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Human immunodeficiency virus (HIV)–specific cytotoxic T lymphocyte (CTL) responses are

detectable shortly after the acute phase of HIV infection, but they cannot control viral replication

and prevent development of chronic immune suppression. This article describes a defect in the

coexpression of perforin in granzyme A–positive CD8þ T cells in lymphoid tissue from patients

with acute HIV infection and a reduction in the perforin-dependent nuclear translocation of

granzyme A. Furthermore, intracellular levels of HIV DNA and RNA found in lymphoid tissue

were higher (10– 100 times) than those found in blood, and blood samples showed more-coordi-

nated cellular perforin/granzyme A expression. This suggests that mechanisms inhibiting CTL-

mediated cytotoxicity are operative in lymphoid tissue early in the course of HIV infection.

Acute human immunodeficiency virus (HIV) infection (aHI)

is characterized by an exponential increase in viremia to peak

levels of as much as 109 copies/mL of plasma. Virus levels de-

crease after the first weeks of infection and reach a viral set point

within the next 3–6 months [1]. The concomitant detection of

novel HIV-1–specific CD8þ cytotoxic T lymphocyte (CTL) re-

sponses in the peripheral blood soon after the initial peak of vi-

remia [2] and the inverse correlation between HIV-specific pre-

cursor CTL frequency and plasma viral RNA load [3] suggest

that the CD8 cytotoxic response may be responsible for the

acute fall in viremia and the subsequent partial control of viral

replication that occur [4]. In addition, selective depletion of

CD8þ lymphocytes in simian immunodeficiency virus–infected

rhesus monkeys was shown to result in a rapid increase in vire-

mia, which supports the suggestion that CD8þ T cells have a role

in control of viremia [5]. CD8þ T cells may, however, also oper-

ate through noncytotoxic mechanisms mediated by factors such

as cell antiviral factor and b-chemokines (macrophage-in-

hibiting protein–1a, macrophage-inhibiting protein–1b, and

RANTES) [6]. The different effector functions exerted by

CD8þ T cells, however, ultimately fail to control viral replication.

Granule exocytosis, one of the mechanisms for CTL cytolysis,

is mediated by secretory lysosomes containing the pore-forming

protein perforin and serine proteases termed “granzymes” [7].

The combined exocytosis of perforin and granzymes is antigen

specific, major histocompatibility complex class I restricted, and

calcium dependent [7]. The other CTL-mediated mechanism op-

erates through the ligation of Fas receptors by Fas ligand (FasL)

located on effector cells. Recent findings suggest that the perfor-

in/granzyme A–dependent pathway is a key mechanism contrib-

uting to the specific elimination of HIV-1–infected cells [8] and

that Fas/FasL interactions may generate bystander cell death in

HIV infection [9].

Mutant mice that lack either functional Fas or FasL have nor-

mal susceptibility to viral pathogens and exert intrinsic NK and

CTL functions. However, these animals develop massive lymph-

The Journal of Infectious Diseases 2002;185:1355–8
q 2002 by the Infectious Diseases Society of America. All rights reserved.
0022-1899/2002/18509-0021$02.00

Presented in part: 8th Annual Retrovirus Conference, Chicago, 1–4 February

2000 (abstract LB3).

Patients gave written informed consent prior to the sampling of lymphoid

tissues and blood. All procedures were reviewed by the institutional review

boards and ethical committees of each participating site. The experimentation

guidelines of the Karolinska Institutet, Huddinge, Sweden, were followed in

conducting the clinical research.

Financial support: National Institutes of Health (AI-41536); Swedish Medical

Research Council (K2001-06X-10850); Cancer Foundation, GlaxoWellcome

Research and Development, HIV Antiviral Research, United Kingdom (2490-

B00-14XAC).

Reprints or correspondence: Dr. Jan Andersson, Dept. of Medicine, Center for

Infectious Medicine, Karolinska Institutet, Huddinge University Hospital, S-141

86 Stockholm, Sweden (Jan.Andersson@medhs.ki.se).

Received 15 August 2001; revised 17 December 2001; electronically pub-

lished 16 April 2002.

1355



adenopathy and fatal autoimmune disease. Perforin-deficient mice

are, on the other hand, characterized by increased susceptibility

to viral pathogens (e.g., lymphocytic choriomeningitis virus), de-

fective alloreactive reactions, and the absence of NK cell cytolyt-

ic function, as well as reduced surveillance against tumors [10].

A defect in the production or expression of cytolytic effector

molecules in T and NK cells involved in the killing of infected

cells could result in persistence of replicating HIV cells. Indeed,

skewed maturation of memory HIV-1–specific CD8þ T cells has

recently been described [11]. We report on our study of the expres-

sion of perforin and granzyme A in lymphoid tissue (LT), where

the bulk of HIV replication occurs.

Subjects and Methods

Study cohort. Twenty-four patients from the international (Aus-

tralia, Europe, and Canada) QUEST study (protocol GW PROB

3005) participated. Patients were eligible for study entry if they had

p24 antigenemia or HIV viremia and if <3 bands were seen on West-

ern blot analysis of serum. Of the 24 eligible patients, 22 were HIV

negative at enrollment (all of whom seroconverted within 30 days

after study entry), as determined by third-generation ELISA. All sub-

jects had acute viral syndrome before study entry, with symptoms last-

ing 1–28 days (mean, 11 days). Sixteen of the 24 patients had never

received highly active antiretroviral therapy, and 8 had received

such therapy for 1–7 days. At baseline, patients had CD4þ cell

counts of 280–1380 cells/mL of blood (mean, 604 cells/mL) and

CD8þ cell counts of 480–1190 cells/mL of blood (mean, 620 cells/

mL), and plasma HIV RNA loads ranged from 5:4 £ 104 to 4:8 £

106 copies/mL (mean, 650,000 copies/mL). Peripheral blood

mononuclear cells (PBMC) from 10 of the 24 aHI patients were ob-

tained by random selection before the initiation of antiretroviral

therapy. Tonsil biopsy and PBMC samples were obtained from 6

patients with symptomatic acute Epstein-Barr virus mononucleosis

(aEBV) and from 15 HIV-seronegative adults with tonsil hyper-

plasia (control subjects). Colon biopsy samples were also obtained

from 6 healthy individuals.

Perforin and granzyme A assessment. Cryopreserved, 8 mm–

thick LT and colon biopsy samples were stained for perforin and

granzyme A as described elsewhere [12]. Phenotypic staining was

done for CD3, CD4, CD8, and CD56. Acquired computerized

image analysis was used for quantification of the stainings [12].

Perforin in situ detection. An in situ hybridization method, with

a cocktail of 4 short, nonoverlapping oligonucleotide probes repre-

senting the fourth exon of perforin, was used. Probes based on oligo-

nucleotide sequences were labeled with S35 synthetic oligonucleotide

probes (Scandinavian Gene Synthesis). A probe complementary to

the antisense strand of a human perforin probe was used as a control.

Each section was examined by dark-field microscopy. The cutoff

level for positive cells was .25 grains/cell, as measured by in situ

imaging with the Quantimet Q 550 IW (Leica Cambridge Instruments).

Intracellular virus load. Cell-associated HIV-1 RNA and DNA

were measured in the same cell aliquot, using the reagents from the

Amplicor HIV-1 Monitor assay (Roche). For cell-associated HIV-1

DNA quantitation, the nucleic acid preparation was incubated with

DNase-free RNase A (Sigma). The specimen and the DNA prepara-

tion were added to master mix buffer containing 25 copies of DNA

IQS (Roche) and then amplified. The level of detection was �3 cop-

ies/106 cells for RNA and �5 copies/106 cells for DNA.

Results

The frequency of CD8þ T cells (22%–31% of total cells) was

up-regulated 4–9-fold, and the frequency of granzyme A–posi-

tive cells (9%–13% of total cells) was up-regulated 10–100-fold

in tonsil, lymph node, and colon biopsy samples from aHI patients

and in LT from aEBV patients, compared with HIV-seronegative

controls (P , :001). Granzyme A–expressing cells were located

predominantly in the parafollicular area of the lymph nodes. The

incidence of perforin-expressing cells (0.1%–1.5%) in patients

was not statistically significantly higher than in control subjects

(P ¼ :56; P , :05 was considered to be significant); however, it

was significantly lower in aHI patients than in aEBV patients

(P , :01) (figure 1A and 1B). Coexpression of granzyme A and

perforin is thought to be required for effective CD8þ T cell–

mediated cytotoxic responses against virally infected cells [7].

A granular colocalization of perforin and granzyme A was de-

tected in the same intracellular vesicles in HIV- and EBV-

infected LT (figure 1A and 1B). In total, <10% of the granzyme

A–positive cells coexpressed perforin in the LT from aHI

patients, whereas the great majority of granular granzyme A–ex-

pressing cells from aEBV patients contained perforin (figure 1A

and 1B). The frequency of granzyme A–positive cells in unin-

fected tissues from control subjects varied from 0.1% to 0.5%,

whereas perforin expression varied from 0.01% to 0.1%.

Two-color staining both for perforin/CD8 and granzyme A/

CD8 revealed that .90% of perforin- and granular cytoplasmic

granzyme A–expressing cells in LT belonged to the CD8þ T cell

lineage (figure 1C). The frequency of CD56þCD32 NK cells in

LT from aHI patients was ,1% of total cells; hence, these cells

did not significantly contribute to granzyme A and/or perforin ex-

pression (data not shown).

In situ imaging of cells hybridized for perforin mRNA in LT

from aHI patients showed a low frequency of perforin-expressing

cells, which was consistent with results for protein expression

(figure 2). A significant increase in perforin mRNA–positive cells,

compared with samples from aHI patients and LT from control

subjects, was demonstrated by in situ hybridization in samples

from aEBV patients (P , :01) (figure 2).

Perforin is a unique regulator of transfer of granzyme-contain-

ing endocytic vesicles to target cells. Perforin is not required for

the cellular uptake of granzymes, but it is instrumental in the rapid

cytoplasmic transportation of granzymes to the nucleus in target

cells, in which granzymes cleave and activate procaspases [7]. In

the present study, granzyme A–positive cells showed either a

localized granular and membrane-associated localization or a

nuclear-staining pattern. Granzyme A nuclear translocation was

analyzed by combined staining of granzyme A and a nuclear-stain-

ing signal (404-diaminidino-2-phenylindole). We found that
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only a small fraction (<10%) of all granzyme A–positive cells

in LT from aHI patients were localized in the nucleus, and nucle-

ar granzyme A translocation was much more prevalent in aEBV

patients (<50% of total granzyme A–positive cells).

Perforin-expressing cells are rarely detected in secondary LT in

the absence of ongoing immune activation [12]. However, PBMC

obtained from healthy individuals expressed both perforin and

granzyme A in a substantial number of CD8þ T cells, as well as in

NK cells (14%–17% of all mononuclear cells). PBMC from aHI

patients (n ¼ 10) showed a marginal but significant increase

(19%–24% of all cells) in concomitant coexpression of granzyme

A and perforin, compared with PBMC from control subjects (n¼

10) (P, :05). A similar pattern was observed in PBMC from aEBV

patients (n ¼ 6), although at significantly higher levels (28%–

32% of all cells) than were observed in aHI patients (P, :01).

We next assessed the intracellular HIV RNA and DNA loads in

the LT and PBMC samples from aHI patients, using a sensitive

reverse-transcriptase polymerase chain reaction assay and a poly-

merase chain reaction assay to exclude the possibility that a low

level of perforin expression in LT was the result of low virus load.

The mean cell-associated HIV RNA and DNA loads were 4.9

log RNA copies/106 cells and 3.5 log DNA copies/106 cells in

LT versus 2.9 log RNA copies/106 cells and 2.7 log DNA cop-

ies/106 cells in PBMC (table 1). Significantly higher levels of

both HIV RNA and HIV DNA were found in mononuclear cells

from LT than in PBMC (P , :001 and P , :003, respectively).

The ratio of HIV RNA to HIV DNA in aHI patients also was high-

er in LT than in PBMC. As has been described elsewhere [13],

these results are consistent with the presence of a statistically

significantly higher number of HIV proviral DNA copies and

an increased level of viral replication in mononuclear cells in

lymph nodes, compared with PBMC.

Discussion

Different types of granzymes generate similar types of apo-

ptosis-mediated activity. Consequently, the absence of one gran-

Figure 1. A, Two-color confocal immunofluorescent staining of granular granzyme A–positive (red Alexa 546 [Sigma]; upper panel ) and per-
forin mRNA-expressing (green Alexa 488 [Sigma]; lower panel ) cells (arrows) in a lymphoid tissue (LT) biopsy sample from a patient with acute
human immunodeficiency virus infection shows a significant increase in the no. of cells with granular expression of granzyme A in LT. B, The same
stains performed on LT from a patient with acute Epstein-Barr virus mononucleosis show massive up-regulation of colocalized granzyme A
(upper panel; arrows) and perforin expression (lower panel; arrows). C, Immunohistochemical 2-color staining of granzyme A–positive cells
(brown 303-diaminobenzidine [Sigma]) and CD8þ cells (blue alkaline phosphatase [Sigma]) in an LT biopsy sample from a patient with acute
human immunodeficiency virus infection. More than 90% of all granzyme A–positive cells were CD8þ T cells.

Figure 2. Photo of perforin mRNA–expressing cells in lymphoid
tissue in patients with acute human immunodeficiency virus infection
(A) or acute Epstein-Barr virus mononucleosis (B). Cells expressing
perforin mRNA (black grains; arrows) were predominately localized
in the extrafollicular area. Comparison with sense probes showed
that positive cells could be defined by the accumulation of .25
grains/cell. S35-labeled probes (Scandinavian Gene Synthesis) were
used, and cells were counterstained with cresyl violet.
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zyme type can be compensated for by another granzyme family

member. Granzyme A, however, induces apoptosis even in cells

that overexpress Bcl-2, whereas granzyme B– and C–mediated

CTL activity may be inhibited by Bcl-2. This implies that gran-

zyme A may use a novel pathway to induce cell death [14]. HIV-

infected cells may up-regulate Bcl-2 and therefore can be partially

protected from granzyme B and C activity, as well as from Fas/

FasL-mediated immune attacks. This strengthens the role of the

granzyme A/perforin pathway in CTL-mediated elimination of

HIV-infected cells [8]. It could be argued that the low levels of

perforin expression observed in the present study were the result

of early tissue sampling, before CTL maturation occurred. How-

ever, this possibility was not supported by the observation of simi-

larly low perforin levels in LT after 6 months of infection [12].

These data show that granzyme A was induced in conjunction

with a relative lack of perforin expression in LT from aHI patients,

in contrast to samples from aEBV patients, in which granzyme

A and perforin were concomitantly induced. This dissociation

between granzyme A and perforin expression in aHI patients

may contribute to impaired CLT activity at this site. Identifi-

cation of factors responsible for low perforin expression in LT

may lead to the development of new therapeutic strategies aimed

at restoring cytotoxic T cell function in patients with HIV infec-

tion. Furthermore, it has recently been shown that HIV tetramer–

positive CD8þ T cells do not express the molecules involved in

efficient trafficking to LT via high endothelial venules [15].

This may have contributed to the low frequency of perforin-

positive cells in the LT and in the high rates of viral replication

seen at this site.
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Table 1. Intracellular human immunodeficiency virus (HIV) RNA
and DNA loads in peripheral blood mononuclear cells and lympho-
mononuclear cells from 10 patients with acute HIV infection.

Patient

Peripheral blood

mononuclear cells Lymphomononuclear cells

RNA copies/

106 cells

DNA copies/

106 cells

RNA copies/

106 cells

DNA copies/

106 cells

1 3.14 2.74 5.78 3.48

2 3.36 2.00 4.88 4.00

3 3.14 1.57 4.30 3.98

4 3.14 2.92 5.33 3.98

5 1.23 2.48 3.78 3.02

6 3.89 3.36 5.15 3.39

7 3.29 3.27 4.38 2.79

8 3.56 2.97 5.32 3.16

9 1.54 2.66 5.70 3.11

10 3.85 3.31 4.47 3.87

Mean 2.9 2.7 4.9a 3.5b

NOTE. Reverse-transcriptase polymerase chain reaction and polymerase

chain reaction were used to determine intracellular HIV RNA and DNA loads.

Values are log values. Mann-Whitney calculation was performed for individual

comparison of the intracellular ratio of viral RNA to viral DNA between blood

and lymph nodes.
a P , :001.
b P , :003.
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