Jones [6], Kremer [10], Sundt [18] and Bühlmann-Gisler 
[3], Theorem 9.6). In our case this leads to the helpful representation:

Corollary 3.4. For k  ≥  1 and j  ≥  k we have

 j j, ,j jk kf fa a1 ,F ,
( )( )

I k j j
k 1

= + -+ -
-k

_ i

where the credibility weight aj, k is given by

 j
1

1,j 1 ( ) .a I k jk js= + - + +
-

-g2
` j

Proof. The proof follows from Corollary 3.3. ¡

3.2. Ultimate Claim Prediction

The following proposition determines the best-estimate prediction of the ulti-
mate Ci, J in our Bayesian chain ladder framework.

Proposition 3.5. Suppose the assumptions of Proposition 3.2 to hold. The predictor 
for the ultimate Ci, J that has minimal conditional variance, given DI  +  k, is given by 

,i JC ( )k   =  �[Ci, J  |  DI  +  k]. For I  +  k  <  i  + J we obtain

 j,i ,iJ CC f� | .C ,I k i i k
j I i k

J

1
= =+ - +

= - + +

DJ I
( )k ( )k

7 A %

Proof. The proof easily follows from the fact that conditional expectations 
minimise L2-distances and from the posterior independence of the Qj’s (see 
Proposition 3.2). ¡

Remark. Note that this is a so-called Bayes chain ladder model (see Bühlmann 
et al. [2] ) where the chain ladder factors fj

(k) are credibility weighted averages 
between the prior estimates fj and the observations Fj

(k). For uninformative 
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 425

priors, i.e. gj   "  1 and therefore aj, k  "  1, we obtain a frequentist’s chain ladder 
factor estimator that is only based on the observations. Note that for the sec-
ond posterior moment to exist, we need to have gj, k  >  2. This may exclude the 
consideration of the asymptotic uninformative case (see Proposition 3.2).

In the remainder of this paper we are going to characterise the uncertainties 
in the CDR (Defi nition 2.1). Our fi rst Corollary states that best-estimate predic-
tions (2.1) form a martingale, see also ISVAP [9], footnote 5 in Section 1.2.1.

Corollary 3.6. Under Proposition 3.5 we have

 � CDR | .0,i I k 1 =+ -Dk7 A

Moreover, the CDR’s are uncorrelated, i.e. for k  ≥  1, l  ≤  J and m  <  max{k, l } it 
holds that

 CDR I m+� CDR | 0., ,i k i l =D7 A

Proof. Note that best-estimate predictions from Proposition 3.5 form a mar-
tingale (this follows from the tower property of conditional expectations). Hence, 
it easily follows that the expected CDR is zero. The second claim then follows 
from the fact that martingales have uncorrelated increments. ¡

Remark. At this stage it turns out to be crucial that we have an exact credibility 
model. Otherwise one obtains a bias term in the CDR (as e.g. in Proposition 3.1 
in Bühlmann et al. [2]) that is diffi cult to control.

4. COST-OF-CAPITAL MARGIN

For the time being we consider a fi xed accident year i. According to Section 2, 
we need to build reserves (provisions) that cover both, the present best-estimate 
reserves and a protection against possible adverse developments in the CDR’s, 
i.e. a buffer to be able to balance the profi t & loss statement in each remaining 
accounting year k. Therefore, in accounting year k we choose a risk measure 
ri, k that quantifi es the amount needed for such regulatory induced protection. 
Moreover, we choose a constant c  >  0, the so-called cost-of-capital rate, i.e. 
the annual rate required by the risk bearer for providing the risk measure ri, k. 
With this, the price of the above risk measure is defi ned by Pi, k  =  c ri, k and is 
called the cost-of-capital margin for accounting year k. Note that Pi, k  =  c ri, k 
gives the price of risk but it does not tell us anything about the organisation of 
the risk bearing, i.e. in addition to the cost-of-capital margin Pi, k the regulator 
also needs to make sure that this capital is used for organising the risk bearing 
(and not for other purposes), see also Section 5.3 in Wüthrich et al. [20].
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426 R. SALZMANN AND M.V. WÜTHRICH

Consequently, in addition to the claims reserves Ri, k, the insurance com-
pany needs to build reserves for the cost-of-capital cashfl ow

 c ri, k + 1,   …,   c ri, J + i  –  I  . 

Assume that CoCi, k are the reserves (cost-of-capital margin) at time k that 
cover the aggregated cost-of-capital cashfl ow c ri, k  + 1,  …,   c ri, J  +  i  –  I . Hence, the 
risk-adjusted claims reserves at time k (based on the information DI  +  k ) are 
given by

 R*
i, k   =   Ri, k  +  CoCi, k.

The R*
i, k’s can be interpreted as a risk-adjusted price for the runoff liabilities 

in an incomplete market setting, i.e. the provisions for the outstanding
loss liabilities and a price for the risk at which the outstanding loss liabilities
can be transferred to a third party at time k (in a marked-to-model view). In 
the following we consider the four different approaches RA,  …,  RD for R* with 
different versions of standard deviation loadings as risk measures. Note that 
such loadings can be viewed as measures of preferences, e.g. in Møller [14] the 
actuarial standard deviation loading is related to the fi nancial standard devia-
tion principle as a concept for pricing in an incomplete market setting using 
utility theory, see also Pelsser [16].

4.1. Regulatory Solvency Proxy Approach

For I  +  k  ≤  J  +  i and i, k  ≥  1 we defi ne the constant
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` `fj j p> H%

Note that we have bi, k  >  1 and since the aj, k’s and gj, k’s do not depend on the 
observations (see Proposition 3.2 and Corollary 3.4), bi, k is also unaffected. 
This is a crucial property of Model Assumptions 3.1 that we are going to use 
in the derivations below.

Proposition 4.1. Under Model Assumptions 3.1 we have, for I  +  1  ≤  J  +  i ,

 I I, ,i iC C .J JD DVar(CDR | ) Var( | ) ( ( 1), ,i i1
2

1= = -
( (01) )) b

Proof. The proposition easily follows from Theorem 4.2 below. ¡

Many regulators use an approach that is similar to the following proxy for
the estimation of the cost-of-capital charge (see e.g. Swiss Solvency Test [19], 
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 427

Sandström [17], Section 6.8, appendix C3 in the IAA position paper [8] or 
Section 1.3.2 in ISVAP [9]). The expected outstanding loss liabilities at time k 
viewed from time 0 are given by

 , , ,i i iCJ JC� � | .r R C, , ,i i I i i k I I i k= = =- + - +C-|kk ID D ( (0 0
-

( ) ))k
7 8A B

Hence, ri, 0,   …,   ri, J  +  i  –  I  –  1, ri, J  +  i  –  I   =   0 describes the expected runoff of the out-
standing loss liabilities viewed from time 0. In the fi rst cost-of-capital approach 
the risk measure in accounting year k is chosen to be (the upper index in the 
risk measure notation labels the approaches)

 ,iCf I JfVar CDR | 1 ,,
,

,
,

/

,

,
,

/
i
A

i

i
i

i

i
i

1
1

1 1
1

1
r b= = -r

r
r

r2
D

0 0
k

- -k k 2(0)
_ _i i8 B

where f is a fi xed positive constant determining the security level. In this 
setup, the appropriate risk measure for accounting year 1 is given by

 ,iCI Jf fVar CDR | .1, , ,
/

i
A

i i1 1
1 2r b= = -1 D

/1 2 (0)
_ _i i8 B

That is, we choose an appropriate risk measure rA
i, 1 for the fi rst accounting year 

which is determined by a standard deviation loading. The risk measures rA
i, k 

for later accounting years k  ≥  2 are then obtained by the DI - measurable volume 
scaling ri, k describing the expected runoff of the outstanding loss liabilities. 
The underlying assumption is that this volume measure is a good proxy for the 
runoff of the CDR uncertainty. The risk-adjusted claims reserves at time 0 are 
then given by

 ,iCRi JR f .c r
r

1, , ,
/

,

,
i
A

i
i

i

k

J i I

0 0 1
1 2

1
b= -

=

+ -

+
0

1-k(0)
_ i /  (4.1)

We refer to (4.1) as the regulatory solvency proxy approach. We see that the 
calculation of the risk-adjusted claims reserves is very simple. It only requires 
the study of  the CDR for the fi rst accounting year and all the remaining 
uncertainties are proportional to the uncertainty in the fi rst accounting year. 
Hence, this approach meets the simplicity requirements often wanted in prac-
tice. However, since this approach is only risk-based for accounting year k  =  1, 
the risk-adjustedness for later accounting years is rather questionable.

4.2. Split of the Total Uncertainty Approach

Corollary 3.6 implies that the total uncertainty viewed from time 0 can be split 
into the single one-year uncertainties for different accounting years as follows
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For the second equality to hold, we have used the uncorrelatedness of  the 
CDR’s.

Theorem 4.2. Under Model Assumptions 3.1 we have, for I  +  k  ≤  J  +  i,
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(An empty product is set equal to 1).

The proof is provided in the appendix. Theorem 4.2 immediately implies:

Corollary 4.3. (Aggregated One-Year Risks) Under Model Assumptions 3.1 we 
have
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The proof is provided in the appendix.

Remark. Corollary 4.3 gives the prediction uncertainty for the total runoff of 
the outstanding loss liabilities. This is similar to the famous Mack formula 
(Mack [11]) in the classical chain ladder model and to the formula in the 
Bayesian chain ladder model considered in Gisler-Wüthrich [7]. Theorem 4.2 
then states how this total uncertainty factorises across the single accounting 
years. We defi ne the risk measures rB

i, k in this second approach by

 b,iI JCf fVar CDR | .1, ,
/

,
/

,
/

i i i
j

k

i
1 2 1

1

1 1 2
r b= = -

=

-

Dk
2

k
B

kj
(0)

_ _i i8 B %

This means that we analyse the CDR uncertainty for each accounting year 
viewed from time 0. Since all the underlying terms are DI -measurable, we can 
defi ne the risk-adjusted claims reserves at time 0 for the risk measure rB

i, k by
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We refer to (4.2) as the split of the total uncertainty approach.

4.3. Expected Stand-Alone Risk Measure Approach

Note that the risk measures rA
i, k and rB

i, k are both DI -measurable. However, one 
would expect that the risk measure ri, k should be DI  +  k  –  1-measurable which 
refl ects the claims development up to accounting year k. Note that due to 
Theorem 4.2 we have

 , ,i iJ JC CVar CDR | Var ., ,i I k I k i1 1
2

= =+ - + -k | 1kbD D( (
-

1) )k -k
_ ` ` _i j j i

Hence, we defi ne the risk measure by

 ,i JCf fVar CDR | .1, ,
/

,
/

i i I k i1
1 2 1

r b= =+ -
C 2

k k -kD ( 1)-k
_ _i i8 B

This corresponds exactly to the regulatory risk bearing capital (modulo the 
chosen risk measure) that the insurance company needs to hold in order to 
run its business in accounting year k (and having claims experience DI  +  k  –  1). 
Note that the cost-of-capital margin c rC

i, k is a DI  +  k  –  1-measurable cashfl ow for 
which we need to put reserves aside at time 0. Therefore, we defi ne the risk-
adjusted claims reserves for rC

i, k by

    R ,iC,i I J
/1

R � f| .c R c 1, , ,
k

J i I

i i i
k

J i I

0
1 1

r b= + = +
=

+ -

=

+ -
CC

,i
2

D 0 -0 k k
(0)

_ i8 B/ /  (4.3)

We refer to (4.3) as the expected stand-alone risk measure approach. Note that 
these risk-adjusted claims reserves are self-fi nancing in the average which 
means that we have exactly reserved for the expected value of the cashfl ow

 , .X c X c, , , ,i I i i i J i J i I1 1 fr r+ +- + + -
C C,

Because bi, j  >  1 or due to Jensen’s inequality we can easily see that the following 
corollary holds true:

Corollary 4.4. We have

 CR R .#
B

, ,i i0 0
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430 R. SALZMANN AND M.V. WÜTHRICH

4.4. Multiperiod Risk Measure Approach

Reserves that are self-fi nancing in the average as above (see formula (4.3)) do 
not account for the risk inherent in the cost-of-capital cashfl ow itself. In a 
multiperiod (dynamic) risk measure approach (see e.g. Föllmer-Penner [5] )
we additionally quantify the uncertainty in the cost-of-capital cashfl ow c  ri, k . 
This then needs a recursive calculation of  the necessary risk measures (see
also Ohlsson-Lauzeningks [15] ) which is explained in this subsection, see also 
Figure 2. We start with a schematic illustration based on backward induction. 
Fix accident year i  >  I  –  J, then the last accounting year for this accident year 
is given by J  +  i  –  I. Hence, we initialise the reserves for the cost-of-capital 
cashfl ow by CoCi, J  +  i  –  I  =  0. For k  =  0,  …, J  +  i  –  I  –  1 the risk-adjusted claims 
reserves are defi ned by

 R+ +�R CoC | CoC ,R c, , ,
.

, ,i i I k i

def

i ir= + =+,i k k k k k1 1+
D

k+D D
7 A
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Note that the risk measure rD
i,  k  +  1 quantifi es the CDR uncertainty in the claims 

cashfl ow Xi, I  –  i  +  j and in the cost-of-capital cashfl ow c rD
i,  j  +  1, j  ≥  k  +  1 as well. 

The total reserves at time 0 for the cost-of-capital cashfl ow are given by CoCi, 0 . 
We defi ne for k  =  1,  …, J  +  i  –  I

 = f1 .b c 1, ,
/

i i
1

b+
2

k -k_ i

Proposition 4.5. The cost-of-capital reserves at time k  =  0,  …, J  +  i  –  I  –  1 are 
given by

 ,i b ,iJCCoC .1,i m
m k

J i I

1
= -

= +

+ -

k
( )k

e o%

The proof goes by induction and is provided in the appendix.

Remark. As a consequence of  our model assumptions, the cost-of-capital 
cashfl ow turns out to be linear in ,i JC ( )k . This fact allows for an analytic calcu-
lation in the multiperiod risk measure approach for single accident years i.

Henceforth, in the multiperiod risk measure approach we have risk-adjusted 
claims reserves at time 0 given by
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 (4.4)

referred to as the multiperiod risk measure approach.

Corollary 4.6. We have

 CR R .#, ,i i0 0
D

The deeper reason for Corollary 4.6 to hold is that in addition to the expected cost-
of-capital cashfl ow the risk-adjusted claims reserves in the multiperiod risk measure 
approach incorporate a margin against possible shortfalls in this cashfl ow.

The ordering of RD
i, 0 and RB

i, 0 depends on the choice of the cost-of-capital 
rate c and the choice of the security level f. We need to compare 
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Lemma 4.7. For g1,  …,  gi   !   �, we have
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The lemma is proved in the appendix. Therefore, the question simplifi es to 
comparing
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 (4.5)

Corollary 4.8. Assume for i  =  I  –  J  +  2,  …, I 

 
/ /1 1
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Then we have

 R R .#
B
, ,i i0 0

D

The proof is provided in the appendix.

Remarks

• Note that for c f being smaller than minj ( bi, j
1/2  –  1)1/2  /  ( bi, j

1/2  +  1)1/2 we obtain 
that the split of total uncertainty approach (4.2) gives higher risk-adjusted 
claims reserves than the multiperiod risk measure approach (4.4). However, 
in every other case we cannot say which risk-adjusted claims reserves are 
more conservative.

• In the practical examples we have considered, the assumptions of Corollary 4.8 
were always fulfi lled. This means that the multiperiod risk measure approach 
turned out to result in the most conservative risk-adjusted claims reserves.

• Furthermore, we have noticed that bi, j  .  1 which implies that ( bi,  j  –  1)1/2 % 1. 
Moreover, the security level and the cost-of-capital margin typically are
such that c f  ≤  0.3. This immediately implies that the two terms in (4.5) are 
almost equal and hence, very often in practical situations we observe that 
RB

i, 0 .   R
D
i, 0 .

4.5. Aggregation of Accident Years

In the previous subsections we have studied the cost-of-capital margin for one 
single accident year i only. Finally, of course, we would like to measure the 
uncertainty over all accident years i   !  {I  –  J  +  1,  …, I }. Hence, the total CDR 
in accounting year k  =  1,  …, J is defi ned by

 CDR ,i
J

CDR .k
i I k

I

k=
= + -

/

Note that the statement of Corollary 3.6 also holds true for CDRk. Therefore, 
we prove a similar result like Theorem 4.2 for the aggregated CDR. For 
i, m   ≥  I  +  k  –  J we have the following covariance decompositions
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Thus, it remains to study the covariance terms; the other terms are already 
considered in Theorem 4.2. For I  +  k  ≤  J  +  i we defi ne

 a-b 1 1 1.a 1
2

, , , ,
,

,
i i I k i I k i I k i

I k i

I k i1
d s g

g
= + ++ - + - + -
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>
-2

k
k

k

1

1

-

-
_ `i j> H

Theorem 4.9. Under Model Assumptions 3.1 we have, for m  >  i  ≥  I  +  k  –  J,
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The proof is provided in the appendix. 

4.5.1. Regulatory Solvency Proxy Approach (4.1)

We defi ne the risk measure for the fi rst accounting year by
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The aggregated risk-adjusted claims reserves in the regulatory solvency proxy 
approach (4.1) at time 0 are given by

 R ,i
,

J

iJR .c
1 ,i I J

I

ii I
I

i I k
I

k

J
A

0
11

r= +
= + -

= + -

= + -

=
10

rA

r 0

k 1-/
/
/

/  (4.6)

The last term describes the expected runoff pattern of the outstanding loss 
liabilities over all accident years. Note that the risk margin term of (4.6) is of 
the same nature as the fl at case risk margin given in ISVAP [9], Section 1.3.2, 
(1.73).
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434 R. SALZMANN AND M.V. WÜTHRICH

4.5.2. Split of Total Uncertainty Approach (4.2)

We defi ne the risk measure for accounting year k  ≥  1 measurable at time I  +
t, t  <  k, by
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For t  =  0 we defi ne rB
k   =  rk

DI. Then the aggregated risk-adjusted claims reserves 
at time 0 in the split of total uncertainty approach (4.2) are given by

 Ri r,
J

kR .c
1i I

I

k

J

0
1

+
= - =

BB
0

+

= / /  (4.7)

4.5.3. Expected Stand-Alone Risk Measure Approach (4.3)

We defi ne the risk measure for accounting year k by rk
C   =   rk

DI
 
+  k  –  1. Then the 

aggregated risk-adjusted claims reserves in the expected stand-alone risk mea-
sure approach (4.3) are given by 

 r IR ,iR � .c
1 1i I J

I

k

J
C

0= +
= + - =

k
C

0 D> H/ /  (4.8)

The term on the right-hand side of  (4.8) cannot be calculated in closed form. 
If we use Jensen’s inequality as follows � [X ]  ≤  � [X 2]1/2 we obtain that RC

0   ≤   RB
0 .

An important remark is that the approaches (4.7) and (4.8) allow for diver-
sifi cation between accident years:

Corollary 4.10. Let * be B or C and k  ≥  0, then we have

 
J

.,i
i I k

I
r r

= + -

) )
#k k/

This means that we have subadditive risk measures.

Proof. The proof easily follows from the fact that for any random variables X1, …,
Xm with fi nite second moment we have #X m

i i1 1[Var( )] [Var( )] .X/ /
i i

1 2 1 2m
= =/ /

 ¡
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4.5.4. Multiperiod Risk Measure Approach (4.4)

The aggregation in the multiperiod risk measure approach is more involved 
and unfortunately does not allow for an analytic solution. Moreover, simulation 
results are often too time-consuming because the dimensionality of the prob-
lem is rather large (nested simulations). Formally, the multiperiod risk measure 
approach is given recursively. The reserves of the cost-of-capital cashfl ow are 
initially given by CoCJ  =  0 and for k  =  0,  …, J  –  1

 I�CoC CoC | ,c
.

k k k k

def

1 1r= + + ++D D
7 A
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Thus, the aggregated risk-adjusted claims reserves in the multiperiod risk mea-
sure approach (4.4) are given by

 R ,iR CoC .
i I J

I

0
1

0+
= -+

0
D

= /  (4.9)

Let us analyse this expression. If  we start the backward induction at account-
ing year J we see that only accident year I  is still active in this accounting year. 
Therefore, rD

J    =  rD
I, J and for the reserves of  the cost-of-capital cashfl ow in 

accounting year J  –  1 it follows that 
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436 R. SALZMANN AND M.V. WÜTHRICH

At this stage we lose the linearity property in the volume measures ,i JC J 2-( )  and 
,1I -C J
2( - )J . For this reason we cannot further expand the calculation analytically, 

that is, we can neither calculate the conditionally expected value of CoCJ  –  2, 
given DI  +  J  –  3 , nor is it possible to calculate the risk measure rD

J  –  2 . Therefore, 
we cannot calculate  RD

0  in closed form. Similar diffi culties occurred in the 
expected stand-alone risk measure approach (4.8).

By neglecting diversifi cation effects between accident years, we easily fi nd 
an upper bound for the aggregated risk-adjusted claims reserves as follows:

 RD

J
,iR .

i I

I

= -
0 0
D

1+

# /  (4.10)

Another more sophisticated upper bound that considers diversifi cation between 
accident years within accounting years is given by:

Proposition 4.11. For c f  <  1 we have

 
1-

fCoC CoC 1 .c c2 1
.

k

def

0 0
1

# r= + -
=

k
k B

J

^` h jR /

The proof is provided in the appendix. This proposition motivates the follow-
ing risk-adjusted claims reserves

 R ,i
J

R CoC .
1i I

I

0 0+
= + -

D
0 =Q R/  (4.11)

Note that for c f  <  1 we have the order

 R R R R .max B
0 0 0 0

C DD ,,$ $ .
Q

For the remainder we will refer to (4.1)-(4.4) as Approaches A-D, respectively.

5. CASE STUDY

We present a case study for the different cost-of-capital approaches on a real 
dataset from practice. The claims data are given by a loss triangle (see Table 1) 
representing the observed historical cumulative claims payments Ci, j . More-
over, the data also include prior values for the development factors fj and gj and 
the corresponding standard deviation parameter sj as well as the observed 
chain ladder factors Fj

(0). The standard deviation parameter sj is obtained from 
similar business. In a full Bayesian approach this parameter should also be 
modelled with the help of a prior distribution. But then the model is no longer 
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 437

analytically tractable. Therefore, we use an empirical Bayesian viewpoint using 
a plug-in estimate from similar business. Furthermore, note that we work with 
vague priors for Qj , i.e. gj is close to 2 which results in high credibility weights 
aj, 0 (see Table 1).

According to the previous section, we compute the cost-of-capital margins 
for this runoff portfolio for all the different approaches. Table 2 presents an 
overview of  the numerical results whereas Figure 3 summarises the results 
for each single accident year. The cost-of-capital rate and the security level 
are chosen to be c  =  6% and f  =  3. The choice of c corresponds to the rates
also used in the IAA position paper [8], page 79, and the Swiss Solvency Test.
A cost-of-capital rate of c  =  6% is higher than average returns on major gov-
ernment bonds. This refl ects the urge of risk bearers to ask for a higher than 
risk-free return for the compensation of the risk transfer. A more sophisticated 
discussion on the choice of an appropriate cost-of-capital rate involves stochas-
tic modelling of c depending on fi nancial markets which goes beyond the scope 
of this paper.

Discussion of the results

• As expected, we observe that the regulatory solvency approach (Approach A) 
essentially differs from the other approaches. This is because it is not risk-based 
for later accounting years. In particular, the regulatory solvency approach 

TABLE 1

OBSERVED HISTORICAL CUMULATIVE CLAIMS PAYMENTS Ci, j , AVERAGES OVER THE INDIVIDUAL

CLAIMS DEVELOPMENT FACTORS Fj
(0), PRIOR DEVELOPMENT FACTORS fj , PRIOR PARAMETERS gj ,

STANDARD DEVIATION PARAMETERS sj , CREDIBILITY WEIGHTS aj, 0 FROM COROLLARY 3.3.

Cumulative claims payments Ci,  j

i  \  j 0 1 2 3 4 5 6 7 8 9

0 122’058 183’153 201’673 214’337 227’477 237’968 261’275 276’592 286’337 298’238

1 132’099 193’304 213’733 230’413 243’926 258’877 269’139 284’618 295’745

2 132’130 186’839 207’919 222’818 237’617 253’623 267’766 284’800

3 127’767 187’494 207’759 222’644 237’671 256’521 271’515

4 127’648 179’633 196’260 213’636 229’660 245’968

5 125’739 181’082 203’281 219’793 237’129

6 117’470 172’967 190’535 204’086

7 117’926 172’606 191’108

8 118’274 171’248

9 119’932

Fj
(0) 1.4530 1.1065 1.0750 1.0680 1.0650 1.0629 1.0599 1.0372 1.0416

fj 1.4500 1.1100 1.0750 1.0700 1.0650 1.0630 1.0600 1.0500 1.0400

gj 2.1 3.0 4.1 4.3 4.7 4.8 5.1 6.4 8.8

sj 0.0202 0.0080 0.0078 0.0073 0.0117 0.0233 0.0031 0.0026 0.0022

aj, 0
100.00% 100.00% 100.00% 100.00% 99.99% 99.95% 100.00% 100.00% 100.00% 
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438 R. SALZMANN AND M.V. WÜTHRICH

may not provide suffi cient protection (in our example accident years 5-9) or 
on the contrary superfl uous protection against shortfalls (accident year 4). 

• Note that Approaches B and C serve as good approximations to Approach D. 
From a mathematical point of view, Approach D provides a methodological 
comprehensive model in order to quantify the uncertainty for this multi-
period risk consideration. On the other hand, in the practical examples that 

TABLE 2

SUMMARY OF NUMERICAL RESULTS OF THE COST-OF-CAPITAL MARGINS FOR THE APPROACHES A-D FOR 
SINGLE ACCIDENT YEARS AND FOR THE AGGREGATED CASE. THE BRACKETS IN COLUMN C INDICATE THAT 
THIS VALUE IS GENERATED BY NUMERICAL SIMULATION AND FOR D IT MEANS THAT WE CALCULATED THE 

UPPER BOUND GIVEN IN PROPOSITION 4.11. ALL THE OTHER VALUES CAN BE CALCULATED EXACTLY.

i
reserves

Ri, 0

ultimate claim
predictor Ci, J

(0)

cost-of-capital margins CoC i, 0 % of reserves

A B C D A B C D

1  12’292 308’037 173 173 173 173 1.4% 1.4% 1.4% 1.4%
2  22’861 307’661 302 346 346 246 1.3% 1.5% 1.5% 1.5%
3  39’369 310’884 427 543 543 543 1.1% 1.4% 1.4% 1.4%
4  53’394 299’362 3’309 1’897 1’897 1’899 6.2% 3.6% 3.6% 3.6%
5  70’239 307’368 2’188 2’672 2’671 2’678 3.1% 3.8% 3.8% 3.8%
6  78’429 282’515 1’675 2’900 2’900 2’911 2.1% 3.7% 3.7% 3.7%
7 93’284 284’392 2’015 3’372 3’371 3’387 2.2% 3.6% 3.6% 3.6%
8 110’718 281’966 2’232 3’791 3’791 3’811 2.0% 3.4% 3.4% 3.4%
9 166’991 286’923 4’390 4’913 4’912 4’947 2.6% 2.9% 2.9% 3.0%

Total 647’577 16’710 20’606 20’603 20’695 2.6% 3.2% 3.2% 3.2%

Aggregated case 11’693 13’647 (13’646) (16’082) 1.8% 2.1% 2.1% 2.5%

Diversifi cation effect 30% 34% 34% 22%

FIGURE 3: Cost-of-capital margin for single accident years.
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we have looked at, the differences between Approaches B and C and 
Approach D turned out to be marginal. Hence, due to its simplicity, 
Approach B is probably preferable from a practitioners point of view.

• We see that Approach D is more conservative than Approach C. This con-
fi rms the result of  Corollary 4.6 and corresponds to our intuition since 
Approach D additionally quantifi es the risk in the cost-of-capital cashfl ow.

• Due to the choice of the cost-of-capital rate c and the security level f, our 
computation shows that the assumption of Corollary 4.8 is fulfi lled. Therefore, 
we fi nd that in this example Approach B is slightly less conservative than 
Approach D.

• Intuitively, the further an accident year is developed the less uncertainty 
there is in the prediction. For Approaches B-D the cost-of-capital margin is 
growing for consecutive accident years. This agrees with the requirements 
formulated in the IAA position paper [8], Section 6.2. On the other hand, 
the regulatory solvency approach still shows a trend but with more fl uctua-
tion which might lead to counterintuitive situations (see Figure 3, observe 
the decrease in the cost-of-capital margin going from accident year 4 to 
accident year 5).

• Important observation for premium calculation: for the last accident year, we 
compute that the cost-of-capital expenses with respect to Approaches B-D 
account for approximately 2% of the ultimate claims prediction Ci, J

(0). This 
can be read from Table 2, e.g. for accident year 9, one divides the cost-of-
capital margin 4’947 of Approach D by the prediction for the ultimate claim 
286’923. This implies that the cost-of-capital loadings for the runoff liabilities 
result in a substantial premium calculation element that is of almost 2% of 
the total premium! We point out that the cost-of-capital margins strongly 
depend on the choice of c and f. This means that the percentage calculated 
in our example may not be representative. However, neglecting this element 
in premium calculations will lead to a substantial reduction of  the P&L 
result by regulatory capital costs.

Below we extend the above results from single accident years to the study of 
the cost-of-capital charge for all accident years simultaneously. Figure 4 presents 
the results in percentage of the claims reserves. Note that in the aggregated 
case (see Figure 4), only Approach A and B are analytically tractable and allow 
for direct computation. Since Approach C lacks a closed form calculation, 
evaluation has been done by Monte Carlo simulation. Since numerical com-
putation is too time-consuming, we have no viable algorithm for Approach D. 
Therefore, we only computed the bound given in Proposition 4.11.

• As before, the regulatory solvency approach for aggregated accident years 
turns out to be the less conservative one. This means that also the cost-of-
capital charge for the uncertainty over all accident years may not be suffi cient 
compared to Approaches B-D. 
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• If  we sum the cost-of-capital margins over single accident years, we imme-
diately get upper bounds for Approaches B-D (see Figure 4). Diversifi cation 
effects between accident years account for substantial releases of over 34% 
for Approach B and C and 22% for the upper bound of Approach D. Since 
our model does not allow for accounting (calendar) year effects modelling, 
these results may overstate the releases actually feasible in practice. 

• We observe that for this example, the upper bound of Approach D turns out to 
be an upper bound for all the other Approaches. For Approach C, this is imme-
diately clear and, since c f  <  1, the result holds true for Approach B. Note that 
in general, Approach D is not necessarily more conservative than Approach A.

• The example further confi rms that Approach B is more conservative than 
Approach C but just by a small margin.

The fact that Approach B is analytically tractable for aggregated accident years 
makes it a preferable approximation to the multiperiod risk measure approach. 
The computed upper bound for Approach D in the aggregated case only allows 
for a rough statement about the precision of this approximation. If  we com-
pare the results for single accident years, we observe that the uncertainty in 
the cost-of-capital cashfl ow accounts just for a marginal proportion. Figure 4 
indicates that the upper bound for Approach D is conservative.

Finally, we would like to compare the gamma-gamma Bayes chain ladder 
model used in this discussion with the classical distribution-free chain ladder 
model presented in Mack [11]. A main deviation lies in the fact that the chain 
ladder factors are calculated differently, we use an average over the observed 
individual claims development factors Fi, j (see Mack [12] ), whereas the classi-
cal chain ladder model takes a volume weighted average thereof.

FIGURE 4: Cost-of-capital margins in percentage of the claims reserves for the aggregated case
(left panel with diversifi cation) and the total over single accident years (right panel without diversifi cation 

according to, e.g., the right-hand side of formula (4.10)) for the cost-of-capital margins only.
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We denote by

 ,i II J CCmsep Var | ,,C i,i
=|J D J D(0)

` _j i

the mean square error of prediction (MSEP) of Ci, J
(0) and by

 II
msep (0) Var CDR | ,CDR | 1,i 1

= DD _ i

the MSEP of the CDR of the fi rst accounting year for the gamma-gamma 
Bayes chain ladder model (see Corollary 4.3 and Subsection 4.5.1). For the 
classical chain ladder model, the estimators of the MSEP are denoted by

 ,iC
I I

JD|C CDR |
and ( .msep

, ,
CL
ii J

msep
D1

0Mack BDGMV )CL
` j\ \

The fi rst is estimated with the classical Mack formula (Mack [11] ), the latter 
is calculated according to Remark 4.11 in Bühlmann et al. [2].

We only observe marginal deviations, that is, our model choice does not sig-
nifi cantly change risk assessment compared to a classical chain ladder model.

LIMITATIONS

Our choice of the model, the security level f, a constant for c and the stand-
ard deviation as risk measure was mainly motivated by the fact that it leads 
to a model that is analytically tractable. As a matter of fact, our model does 

TABLE 3

GAMMA-GAMMA BAYES CHAIN LADDER, THE LAST ROW PROVIDES THE AGGREGATED CASE.

Gamma-gamma Bayes chain ladder

i reserves ,iI JCmsep
/

C
1 2

,i J ; D
(0)

` j
% of

reserves I

/1 2msep 0CDR ,i ;1 D ^ h
% of

reserves

1  12’292 961  8% 961  8%
2  22’861 1’372  6% 1’091  5%
3  39’369 1’770  4% 1’247  3%
4  53’394 7’981 15% 7’822 15%
5  70’239 9’087 13% 4’288  6%
6  78’429 8’642 11% 2’791  4%
7 93’284 9’014 10% 2’929  3%
8 110’718 9’251  8% 2’958  3%
9 166’991 11’226  7% 6’371  4%

Total 647’577 31’317 5% 19’402  3%
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not account for all the idiosyncrasies one has to deal with in practice. However, 
it allows for a fi rst investigation of the CDR as a main risk driver in multi-
period solvency considerations of general insurance companies. Moreover, by 
the means of our specifi c example we presented a representative comparison 
of the different proxies used in practice and highlighted their shortcomings.

CONCLUSION AND OUTLOOK

We have studied the CDR for a multiperiod general insurance liability runoff 
portfolio. Our paper directly addresses open questions discussed in the IAA 
position paper [8] concerning the calculation of an appropriate cost-of-capital 
margin. For the four different approaches discussed in this paper, the numeri-
cal example indicated that the “Split of  the Total Uncertainty Approach” 
(Approach B) provides a good approximation to the mathematically compre-
hensive “Multiperiod Risk Measure Approach” (Approach D). Moreover, the 
example confi rms that the cost-of-capital margins may have a substantial impli-
cation on premiums which should be accounted for in premium calculations. 
Note that the cost-of-capital margins strongly depend on the chosen constants. 
In this context we point out that further research should also consider stochas-
tically modelled cost-of-capital rate c.

We performed our calculation in a Bayesian model framework which 
 represents a canonical way to account for the parameter uncertainty and
allows for the immediate absorption of  recent information by the model.
The underlying distributions and model parameters are chosen in such a way 
that Approaches A-D for single accident years as well as Approach A and B 
in the aggregated case have analytic solutions. The study of other stochastic 

TABLE 4

CLASSICAL CHAIN LADDER MODEL PRESENTED IN MACK [11], THE MSEP FOR THE ONE-YEAR CDR IS 
CALCULATED ACCORDING TO BÜHLMANN ET AL. [2] AND THE LAST ROW PROVIDES THE AGGREGATED CASE. 

Mack model [11]

i reserves ,iI J,i
Cmsep

/
C

1 2

J ; D
Mack CL

` j\ % of
reserves

/1 2
I

msep ( )0
,

CL
i 1CDR ; D

BDGMV\ % of
reserves

1 12’292 965  8% 965  8%
2 22’869 1’380  6% 1’102  5%
3 39’379 1’770  4% 1’248  3%
4 53’212 7’946 15% 7’783 15%
5 70’083 8’957 13% 4’232  6%
6 78’263 8’822 11% 2’840  4%
7 93’112 9’177 10% 2’946  3%
8 110’561 9’454  9% 2’993  3%
9 166’722 11’406  7% 6’482  4%

Total 646’494 31’345  5% 19’300  3%
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 COST-OF-CAPITAL MARGIN FOR A GENERAL INSURANCE LIABILITY RUNOFF 443

models and claims reserving methods goes beyond the scope of the present 
paper but is an important topic for further research.

So far, our discussion only considers nominal values. Undiscounted values 
then incorporate hidden reserves which contribute substantially to the fi nancial 
strength of general insurance companies. A next step is to extent the results 
to discounted claims reserves similar to Wüthrich-Bühlmann [21]. This then 
provides a cost-of-capital margin for discounted claims reserves.

Further research should also investigate the role of other risk measures, 
dependency modelling along accounting years, and the incorporation of other 
information available. We emphasise that the analytical tractability was essen-
tially based on the standard deviation loading and our choice of the model.
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A. PROOFS

Proof of Theorem 4.2. For I  +  k  ≤  J  +  i we obtain

 fC ji,i ,I I
-

JCVar Var | .k I k i
j I k i

J

k1
1

1=+ - + -
= +

+ -D
+

|( D)k ( )k
` fj p%

Using Corollary 3.4 we rewrite the chain ladder factor estimators as follows

 jj j, , , ,j j j j,j I k j+ -k kf fa 1 .f a F ak k= -a1 - j ++= F( ( ( )1-)k )k k
_ _i i

From this we see that conditionally, given DI  +  k  –  1, fj
(k) is only random in 

FI  +  k  –  j,  j . Using the posterior independence of Q1,  …,  QJ , given DI  +  k  –  1, and that 
fact that all random variables involved only depend on different accident years 
and development years, we see that Ci,  I  +  k  –  i , fI k i 1+ - +

( )k ,  …,  Jf
( )k  are indepen-

dent, given DI  +  k  –  1. This implies that
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Furthermore,
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This proves the fi rst claim of the theorem. Moreover, we have
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Iterating this procedure completes the proof.
 ¡

Proof of Corollary 4.3. From Theorem 4.2 we obtain
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a straightforward calculation gives
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Iterating this procedure and using posterior independence of Qj , given DI , we 
obtain
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This proves the corollary. ¡

Proof of Proposition 4.5. We calculate the cost-of-capital reserves inductively. 
For k  =  J  +  i  –  I  –  1 we obtain (see Theorem 4.2)
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This proves the claim for k  =  J  +  i  –  I  –  1.
Induction step: Assume the claim holds true for k  +  1. We then have that
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where we have used Theorem 4.2 in the last step. This completes the proof.
 ¡

Proof of Lemma 4.7. The proof goes by induction. It is obvious that the result 
holds for i  =  1, 2. Hence we do the induction step i  "  i  +  1. Using the induction 
assumption we get
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This proves the result.
 ¡

Proof of Corollary 4.8. In view of (4.5) it suffi ces to prove that for all, j  =  1,  …, 
J  +  i  –  I  –  1, 
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which completes the proof.
 ¡

Proof of Theorem 4.9. For m  >  i  ≥  I  +  k  –  J we obtain
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Using Corollary 3.4 we decouple the problem into independent problems sim-
ilar to Theorem 4.2. This implies
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The only difference to Theorem 4.2 is that the calculation of � [ F 2i, I  +  k  –  i  |  DI  +  k  –  1 ] 
is now replaced by
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This proves the fi rst claim of the theorem. Moreover, we have
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This implies (with the fi rst statement of this theorem) that
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Iterating this procedure completes the proof.
 ¡

In order to prove Proposition 4.11 we need the following lemma.

Lemma A.1. Choose y  ≥  x   ≥  0 then we have, for p  !  (0, 1),
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Proof of Lemma A.1. We defi ne the discrete random variable Y by P  [Y  =
x2 ]  =  p and P [Y  =  y ]  =  1  –  p for p  !  (0, 1). Hence we have
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= + - -2 222
_ _ `i i j9 C

and on the other hand using Jensen’s inequality
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This proves the lemma.
 ¡

Proof of Proposition 4.11. For k  !  {0, 1,  …,  J  –  2} fi xed, we have that
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We rewrite the above expression in such a way that it is more suitable for 
iteration. For this, let p  !  (0, 1) and
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Now we apply Lemma A.1 to the last term which provides the following upper 
bound
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Note that the term 2 p  –  1 is positive for p  ≥  1/2 and with Jensen’s inequality 
applied to the last term for p  !  [1/2, 1) we obtain
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Note that c f  <  1 implies (c f  + 1) – 1  >  1/2. Hence, for p  !  [1/2, (c f  +  1) – 1) we 
see that c f  p  /  (1  –  p)  <  1 and consequently with Jensen’s inequality applied to 
the fi rst term on the right-hand side of the above inequality we obtain
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For p  =  1/2, the right-hand side is minimal in p. Defi ne k  =  1  +  ( 2   –  1)  c f, 
hence
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By iteration we fi nd that
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By Minkowski’s inequality we obtain
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By iterating this procedure we obtain
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Note that we have

 1j j 1+ + j 1+I
I j I+D

� | .r r r= =
D BD

2 /1 2
a k; E

This proves the result.
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