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ABSTRACT

Summary: Large sets of data, such as expression profiles from
many samples, require analytic tools to reduce their complexity.
The Iterative Signature Algorithm (ISA) is a biclustering algorithm.
It was designed to decompose a large set of data into so-called
‘modules’. In the context of gene expression data, these modules
consist of subsets of genes that exhibit a coherent expression profile
only over a subset of microarray experiments. Genes and arrays
may be attributed to multiple modules and the level of required
coherence can be varied resulting in different ‘resolutions’ of the
modular mapping. In this short note, we introduce two BioConductor
software packages written in GNU R: The ‘isa2’ package includes
an optimized implementation of the ISA and the ‘eisa’ package
provides a convenient interface to run the ISA, visualize its output
and put the biclusters into biological context. Potential users of these
packages are all R and BioConductor users dealing with tabular (e.g.
gene expression) data.
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Contact: sven.bergmann@unil.ch

Received on December 14, 2009; revised on March 15, 2010;
accepted on March 20, 2010

1 INTRODUCTION

The ISA can be applied to identify coherent substructures
(i.e. modules) from any rectangular matrix of data. To be specific,
we consider here the case of transcriptomics data corresponding to
a set of gene expression profiles from a collection of samples. The
method has been described in detail in Thmels et al. (2004) and
Bergmann et al. (2003). Here we only give a brief summary.

The ISA identifies modules by an iterative procedure. The
algorithm starts from an input seed (corresponding to some set of
genes or samples), which is refined at each iteration by adding and/or
removing genes and/or samples until the process converges to a
stable set, which is referred to as a transcription module.

The output of ISA is a collection of potentially overlapping
modules. Every module contains genes that are over- and/or under
expressed, in samples that belong to the module. In every module,
each gene and each sample is attributed a score between —1 and 1,
which reflects the strength of the association with the module.
Moreover, if the scores of two genes of a module have the same
sign, then they are correlated (across the samples of the module),
opposite signs mean anti-correlation. Similarly, if two sample scores
have the same sign, then these samples are correlated (across the
genes of the module), opposite signs indicate anti-correlation.
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For other biclustering algorithms, see e.g. Cheng and Church
(2000), Getz et al. (2000), Califano et al. (2000), Sharan et al.
(2002), Tanay et al. (2004), Barkow et al. (2006) and Ihmels and
Bergmann (2004) for a review.

2 METHODS

A typical modular analysis for gene expression data includes the following
steps.

Batch correction: to study the global organization of a transcription
program including many aspects of transcriptional regulation one often
combines several microarray experiments into a single dataset. In such a
case, additional data normalization is crucial to reduce the bias due to the
constituent datasets. Several methods address this challenge, see e.g. Johnson
et al. (2007) for an algorithm that has a GNU R implementation.

Gene filtering: genes that have very low expression levels in all
samples, carry little if any information and may reflect ineffective array
probes, etc. Since these genes are likely to contribute mostly noise to the
analysis (Hackstadt and Hess, 2009), we suggest removing them before
running the module identification of the ISA.

ISA normalization (Step 1 in Fig. 1): in each iteration the ISA computes
thresholded weighted sums of expression levels over either genes or samples.
Since different genes typically show different levels of base expression and
variance, it is important to standardize expression levels to Z-scores. The ISA
uses two sets of Z-scores, one calculated for each gene across all samples
and the other for each sample across all genes.

Random and smart seeding, ISA iteration (Step 2): the iterative procedure
of the module identification is typically applied to a large number of
seeds. In the unsupervised approach, these seeds are chosen randomly to
sample uniformly the immense search space. We also implemented a semi-
supervised method, to which we refer as ‘smart seeding’, where the seeds are
biased to start with certain sets of genes or samples based on prior knowledge.
The ISA can be performed with random or smart seeds, depending on the
application.

Merging and filtering the modules (Step 3): it is possible that several seeds
converge to the same, or very similar biclusters. This step eliminates such
duplicates. To access the significance of a module, we designed a robustness
measure that can be used to filter out spurious modules. This is done by
applying the ISA to scrambled input data in order to obtain a reference (null)
distribution for the significance scores.

Module trees: the ISA works with two stringency threshold parameters, the
gene threshold and the sample threshold. ISA modules can be organized into a
directed graph, to which we refer as ‘module tree’. An edge from module A to
module B indicates that the ISA converges to module B from module A, with
the same threshold parameters that were used to find module B. A module
tree provides a hierarchical modular description of a dataset.

3 IMPLEMENTATION

The ISA and accompanying visualization tools are implemented in
two R packages. The ‘isa2’ package contains the implementation
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Fig. 1. (A) Work flow of a typical modular analysis with the ‘eisa’ package. See text for details. (B and C) were generated using the acute lymphoblastic
leukemia dataset, (Chiaretti ef al., 2004) and the ‘ALL’ R package. (B) Heatmap for a single module, showing coherent expression of the genes across the
samples. The red lines are the gene and sample scores. (C) Module tree. Each module is represented by a rectangle with its numeric id in the center. See
the definition of the edges in the text. Modules are colored according to their Gene Ontology enrichment P-values, the codes of the enriched GO categories
are shown in the top-left corner of the rectangles. The top-right corner shows the number of genes and conditions in the module. The gene thresholds used

for finding the modules are shown on the horizontal axes.

of the basic ISA itself; this package can be used to analyze
any tabular data. The ‘eisa’ package builds on ‘isa2’. It adds
support to standard BioConductor data structures and contains gene
expression-specific visualization tools (see Fig. 1 for examples).

Both the ‘isa2’ and ‘eisa’ packages support two workflows.
The simple workflow involves a single R function call and runs all
ISA steps (Steps 1-3 in Fig. 1) with their default parameters.

In the detailed workflow every step of the modular analysis
is executed separately, possibly with non-default parameters. This
allows the users to tailor the ISA according to their needs.

The ‘eisa’ package implements a set of visualization techniques
for modules (see Fig. 1 for examples).

The ‘biclust’ package, (Kaiser er al, 2009), implements a
number of biclustering algorithms in a unified framework. The
‘eisa’ package includes tools to convert between ‘biclust’ and
ISA biclusters. This allows the cross-talk of the functions in the two
packages.

Additional information and a Matlab implementation of ISA are
available on the ISA homepage.
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