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ABSTRACT

We present detailed clustering measurements for a flux-limited sample of ∼14 000 quasars
extracted from the 2dF QSO Redshift Survey in the redshift range 0.8 < z < 2.1. After
splitting the sample into three redshift bins and each of them into six luminosity intervals,
we estimate the quasar-projected auto- and cross-correlation functions at a given redshift
for separations 3 � r/h−1 Mpc � 20. Fitting the data with a biased cold dark matter model
and using a frequentist analysis (the F-test), we find that models with luminosity-dependent
clustering are statistically favoured at the 95 per cent confidence level for z > 1.3. On the
other hand, a number of tests based on information theory and Bayesian statistics show only
marginal evidence for luminosity-dependent clustering. Anyway, the quality of the data is not
good enough to accurately quantify how quasar biasing depends on luminosity. We critically
discuss the limitations of our data set and show that a much larger sample is needed to rule out
current models for luminosity segregation. Studying the evolution of the clustering amplitude
with redshift, we detect an increase of the quasar correlation length with lookback time at the
99.3 per cent confidence level. Adopting the concordance cosmological model, we discuss
the evolution of quasar biasing with cosmic epoch and show that quasars are typically hosted
by dark matter haloes with mass ∼1013 M�.

Key words: galaxies: active – quasars: general – cosmology: observations – cosmology:
theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

It is widely believed that quasars are powered by accretion on to
supermassive black holes. However, a detailed understanding of the
physical processes leading to quasar activity (and their connection
with galaxy formation) is still lacking.

Simple semi-analytic models associate quasars with galaxy major
mergers and assume a tight relation between their instantaneous
luminosity and the mass of the central black hole, Mbh (Kauffmann
& Haehnelt 2000; Volonteri, Haardt & Madau 2003; Wyithe & Loeb
2003). The fraction of gas accreted on to the black hole during
each merger is chosen to match the observed relation between the
velocity dispersion of the bulge and Mbh (Ferrarese & Merritt 2000).
This ends up producing a correlation between the quasar luminosity
and the mass of the host dark matter halo. Since the clustering
properties of dark matter haloes strongly depend on their mass,
the quasar-clustering amplitude is thus expected to sensibly depend
on luminosity.

Recent numerical simulations of galaxy mergers including black
hole accretion and feedback have cast some doubts on this picture
(Springel, Di Matteo & Hernquist 2005). These numerical experi-
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ments suggest that a given black hole produces quasar activity with
a wide range of luminosities (Hopkins et al. 2005). During its ac-
tive phase, the black hole is most likely observed as a relatively
low-luminosity quasar with a small Eddington ratio. For a short
period of time, however, its emission reaches its peak value (close
to the Eddington luminosity) which is indeed proportional to the
mass of the powering black hole. Based on these models, Lidz et al.
(2006) conclude that quasar clustering should depend only weakly
on luminosity.

From the observational point of view, only recently quasar sam-
ples have grown big enough (in terms of number of objects) to
attempt the study of the clustering amplitude as a function of
luminosity. By analysing the galaxy–quasar cross-correlation at
1.8 � z � 3.5, Adelberger & Steidel (2005) found no evidence for
luminosity-dependent clustering. They used 79 quasars spanning
4.4 orders of magnitude in absolute luminosity which have been
divided into two luminosity bins. Larger samples are obviously re-
quired to confirm this result. No indication of luminosity-dependent
clustering is also found from the angular clustering of quasars with
photometric redshifts in the Sloan Digital Sky Survey (Myers et al.
2006). Croom et al. (2002, 2005) studied the redshift-space cluster-
ing amplitude of 2dF quasars as a function of their apparent magni-
tude. Even though these authors initially found weak evidence for
brighter quasi-stellar objects (QSOs) being more strongly clustered,
their most recent analysis does not show such a trend. These two
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studies, however, do not address the issue of luminosity-dependent
clustering. In fact, they consider magnitude-limited samples within
a broad redshift range (0.3 < z < 2.9 corresponding to ∼8 Gyr in
the currently favoured cosmological model) and totally ignore any
changes in the clustering signal as a function of cosmic epoch. More-
over, their redshift-space analysis complicates the interpretation of
the clustering amplitudes, as the effect of non-linear peculiar veloci-
ties could also depend on luminosity and redshift. For these reasons,
their null result does not necessarily imply that quasar clustering is
independent of luminosity.

In this paper, which is a follow-up analysis of Porciani,
Magliocchetti & Norberg (2004, PMN04 hereafter), we study the
clustering properties of ∼14 000 quasars extracted from the com-
plete 2dF QSO Redshift Survey (2QZ; Croom et al. 2004). Our goal
is to accurately measure the real-space clustering amplitude of 2dF
quasars as a function of redshift and absolute luminosity. To do this,
we first split our quasar sample into three redshift bins and each
subsample into six luminosity intervals. We then compute, in each
redshift range, the associated projected auto- and cross-correlation
functions, which, by construction, are not affected by redshift-space
distortions.

Using the largest quasar sample presently available, our results
reveal a statistically significant evolution of the clustering length
with redshift (as found already in PMN04) but only weak evidence
for luminosity-dependent quasar clustering.

The layout of the paper is as follows. In Section 2, we describe our
quasar sample and how we split it both in redshift and in luminosity.
In Section 3, we measure the projected auto- and cross-correlation
functions of the different subsamples. The issue of luminosity-
dependent clustering is addressed in Section 4. Using a Monte Carlo
Markov Chain, we estimate the quasar-clustering amplitude as a
function of redshift and luminosity. A number of robust tests are
then used to evaluate the statistical significance of the measured lu-
minosity dependence in a given redshift range. A critical discussion
of the limitations of our data and of possible future strategies is
also presented here. In Section 5, we focus on the pure redshift de-
pendence of the quasar-clustering amplitude and we provide fitting
functions for the evolution of the quasar correlation length and bias
with cosmic epoch. All our results are summarized in Section 6.

Throughout this paper, we assume a ‘concordance’ cosmological
model with mass density parameter�0 =0.3 (with a baryonic contri-
bution �b = 0.049), vacuum energy density parameter �� = 0.7 and
present-day value of the Hubble constant H0 = 100 h km s−1 Mpc
with h = 0.7. We also adopt a cold dark matter (CDM) power spec-
trum with primordial spectral index n = 1 and with normalization
fixed by σ 8, the rms linear density fluctuation within a sphere with
radius of 8 h−1 Mpc.

2 QUA S A R S A M P L E D E F I N I T I O N

The 2QZ includes 23 338 quasars which span a wide redshift range
(0.3 � z � 2.9) and are spread over 721.6 deg2 on the sky (see Croom
et al. 2004). In order to minimize systematic effects, we restrict
our analysis to regions with spectroscopic (photometric) complete-
ness larger than 70 (90) per cent, which limits the redshift range to
0.5 < z < 2.1. Only quasars brighter than MbJ − 5 log10 h = −21.7
are considered, which ensures the exclusion of quasars for which the
contribution from the host galaxy may have led to a misidentification
of the source.

In order to make a physically motivated analysis and isolate evo-
lutionary effects, we subdivide our sample into three redshift bins.
As in PMN04, we require a similar number of quasars to lie in each

Table 1. Main properties of our data sets. The subscripts min, max and
med, respectively, denote the minimum, maximum and median values of a
variable.

zmin zmax Data NQSO zmed Mmax Mmed Mmin

MbJ − 5 log10 h

0.8 1.3 F25 1232 0.93 −21.7 −22.4 −22.7
0.8 1.3 F50 2464 0.99 −21.7 −22.7 −23.2
0.8 1.3 F75 3696 1.04 −21.7 −22.9 −23.7
0.8 1.3 B75 3698 1.12 −22.7 −23.4 −25.3
0.8 1.3 B50 2466 1.14 −23.1 −23.6 −25.3
0.8 1.3 B25 1234 1.15 −23.6 −24.0 −25.3

1.3 1.7 F25 1285 1.44 −22.8 −23.3 −23.5
1.3 1.7 F50 2571 1.48 −22.8 −23.5 −23.9
1.3 1.7 F75 3857 1.49 −22.8 −23.6 −24.3
1.3 1.7 B75 3858 1.53 −23.4 −24.0 −26.0
1.3 1.7 B50 2572 1.53 −23.8 −24.3 −26.0
1.3 1.7 B25 1286 1.55 −24.3 −24.7 −26.0

1.7 2.1 F25 1081 1.83 −23.4 −23.8 −24.0
1.7 2.1 F50 2163 1.86 −23.4 −24.0 −24.3
1.7 2.1 F75 3244 1.87 −23.4 −24.1 −24.9
1.7 2.1 B75 3245 1.91 −23.9 −24.5 −26.4
1.7 2.1 B50 2163 1.91 −24.3 −24.8 −26.4
1.7 2.1 B25 1082 1.92 −24.8 −25.2 −26.4

redshift bin and that each subsample covers a not too different in-
terval of cosmic time. To better satisfy these criteria (see PMN04
for further details), we impose an additional redshift cut so as to
keep only quasars within 0.8 < z < 2.1. With this selection, we end
up with nearly 14 000 2QZ quasars that we split into the redshift
intervals: 0.8 < z < 1.3, 1.3 < z < 1.7 and 1.7 < z < 2.1 (containing
each between ∼ 4300 and ∼ 4900 quasars).

To study the dependence of the quasar-clustering amplitude on
luminosity, we further divide each subsample into six complemen-
tary sets based on quasar absolute luminosity: (F25, B75), (F50,
B50) and (F75, B25), where Fx and By correspond to the x per cent
faintest quasars and the y per cent brightest quasars (in terms of
their absolute magnitude). Table 1 lists the main properties of each
sample, including the number of quasars (Column 4), the median
redshift (Column 5), the absolute magnitude range (Columns 6 and
8) and the sample median absolute magnitude (Column 7).

3 QUA S A R S C L U S T E R I N G A NA LY S I S

3.1 Estimating the correlation functions

The simplest statistic which can be used to quantify clustering in
the observed quasar distribution is the 2-point correlation function
in redshift space, ξ q (r⊥, π ). To measure this quantity, we first build
a catalogue of unclustered points which has the same angular and
radial selection function as the data. The radial selection function
is obtained by heavily smoothing the observed quasar comoving
distance distribution, N (r ). The quasar autocorrelation function is
then estimated by comparing the probability distribution of quasar
and random pairs on a two-dimensional grid of separations (r⊥, π ).
We use both the Landy–Szalay estimator (Landy & Szalay 1993)
and the Hamilton estimator (Hamilton 1993):

ξ
q
LS = DD − 2DR + RR

RR
, ξ

q
H = DD · RR

(DR)2
− 1 (1)

where DD, DR and RR are the suitably normalized numbers of
weighted data–data, data–random and random–random pairs in each

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1824–1834



1826 C. Porciani and P. Norberg

bin.1 As expected, the two estimators give comparable answers
within the errors. In what follows we only present results obtained
with the Landy–Szalay estimator. Similarly, we use the appropri-
ately symmetrized Landy–Szalay estimator to compute the quasar
cross-correlation function

ξ
q
LS = Di D j − (Di R j + D j Ri ) + Ri R j

Ri R j
, (2)

where Di D j , Di Rj , Dj Ri and Ri Rj are the suitably normalized num-
bers of weighted data and random pairs from samples i and j.

To avoid redshift-space distortions, and determine the quasar-
clustering amplitude in real space, one can then use the ‘projected
correlation function’ which is obtained by integrating ξ q (r⊥, π ) in
the π direction:

�q(r⊥)

r⊥
= 2

r⊥

∫ ∞

0

ξ q(r⊥, π ) dπ. (3)

With the current quasar sample, we find that a reliable measure of
ξ q (r⊥, π ) is only achievable on scales π � 50 h−1 Mpc. In order to
avoid the measured signal to be dominated by noise, we limit the
integration to an upper limit, πmax. As explained in PMN04, πmax =
45 h−1 Mpc is an adequate choice, and we have checked that our
results are not sensitive to the precise value adopted.

As in PMN04, we use a blockwise bootstrap resampling tech-
nique to estimate the uncertainties of our clustering measurements.
For each redshift interval, we divide each of the two 2QZ ar-
eas into 28 equal-volume regions, containing, within a factor of
2, the same number of quasars. We build hundreds of bootstrap
samples (see Section 3.3), each of them composed by 56 subsam-
ples (28 for each 2QZ region) randomly drawn (allowing repetitions)
from the set described above. We measure the projected auto- and
cross-correlation functions (the minimum size of a subvolume is
nearly 180 h−1 Mpc for the low-redshift sample, 250 h−1 Mpc for
the medium-redshift sample and 220 h−1 Mpc for the high-redshift;
since we measure correlations on scales smaller than 20 h−1 Mpc,
our error estimates should hardly be affected by edge effects and/or
missing large-scale structure2) for all the bootstrap samples. For
each r⊥, we identify the rms variation of �q over the bootstrap sam-
ples with the 1σ error for the projected auto- and cross-correlation
function. Note that our bootstrap uncertainties account for both sam-
pling and estimation errors.

Our method for estimating errors relies on the fact that our data
set is statistically representative of the quasar distribution in the Uni-
verse.3 However, this cannot be true for bins of spatial separations
which contain just a few quasar pairs. Therefore, in what follows,
we ignore clustering results obtained with less than 40 quasar pairs.
Depending on the sample, this corresponds to r⊥ < 2 − 6 h−1 Mpc.

Our results are presented in Fig. 1 (filled squares with error-
bars). All the correlations in a given redshift bin have similar am-
plitudes and are rapidly decreasing with r⊥. As expected, errorbars
are smaller for the largest quasar samples.

1 Note that, in this case, there is no need to use the standard J3 (minimum
variance) weighting scheme since the mean density of quasars, nq, is so low
that 1 + 4 π J3 nq � 1 for any reasonable quasar-clustering amplitude.
2 We have also checked that doubling the size of the subvolumes does not
significantly alter the diagonal errors.
3 Our blockwise bootstrap errors are in good agreement with those obtained
using mock galaxy catalogues extracted from high-resolution numerical sim-
ulations. Discrepancies between the two types of errors are of the order of
20 per cent or less on the scales used in this paper.

3.2 Modelling the data

Given the relatively large errorbars, it is hard to spot any luminosity
dependence of quasar clustering by simply looking at the correla-
tions in Fig. 1. For this reason, we use a reference model to fit the
data. This is obtained by assuming that each sample is character-
ized by a linear bias parameter which does not depend on spatial
separation within the range of scales we analyse. In other words, we
assume that the quasar 2-point auto- and cross-correlations scale as

ξ
q
i j (r ) = bi b j ξ (r ), (4)

where i and j are the labels of two quasar subsamples within the same
redshift bin, r denotes the comoving separation between quasar pairs
and bi is the bias parameter of the ith subsample with respect to
the mass autocorrelation function, ξ (r), computed as in Peacock &
Dodds (1996; nearly undistinguishable results are found using the
method by Smith et al. 2003) assuming a value for σ 8.4 Within the
framework of halo models (see PMN04, for a direct application to
quasars), the assumption that the amplitude of the cross-correlation
function between haloes of different masses scales as the geometric
mean of the correlations of the individual haloes is very natural in the
two-halo regime. We have checked against numerical simulations
that, for dark matter haloes, the assumption holds over the redshift
range and scales considered here, i.e. 3 � r � 20 h−1 Mpc. The
corresponding projected correlation functions are obtained through
this simple integral relation:

�
q
i j (r⊥) = 2 bi b j

∫ ∞

r⊥

r ξ (r )(
r 2 − r 2

⊥
)1/2 dr . (5)

3.3 Fitting the data with correlated errors

We use a minimum least-squares method (corresponding to a maxi-
mum likelihood method in the case of Gaussian errors) to determine
the bias parameters that best describe the clustering data. In each
redshift range, we sample the six-dimensional parameter space (one
bias parameter per luminosity range) using a Markov Chain Monte
Carlo method. A principal component analysis (see e.g. Porciani
& Giavalisco 2002) is used here to deal with correlated errorbars.
The principal components of the errors are computed by diagonal-
izing the covariance matrix obtained by resampling the data with
the bootstrap method. The objective function (the usual χ2 statistic)
is then obtained by only considering the most significant principal
components (i.e. those contributing the largest fraction of the total
variance).5 Unfortunately, there is no unique objective way of de-
ciding how many principal components should be considered for
a given data set. Considering too few components (and thus dis-
carding information contained in the data), one obtains too good
values for the objective function (i.e. χ2

min/d.o.f. � 1, where d.o.f.

4 Note that samples with different luminosities have slightly different median
redshifts. However, the variation of the mass correlation function among
them is of the order of a few per cent, much smaller than the uncertainty in
the quasar-clustering amplitude. This implies that we can safely use the same
ξ (r) (evaluated at the median redshift of the redshift bin) for all the luminosity
subsamples. We have tested that this does not influence our results.
5 The covariance matrix obtained from bootstrap resampling is only an es-
timate of the true one and contains an intrinsic uncertainty. The errors in
its component propagate in the calculation of its eigenvalues and eigen-
vectors. It is therefore recommended to consider only the principal compo-
nents corresponding to the largest eigenvectors in the fitting procedure (see
section 4.2 in Porciani & Giavalisco 2002, for further details).
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Figure 1. Top left-hand panel: the projected autocorrelation function (top two rows) and cross-correlation function (bottom two rows) for the low-redshift quasar
samples (0.8 < z < 1.3). Only measurements obtained with more than 40 quasar pairs are plotted (filled squares with errorbars). Bins with less pairs are omitted
and not considered for model fitting. For each luminosity subsample, the shaded band show the central 68 per cent range of best-fitting correlation functions
(assuming that each luminosity interval is associated with a different bias parameter). The mean value of the marginalized bias distribution is represented with a
solid line. For reference, we also plot the best-fitting correlation function for the entire low-redshift sample derived in PNM04 (dotted line). Top right-hand and
bottom left-hand panels: same as the top left-hand panel, but for the medium- (1.3 < z < 1.7) and high-redshift (1.7 < z < 2.1) quasar samples, respectively.
Bottom right-hand panel: same as the top right-hand panel but using a three-parameter model where only the B25 and F25 subsamples have different bias
parameters from all the others.

indicates the number of degrees of freedom) that correspond to unre-
alistically large uncertainties for the fitted parameters. On the other
hand, considering too many components (and thus, most likely, in-
troducing noise), one often obtains bad fits (i.e. χ2

min/d.o.f. 	 1)
that correspond to unrealistically small errors for the bias parame-

ters. In factor analysis, a number of empirical methods (e.g. Kaiser
criterion, scree test) are often employed to select the number of sig-
nificant components. The robustness of these techniques for model
fitting is, however, rather weak. We thus decided to select the num-
ber of components to account for a fixed fraction (95 per cent)
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of the bootstrap variance. We have checked that this compression
guarantees a detailed reconstruction of the model-data residuals and
simultaneously avoid the χ2 to be dominated by deviations along
the components corresponding to tiny eigenvalues. Moreover, the
reduced χ 2 of the best-fitting models obtained this way is of the or-
der of unity in all cases, as expected theoretically. In what follows,
we thus use the symbol χ 2

95 to denote the χ2 function computed
by considering the first principal components that, in total, account
for 95 per cent of the variance. This corresponds to 19 principal
components (out of 42 data points) for the high-redshift sample, 21
(out of 45) for the median-redshift sample and 22 (out of 47) for the
low-redshift sample.

Since the bootstrap technique is very time consuming, a careful
choice of the number of resamplings is required. For this reason,
we performed a number of Monte Carlo simulations checking for
the stability of eigenvalues, eigenvectors and χ 2

95 estimates. In prac-
tice, we first bootstrapped our data and computed the corresponding
covariance matrix Cij. We then built a large number of realizations
of a Gaussian process with covariance Cij. Finally, we estimated
the covariance matrix of the Gaussian process from a finite number
of realizations, N, and studied its dependence on N. We found that
a few hundred bootstrap resamplings are needed for a robust esti-
mation of the χ2

95 function. To overcome the Gaussian hypothesis,
we also studied the convergence of the covariance matrix obtained
by directly bootstrapping our data. We found that estimates of χ 2

95

converge (i.e. present negligible scatter) when nearly 250 bootstrap
resamplings are used. This has been obtained by using 500 resam-
plings of the median redshift sample. To be on the safe side, we
thus decided to use at least 350 bootstrap resamplings for each red-
shift bin. We note that this implies over 12 000 correlation function
estimates, with each containing at least 50 000 random points.

As an additional test of the robustness of our results, we checked, a
posteriori, how much our best-fitting models depend on the number
of adopted components, Npca. This is discussed in detail in Section 4
where we present our results.

Figure 2. Left-hand panel: σ
q
8, i.e. b σ 8, as function of the median absolute magnitude for the low (left), medium (centre) and high (right) redshift bins. For

each sample, the errorbars indicate the central 68.3 (solid) and 95.4 (dotted) credibility intervals of the marginalized bias probability distribution. On the upper
axis, we indicate the magnitude difference with respect to M∗

bJ
(z), where the later is given by equation (13) of Croom et al. (2004). The open symbol shows the

result obtained by fitting the correlation function of all the quasars lying in this redshift bin (see PMN04). Right-hand panel: same as the left-hand panel but
for a three-parameter fit (see the text).

4 L U M I N O S I T Y- D E P E N D E N T C L U S T E R I N G

In this section, we present the results obtained by fitting the auto-
and cross-correlation functions presented in Fig. 1 with the model
given in equation (4). Our aim is to quantify how the bias parameter
of optically bright quasars depends on redshift and luminosity.

The best-fitting functions obtained with the Markov Chain Monte
Carlo method are overplotted to the data in Fig. 1 (shaded regions).
Note that, for all redshift bins, they accurately describe the quasar
auto- and cross-correlations in the whole range of separations un-
der analysis. In the left-hand panel of Fig. 2, we plot σ

q
8 (i.e. b

σ 8) as a function of absolute magnitude. As expected, the bias pa-
rameter of all quasars lying in a given redshift bin (measured by
PMN04 and represented with an open symbol) lies in between the
values found here. Taken at face value, the data show some evidence
for luminosity segregation; however, samples at different redshifts
show different trends. The brightest quasars in the high-redshift bin
seem to be more strongly clustered than the others. In the medium-
redshift bin, the bias seems to follow a U shape: the faintest and
the brightest quasars in the set are typically more strongly clus-
tered than M∗

bJ
quasars. On the other hand, the low-redshift bin

does not show any particular trend: the bias keeps constant with
luminosity.

Note, however, that correlations between errorbars in Fig. 2 might
create spurious trends with luminosity. Moreover, all the different
subsamples in a given redshift bin have consistent bias parameters at
the 2σ level. Given these concerns, we want to use a robust statistical
test to investigate whether our data show any sign of luminosity-
dependent clustering.

4.1 Does quasar clustering depend on luminosity?

If there is no luminosity segregation, all our data should be de-
scribed by one single bias parameter (i.e. all the bi should as-
sume the same identical value). If, instead, some luminosity bins

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1824–1834



Luminosity- and z-dependent quasar clustering 1829

show a statistically significant deviation from the overall clustering
amplitude, then a description with a number of different bias param-
eters should be preferred. Therefore, in this section we address the
issue of luminosity-dependent clustering by answering the follow-
ing question: how many bias parameters are required to adequately
describe the quasar auto- and cross-correlations in a given redshift
bin? In other words, we want to understand how many different bias
parameters can be reliably measured in a statistically significant
way. This is a classical problem of model selection where we want
to find the proper tradeoff between goodness of fit (in the χ2 sense)
and complexity (in terms of number of free parameters). We use
five different methods: the F-test, the Akaike information criterion
(AIC), the Bayes factors (BFs), the Bayesian information criterion
(BIC) and the deviance information criterion (DIC; see the Appendix
for a brief review). We consider three different models. In the first
one, there is no clustering segregation with luminosity and all the
luminosity bins at a given redshift are associated with the same
bias parameter. In the second model, we use three bias parameters
(one each for the brightest, B25, and faintest samples, F25, and one
for the remaining quasars: hereafter those samples are referred to as
B, M and F, for bright, medium and faint, respectively). In the third
model, each luminosity bin has its own bias parameter, as already
described in the previous sections. In Fig. 2, we show that the re-
sults of the three- and six-parameters models are qualitatively and
quantitatively similar.

Before comparing the different models, it is worth noting that,
based on the χ 2 statistic, a single parameter fit gives an accept-
able description of the data for all redshift bins. Of course, using
additional parameters reduces the minimum χ2 of the best-fitting
models. We want now to understand whether this χ 2

min reduction is
statistically significant.

Performing the F-test and using the 95 per cent confidence level
as a threshold to prefer a model with respect to another, we find
that the low-redshift sample is best fitted by a one-parameter model,
while the medium- and high-redshift samples are best described by
a six-parameter model. Similarly, all the Bayesian and information
theory based tests mentioned above clearly indicate that the low-
redshift sample is best described by a one-parameter model. On the
other hand, for the medium- and high-redshift samples, the situa-
tion is more confused. Because of the different penalties for model
complexity, depending on the adopted test, either the six- or the one-
parameter model is the preferred one. However, with the exception
of the six-parameter fit with the Akaike criterion, no model can be
rejected with high confidence (see Table 2 for a summary of the
results). Therefore, we conclude that, while there is no evidence of
clustering segregation with luminosity in the low-redshift sample,
we find marginal evidence for it in the medium- and high-redshift
samples.

Table 2. Number of parameters of the preferred models according to various
model-selection criteria. When the evidence for the best model is not strong,
we list all the acceptable models (in order of decreasing evidence). We use
a 95 per cent confidence level for the F-test, AIC and DIC while we discard
models with substantial evidence according to the Kass–Raftery criterion
(see the Appendix) for BF and BIC.

Criterion 0.8 < z < 1.3 1.3 < z < 1.7 1.7 < z < 2.1

F-test 1 6 6
AIC 1–3 1–3 1–3
BF 1–3–6 6–3–1 6–3–1
BIC 1 1–3–6 1–3–6
DIC 1–3–6 6–3–1 6–3–1

Following a suggestion of the referee, we have also tried to
combine data from the different redshift bins by using a simple
parametrization of the luminosity- and redshift-dependent bias.
For simplicity, we adopted a linear relation with quasar lumi-

nosity b(MbJ , z) = b0(z) + b110
−0.4[MbJ −M�

bJ
(z)]

. In this case, the
68.3 per cent confidence interval for the luminosity-dependent pa-
rameter is b1 = 0.3+0.6

−0.7. This confirms that the evidence for cluster-
ing segregation with luminosity is marginal in our sample. Similar
conclusions are drawn adopting quadratic or cubic relations for the
luminosity dependence of the bias parameter. In all cases, the best-
fitting model favours a larger bias parameter for the brightest quasars
in our sample. However, the statistical significance of the result is
low.

4.2 Limitations of the PCA method

A number of systematic effects can alter the model-fitting procedure
(and thus the statistical significance of the results). In particular, for
strongly correlated data, the choice of the number of principal com-
ponents used in the fit plays a delicate role. We fixed Npca assuming
that our bootstrap errors are accurate estimates of the real uncertain-
ties and using the χ 2 test. Had we decided to include a few more
components to account for 99 per cent of the variance (which is
equivalent to consider seven additional components for each red-
shift sample and still gives acceptable values of the reduced χ2),
the evidence for clustering segregation would have been stronger.
In Fig. 3, we compare the solutions for the three-parameter models
obtained by minimizing χ 2

95 (left-hand panel) and χ2
99 (right-hand

panel). What is shown here are the (marginal) joint probability distri-
butions of pairs of bias parameters (for the faint, medium and bright
samples). Clustering segregation with luminosity is suggested by
the data whenever the contours of the joint distributions lie away
from the diagonal line. For both χ 2

95 and χ2
99, this never happens

for the low-redshift sample (the bottom left set of curves) and the
one-parameter solution has to be preferred. At best, clustering seg-
regation with luminosity is detected at the ∼2σ level (for χ2

95) and at
∼3σ level (for χ2

99) in the high- and medium-redshift samples. Note
that, even though a 3σ detection is still consistent with pure statis-
tical fluctuations, when χ 2

99 is used, all the tests for model selection
strongly prefer either the three- or the six-parameter solution with
respect to the one-parameter fit. In other words, the results presented
in the previous section have to be considered conservative. If one
decides to use the full covariance matrix, one will infer the presence
of a statistically significant clustering segregation with luminosity
in the medium- and high-redshift samples. Hence, the uncertainty
in the number of physical components is the main limitation of the
principal component technique that we used to account for corre-
lated errorbars. Bayesian techniques (e.g. Minka 2000) suggest that
the components which contribute the last few per cent of the boot-
strap variance are most likely dominated by noise. Therefore, we
are confident that the results we presented in Section 4.1 are optimal
and realistic. Larger data sets with smaller intrinsic uncertainties are
thus needed to improve the significance of our results.

In order to cross-check our results with a method affected by
different systematics, we have computed the marked correlation
function of the quasars (e.g. Sheth, Connolly & Skibba 2006, and
references therein) using their blue luminosity as the mark. Results
for the medium redshift sample are shown in Fig. 4. Here, we de-
fine the marked correlation function (filled squares) as the ratio of
the projected quasar correlation function weighted by the quasar
luminosity (numerator) and the usual projected quasar correlation
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Figure 3. Left-hand panel: results obtained by fitting the data with a three-parameter model (see the text) where bB, bM and bF are the bias parameters for the
bright, medium and faint subsamples (at fixed redshift), respectively. The contours indicate the 68.3 and 95.4 per cent credibility intervals for the (marginalized)
joint probability distribution of two bias parameters. On the diagonal, we indicate the corresponding confidence levels for the one-parameter fits. The results
for the low-, medium- and high-redshift samples are plotted from left to right: bσ 8 clearly increases with redshift. Right-hand panel: same as left-hand panel
but using more principal components of the errors so as to account for 99 per cent of the variance (as opposed to 95 per cent on the left-hand panel). Note that
errorbars shrink and bF is shifted by almost 1σ with respect to the left-hand panel.

Figure 4. Marked correlation function of the medium redshift sample ob-
tained using the blue luminosity of the quasars as the mark. The empty
squares (that have been slightly displaced to the right) show the mean ob-
tained by averaging over 100 realizations of the same measurement after
randomizing the marks. Errorbars show the standard deviation around this
mean. If one includes bootstrap errors into the total error budget (not shown
here), the errors on the marked correlation function typically increase by
20–30 per cent.

function (denominator). By construction, this ratio is not affected
by redshift-space distortions. The open symbols correspond to the
mean marked correlation function obtained by averaging over one
hundred realizations with randomized marks. To assess the signifi-
cance of the marked statistics, one usually compares the signal with

the standard deviation around the mean of the randomized realiza-
tions. From Fig. 4, we see that, on average, the closest quasar pairs
have higher luminosities, thus suggesting the presence, on those
scales, of some clustering segregation. However, given the size of
the errorbars, the statistical significance of this trend is rather small.
We note that the errors used here only reflect the uncertainty arising
from the distribution of the marks and do not include any uncertainty
in the actual estimate of the correlation function. Considering the
corresponding bootstrap errors (which, for instance, allow for sam-
ple variance), the uncertainties on the marked correlation function
typically increase by 20–30 per cent. This makes the detection of
clustering segregation even more uncertain. In summary, the analy-
sis of the marked statistics reaches exactly the same conclusions as
our main work: even though there is some evidence for luminosity-
dependent clustering in our high-redshift data, our sample is too
small to provide a robust detection. Similar results are obtained for
the other redshift bins.

4.3 Discussion

When interpreting our results, we have to consider the limitations of
both the data set and the method used to extract the bias parameters.
First, the depth of the quasar sample is such that at a given redshift
we can only probe a factor of 10 in luminosity. This implies that any
luminosity segregation has to be observed over this relatively small
luminosity range. By slicing the different redshift bins into six sub-
samples, our analysis tries to extract the maximum possible infor-
mation from these limited data. However, to avoid to be dominated
by measurement noise, we compare narrow luminosity intervals (at
both the bright and the faint ends) with larger control samples. This
naturally leads to the selection of partially overlapping luminosity
ranges. For this reason, our samples, despite probing different abso-
lute magnitude intervals, are not independent from each other. Note
the striking difference from previous studies of galaxy clustering
(see e.g. Norberg et al. 2001, 2002) where one can perform several

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1824–1834



Luminosity- and z-dependent quasar clustering 1831

Table 3. Best-fitting constant-bias (Columns 4, 5 and 6) and power-law models for six complementary redshift bins. The goodness of each fit is measured by
the quantity χ2

min/d.o.f. which gives the minimum value assumed by the χ2 statistic divided by the number of degrees of freedom.

zl zh zm b r0 χ2
min/d.o.f. r0 γ χ2

min/d.o.f. r(γ=1.8)
0 χ2

min/d.o.f.
(h−1 Mpc) (h−1 Mpc) (h−1 Mpc)

0.80 1.06 0.933 1.57+0.30
−0.37 5.5+1.5

−1.8 3.47/3 4.3+2.5
−4.2 1.70+0.53

−0.67 2.02/2 4.9+0.8
−1.1 2.05/3

1.06 1.30 1.185 1.76+0.35
−0.43 5.6+1.6

−1.9 1.07/3 5.1+1.6
−4.3 1.84+0.33

−0.68 0.87/2 4.9+1.0
−1.2 0.89/3

1.30 1.51 1.410 2.13+0.29
−0.33 6.5+1.2

−1.3 1.05/3 6.1+1.2
−2.1 1.93+0.44

−0.42 1.44/2 5.6+0.9
−0.9 1.54/3

1.51 1.70 1.602 2.33+0.33
−0.39 6.7+1.2

−1.5 5.33/3 4.1+2.3
−3.9 1.59+0.38

−0.55 4.92/2 5.4+0.8
−0.9 5.17/3

1.70 1.89 1.796 3.02+0.45
−0.53 8.5+1.5

−1.9 0.53/3 7.2+1.2
−2.7 2.03+0.43

−0.47 1.19/2 6.3+1.0
−1.3 1.48/3

1.89 2.10 1.987 4.13+0.49
−0.55 11.5+1.5

−1.7 2.76/3 8.8+1.2
−4.9 1.82+0.27

−0.49 2.86/2 8.6+1.1
−1.2 2.87/3

independent measurements of the clustering amplitude as a function
of luminosity and span a wide magnitude range.

Given these limitations and based on theoretical models of quasar
clustering, should have we expected to detect some luminosity de-
pendence in our data set? As discussed in the Introduction, models
make very different predictions. From fig. 3 in Lidz et al. (2006),
we infer that the models which assume a tight correlation between
quasar luminosity and the mass of the host-haloes predict a differ-
ence�b= (bB25 −bF25) σ 8 ∼1 for our high-redshift bin. On the other
hand, models based on merger simulations predict �b ∼0.2. Sim-
ilarly, the semi-analytic models by Kauffmann & Haehnelt (2002)
predict 0.3 � �b � 0.7 depending on the characteristic quasar life-
time (this increases up to �b ∼1 at z � 1.5). In all cases, the er-
rorbars associated with our measurements are too large to lead to a
statistically significant detection of luminosity-dependent clustering
(in fact, our error on �b is σ�b � 2.3 and we measure �b � 4.3
which is only 1.4σ and 1.8σ away from the two reference mod-
els). Assuming that �b � 1, a sample which is nearly 50 times
larger than ours (i.e. nearly all-sky) is needed to detect the luminos-
ity dependence at the 3σ confidence level (assuming that the error
scales with the sample size, n, as n−1/2). Very likely a sample of
this size will not be available in the next few years. Alternatively,
one could try to beat the noise by reaching a fainter apparent mag-
nitude limit. Fig. 3 in Lidz et al. (2006) shows that current models
predict that, by reducing the median luminosity of our F25 sam-
ple by a factor of 10, one would get 0.6 � �b � 2. Note that a
value of �b ∼2 could be ruled out at the 3σ confidence level by
using a sample 12 times as large as ours. In conclusion, our analysis
can only rule out (or detect) extreme luminosity-dependent bias-
ing and future surveys are required to discriminate among current
models.

5 R E D S H I F T- D E P E N D E N T C L U S T E R I N G

In this section, we focus on the redshift dependence of the quasar-
clustering amplitude. This is done in real space, using the pro-
jected correlation function. Our study is thus complementary to the
redshift-space analysis by Croom et al. (2005) and to the angular
study by Myers et al. (2006) which might be affected by differ-
ent systematics. In this section, we also discuss the effect of using
different methods for determining the quasar correlation length.

To improve the analysis performed by PMN04 and better study
the evolution with cosmic time, we split our quasar sample into
six redshift bins. These are obtained by dividing into two equal-
sized parts (in terms of quasar number) the redshift bins used in the
previous sections and in PNM04. We first compute the projected
autocorrelation functions of all the quasars which lie in a given red-
shift bin. We then use the method described in Section 3.2 to fit these

data with the model given in equation (4). The best-fitting models
correspond to very good values of the χ2 statistic, indicating that
our models accurately describe the spatial dependence of the mea-
sured correlations. Finally, we estimate the correlation length, r0, by
determining the scale at which the best-fitting model has ξ q (r) =
1. For comparison, we also fit a power-law model ξ q (r) = (r/r0)γ .
We distinguish two cases where we either allow both r0 and γ to
vary or fix γ = 1.8. Our results are reported in Table 3 (together
with the corresponding 68.3 per cent confidence levels) and plotted
in Fig. 5. Note that the best-fitting values for the quasar correlation
length derived from the power-law model are systematically lower
than the CDM ones (the two estimates are anyway consistent within
1σ uncertainties). This is because, in a CDM model, the power-law
index of the mass autocorrelation function is a function of the spatial
separation. For instance, γ eff = d ln ξ/d ln r � 1.3 at r = 5 h−1 Mpc,
while γ eff � 1.9 at r = 20 h−1 Mpc. Similarly, the projected corre-
lation function, �(r⊥)/r⊥, has a slope varying between 1.6 and 2.3
when 5 < r < 20 h−1 Mpc. Therefore, a CDM model has a much
lower correlation on large scales with respect to a power-law model
with the same r0 (and γ < 2). It is then clear from equation (5) that a
CDM model needs a higher overall normalization than a power-law
model to fit the same projected correlation.

The evolution of the quasar correlation length between 0.8 < z <

2.1 can be approximately described by the linear relation6

r0 = [7.3 + 5.2 (z − 1.5)]h−1 Mpc (6)

(this becomes r0 = [6.1 + 3.6(z − 1.5)] h−1 Mpc for the values of
r0 determined with the power-law fit to �(r⊥)/r⊥). For 0.8 < z <

1.6, our results are in good agreement with Croom et al. (2005),
but we find evidence for a stronger variation at high-z (see Fig. 5).7

This is more evident when we use the CDM model to fit the data.
The models by Kauffmann & Haehnelt (2002) with a quasar life-
time of ∼107 yr match our data at z < 1.7. However, as already
pointed out in PMN04, an increase in the lifetime by nearly an

6 A nearly perfect interpolant between our measured points is r0 = [5 +
( 1+z

2.4 )8]h−1 Mpc. This, however, ignores the statistical uncertainties in the
measure of r0 (i.e. has χ2 � 1).
7 Our estimates of the uncertainties for r0 and γ are nearly a factor of 2 larger
than in Croom et al. (2005). This is due to a number of facts. On one hand,
we find that blockwise bootstrap errors on the redshift-space correlation
function are typically 30 per cent smaller than on the projected correlation
function. On the other hand, Croom et al. (2005) assume statistically in-
dependent Poisson errorbars for the redshift-space correlation function at
separations smaller than 50 h−1 Mpc. In particular, neglecting correlations
between points at different spatial separations results into smaller errors for
the fitted parameters.
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Figure 5. Top panel: redshift evolution of the quasar correlation length.
Filled circles with errorbars indicate the best-fitting values obtained us-
ing a biased CDM model. The short dashed line is the analytical fit to
the data given in equation (6). Filled triangles with errorbars refer to the
best-fitting values obtained with a power-law model (where both γ and r0

are free to vary). These points have been slightly displaced to the right to
improve readability. The long dashed line is the linear fit to the data given
in the main text. Empty symbols are analogous to their filled counterparts
but are obtained using larger redshift intervals as in PMN04. The shaded
area marks the 68.3 confidence levels obtained by Croom et al. (2005).
Bottom panel: same as the top panel but for the quasar bias parameter.
Horizontal errorbars mark the 16th and the 68th percentiles of the red-
shift distribution in a bin. The dashed line is the fitting function given in
equation (7). The dotted lines indicate the bias evolution for dark matter
haloes with masses 1012, 1012.5, 1013, 1013.5 and 1014 M� (from bottom
to top).

order of magnitude is required to reproduce the biased CDM fits at
z ∼ 2.

Given that the mass autocorrelation function rapidly increases
with cosmic time, the bias parameter of our quasars has to increase
with z. The bottom panel of Fig. 5 shows the evolution of b. Note that,
within the range of cosmological models allowed by observations,
the quasar bias parameter scales linearly with σ 8. For this reason,
we decided to plot the product σ

q
8 = b σ 8 which is independent of

the assumed value for the amplitude of the linear power spectrum.
Similarly, to the correlation length, σ

q
8 seems to increase rapidly

for z > 1.6 and the bias evolution is well approximated by the
relation

bσ8 = 1 +
(

1 + z
2.5

)5

. (7)

In CDM models, the clustering amplitude of massive dark matter
haloes mainly depends on their mass. It is then interesting to see
what halo masses correspond to the bias parameters of the 2QZ
quasars. In the bottom panel of Fig. 5, we plot the evolution of
σ

q
8 for a number halo masses which is obtained using the model

by Sheth & Tormen (1999).8 The observed bias evolution is well
reproduced by assuming that quasars are associated with haloes of

8 A concordance cosmology withσ 8 =0.9 is assumed here but results depend
only slightly on σ 8.

mass ∼1013 M�. This is fully consistent with the more detailed
analysis performed in PMN04.

6 S U M M A RY

We have used a flux limited sample of ∼14 000 2QZ quasars brighter
than MbJ − 5 log10 h = −21.7 to study the quasar-clustering prop-
erties in the redshift range 0.8 < z < 2.1. Our main results are
summarized as follows.

(i) Splitting the sample in three redshift intervals each divided
into six luminosity ranges and combining information from the
corresponding auto- and cross-correlation functions, we find some
evidence for clustering segregation with luminosity. For redshifts
z > 1.3, a frequentist model selection technique (the F-test) prefers
a multiparameter fit to the data at the 95 per cent confidence
level.

(ii) A number of statistical tests based on information theory and
Bayesian techniques show weak evidence for luminosity-dependent
clustering at high redshift (z > 1.3) and no evidence at low redshift
(z < 1.3). These results somewhat depend on the number of principal
components used in the fitting procedure. Accounting for a larger
fraction of the bootstrap variance increases the significance of the
detection of clustering segregation with luminosity.

(iii) Larger data sets, possibly with a deeper coverage, are needed
to discriminate among current models of quasar formation and to
pinpoint the detailed quasar-clustering trends as a function of lumi-
nosity at a given redshift.

(iv) Splitting the sample into six complementary redshift bins, we
find strong evidence for an increase of the clustering amplitude with
lookback time. We detect pure quasar-clustering evolution between
zeff = 0.93 and 1.99 at the 2.7σ confidence level. A linear fit for the
evolution of r0 with redshift is given in equation (6).

(v) Accounting for the evolution of the mass density in the con-
cordance (�CDM) model, we find that the high-redshift quasars
(zeff = 1.99) are ∼2.6 times more biased than their low-redshift
counterparts (zeff = 0.93). Evolution in b is detected at the 4.3σ

confidence level.
(vi) The clustering amplitude of optically selected quasars sug-

gests that they are hosted by haloes with mass M ∼1013 M� (see
also PMN04).
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A P P E N D I X A : M O D E L S E L E C T I O N C R I T E R I A

The F-test. If the uncertainties of the measurements are known to a
good precision, model selection can be performed using a simple χ2

test. However, we cannot prove that our bootstrap errors accurately
reproduce the true scatter in the data. An alternate test that does not
require knowledge of the true standard deviation (up to a constant
scaling factor) is to form the ratio

F = χ2
n−k − χ 2

n

k
N − n

χ2
n

, (A1)

where N is the number of independent data values used in the fit
(in our case N = Npca). The numerator in this equation is the dif-
ference between the χ2 calculated for n parameters and that for
n − k parameters. Being a ratio of two χ 2-distributed variables, F
follows a F-distribution with (k, N − n) degrees of freedom. We
can then estimate how significant is the addition of k parameters by
integrating this distribution from 0 to F .

The Akaike information criterion. The question to find which
model best approximates a given data set can be addressed in terms
of information theory: the best model minimizes the loss of in-
formation. The AIC evaluates models using the Kullback–Leibler
information (Akaike 1973). In terms of the number of independent

data points, n, and of model parameters, p,9

AIC = χ2
min + 2p + 2p (p + 1)

n − p − 1
, (A2)

where the second-order term on the right-hand side is needed when
the size of the data set does not exceed the number of model pa-
rameters by a large factor (�40). The model with the minimum
AIC has to be considered the best. Note that the AIC penalizes
for the addition of parameters and thus selects a model that fits
well but has a minimum number of parameters. The relative prob-
ability that a model is the correct solution is given by the Akaike
weights

wi = e−�AICi /2∑N
k=1 e−�AICk/2

, (A3)

where the indices i and k run over the different models and
� AIC = AICi − mink(AICk). In general, models receiving AIC
within 2 of the ‘best’ deserve consideration, those within 3–7 have
considerably less support and those above 7 are basically rejected
by the test (Burnham & Anderson 1998).

The Bayes factor. BFs are the dominant method for Bayesian
model testing (see Kass & Raftery 1994, for an extensive review).
The BF, B12, is the ratio between the marginalized likelihoods
(i.e. between the probabilities of the data given the models) for
two different models (1 and 2) and provides a scale of evidence
in favour of a model versus another. The model with the highest
marginalized likelihood is the best. Following an early suggestion by
Jeffreys (1961), Kass & Raftery (1994) proposed the following ‘rule
of thumb’ for interpreting the BFs: 1 < B12 < 3 provides weak ev-
idence (barely worth mentioning) for Model 1, 3 < B12 < 12 pro-
vides substantial evidence for Model 1, 12 < B12 < 150 provides
strong evidence for Model 1, B12 > 150 provides decisive evidence
for Model 1. Several numerical approaches have been proposed to
compute BFs based on MCMC sampling but most of these meth-
ods are subject to numerical or stability problems (see e.g. Han &
Carling 2000, for a review). As a compromise between accuracy and
coding complexity, we estimate the BFs using the harmonic mean
estimator (see e.g. Kass & Raftery 1994). We repeat the calcula-
tion using three different chains and we use the standard deviation
among them as an estimate of the uncertainty of our marginalized
likelihoods.

The Bayesian information criterion. Unfortunately, while BFs are
rather intuitive, as a matter of fact they are often quite difficult to
calculate. This makes simpler (but approximate) estimates of the
BFs of great interest. Schwarz (1978) derived the BIC as a large
sample approximation to twice the logarithm of the BF.

BIC1 − BIC2 � −2 ln(B12), (A4)

with

BIC = χ 2
min + p ln n. (A5)

Similarly, to the AIC, the preferred model is the one with the lowest
value of the criterion. The Kass–Raftery criterion for model selec-
tion is also applied to the BIC.

The Deviance Information Criterion. Spiegelhalter et al. (2002)
have recently proposed a Bayesian generalization of the AIC: the
DIC. It is based on the posterior distribution of the log-likelihood

9 In our case, p is the number of model parameters plus one to account for
the estimation of the χ2 function.
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or deviance (D = −2 logL which, in our case, coincides with χ2

function):

DIC = 〈D〉 + pD, (A6)

where 〈D〉 is the posterior expectation of the deviance while the
effective number of parameters, pD, is defined as the difference be-
tween the posterior mean of the deviance and the deviance evaluated
at the posterior mean of the parameters. pD = 〈D〉 − D(〈θ〉). The
DIC can be rewritten as

DIC = D(〈θ〉) + 2pD (A7)

which makes the analogy with the first-order AIC explicit. A good
model corresponds to a low DIC and model-selection criteria devel-
oped for the AIC appear to work well also for the DIC (Spiegelhalter
et al. 2002). Note, however, that, since pD � p, the DIC tends to be
less conservative than the AIC in terms of model complexity. The
main attraction of using this measure is that it is trivial to compute
when performing MCMC on the models.
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