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We consider three-time-level difference schemes for the linear constant coefficient advec-
tion equation u, = cu,. In 1985 it was conjectured that the barrrier to local order p of
schemes which are stable is given by

p < 2min{R, S}.

Here R and S denote the number of downwind and upwind points, respectively, in the
difference stencil with respect to the characteristic of the differential equation through the
update point. Here we prove the conjecture for a class of explicit and implicit schemes of
maximal accuracy. In order to prove this result, the existing theory on order stars has to be
generalized to the extent where it is applicable to an order star on the Riemann surface of
the algebraic function associated with a difference scheme. Proof of the conjecture for all
schemes relies on an additional conjecture about the geometry of the order star.

We dedicate this paper to the memory of Professor Peter Henrici. With his excellent books
on numerics and complex analysis he has helped us all to understand the subjects better.

1. Introduction

Suppose we have a difference scheme for an initial-boundary value problem for a system
of hyperbolic partial differential equations. A global difference scheme for the solution of
this problem generally consists of an interior scheme and a boundary scheme. By the Lax—
Richtmyer Equivalence Theorem these difference schemes result in solutions which are
convergent to the exact solution only when they are consistent with the initial-boundary
value problem and are stable. Consistency is the minimal requirement that the order of ac-
curacy p is one for interior and boundary schemes. Their stability in the global framework
was investigated by Kreiss (1966, 1968) and in the influential paper by Gustafsson, Kreiss
and Sundstrom (1972). In the latter paper the following necessary condition was given for
the global scheme to be stable, namely that the corresponding interior scheme has to be
stable in the Von Neumann sense when applied to the pure Cauchy problem for the scalar
advection equation. Goldberg and Tadmor (Goldberg & Tadmor (1987), Goldberg (1991))
gave more practical sufficient conditions for stability of global schemes. These conditions
entail, among others, that the boundary scheme also has to be stable in the same sense as
mentioned above for the interior scheme.

From these results it can be concluded that accurate and stable difference schemes for
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the scalar advection equation are of fundamental importance in the construction of useful
global schemes. For this reason we consider a Cauchy problem for the scalar advection
equation

a 0
— u(t,x)=c —u(t,x), xeR,t>0, )
dat dx

u(0, x) =ug(x) given,

and a class of multistep ((k + 1)-time-level) difference schemes of the form

k

Si
Z Z Qij Unyimyj =0 (@)

i=0 j=—r,~

which are used to determine an approximate solution of (1). The coefficients g;; are re-
sponsible for the two above-mentioned features, namely the accuracy and stability of the
scheme. In general the requirement of stability imposes a bound on the order of a scheme.
This paper focuses on this barrier to the order imposed by the requirement of stability for
schemes of type (2).

One-step schemes (k = 1) have been extensively studied in Iserles (1985, 1982), Iserles
& Strang (1983), Jeltsch (1985), Jeltsch & Smit (1987), Smit (1985) and results for multi-
step schemes were given in Jeltsch (1988), Jeltsch et al (1988), Jeltsch & Smit (1992),
Strang & Iserles (1983). In Jeltsch (1988) and Jeltsch & Smit (1987) it was conjectured
that the order barrier for stable multi-time-level schemes (2) should be

p < 2 min{R, S}. 3)

Here, for counting purposes, we let the ‘zero line’ be the characteristic through the point on
the new time level for which one solves. Then R denotes the number of downwind points
and S the number of upwind points of a given scheme with respect to this zero line. This
means that a stable scheme of order p needs to have on each side of the characteristic at
least [ p/2] points in the stencil. (Here [«] denotes the smallest integer which is not smaller
than «.) If p = 1, this conjecture reduces to the Courant-Friedrichs—Lewy condition.
Hence (3) has the quality of being an extension of the Courant—Friedrichs—Lewy condition
(Courant et al (1928)).

The bound (3) was proved in Jeltsch & Smit (1987) for two-time-level schemes. In
Jeltsch & Smit (1992) it was partially proved for a small subclass of explicit three-time-
level schemes. In Jeltsch (1988) and Jeltsch et al (1988) many examples in support of (3)
were given for multi-time-level schemes. In Jeltsch & Kiani (1991) the first lower bound
in (3) for the (k + 1)-level case was given by actually showing stability of schemes with
long and slender stencils (only one step in space). Such schemes may be useful as high-
order boundary schemes. In Sections 3-8 of this paper we generalize the results in Jeltsch
& Smit (1992) for convex maximal order explicit and implicit three-time-level schemes
(see Section 2). The results for all other schemes follow from a conjecture presented in
Section 6.

The analysis in this paper is based on the order star technique, which was introduced
in Wanner et al (1978) and treated extensively in Hairer & Wanner (1991) and Iserles &
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Ngrsett (1991). These ideas have to be generalized for order stars on a Riemann surface de-
fined by an algebraic function. This algebraic function is treated in Section 4. An additional
complication is that our order stars are defined with respect to the comparison function z.
This comparison function was first used in Smit (1985) and Iserles (1985). The analysis in
Sections 3-8 is a continuation of the work in Jeltsch & Smit (1991, 1992), namely a study
of the order stars on a two-sheeted Riemann surface. Since z# is multiple-valued with a
logarithmic singularity at z = 0, extreme care has to be taken with the integration path
used for the application of the argument principle. Notwithstanding these complications
the order stars basically retain the elegant features which make them so useful in the sense
that they allow a simple geometrical interpretation of the relationship between accuracy
and stability.

For explicit schemes the order of the logarithmic singularity at z = 0 determines the
maximum multiplicity of components of the order star. The various possible geometric
configurations and the corresponding multiplicities of these geometries are investigated
in Section 6. Except for a small subclass of schemes the derived bounds on order of the
schemes do not lead to a proof of (3). This leads to the introduction of a conjecture that
certain geometric configurations are not possible. A proof of the conjecture is provided for
a subset of schemes of maximal order, see Section 7.

For implicit schemes the poles of the algebraic function also play an important role. The
geometry of components containing poles is investigated in Section 8. Section 9 combines
the results of the previous sections to provide the proof of (3).

We believe that this paper indicates the direction which the generalization of (3) to the
(k + 1)-time-level case will take. Since we restrict ourselves to schemes which can be con-
sidered convex, i.e. with an increasing stencil, we only work with poles of the algebraic
function. In order to allow convexity for negative time as well, i.e. convexity in the reverse
time direction, equivalently, concave schemes, the zeros of the algebraic function also have
to be taken into account. Note that by excluding concave schemes we exclude the possi-
bility of a branch point of the algebraic function added to the logarithmic singularity at
z=0.

In a parallel investigation in Jeltsch et al (1993) concerning three-time-level schemes for
the wave equation we build on work started in Renaut (1989) and Renaut & Smit (1992).
In that case the symmetry properties of the schemes lead to a considerable simplification
of the order star theory as treated in Sections 5-9. By also taking into account the role of
the zeros of all of the polynomials defining the algebraic function the class of schemes can
be treated there without imposing a restriction such as convexity. Furthermore, because of
symmetry, there is no possibility of a branch point at z = 0.

2. Order, stability and normalization of schemes

We consider three-time-level difference schemes of the form

52 S1 S0
E a2 Uns2,myj + E aij Unpimej + E agj Unmej =0 (€]

j=—n J=—n Jj=-ro

n=012,.., m=0,+1,£2,...

The step sizes in the time and space variables are denoted by At and Ax, resp., while
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F1G. 1. Convex stencil.

i = cAt/Ax denotes the Courant number which is assumed to be fixed. The coefficients
a;j are real and depend in general on u, a;; = aij (w). Further r;, s; € Z with r, > 0,
so > 0and —r; < s;,i =0,1and a;—,, # 0,a;,, # 0fori = 0,1,2. The value up
approximates u(nAt, mAx). If r, = s, = 0 a scheme (4) is said to be explicit. Otherwise
it is called implicit.
A scheme with a stencil satisfying
O<r—n<n—-n
{O<s—s <s1—5 &)
X 90 1 X991 2
is called a convex scheme with an increasing stencil (Fig. 1). From a computational point

of view these schemes seem to yield the most interesting stencils.
A Fourier transform enables us to associate with (4) on time level n + i a function

a@ =Y a;zl, =012 ©)
j=—ri
and to introduce the characteristic function
D (z, w) = ar(z) w? + a1 ()w + ao(2),

which is assumed to be irreducible (see Jeltsch et al (1988)).
In order to be able to solve (4) for the values on the new time level in the implicit case,
we impose the necessary and sufficient condition

a(z) #0 for |z| = 1.

We also require our schemes to satisfy the following normalization condition (see Iserles
& Strang (1983), Jeltsch et al (1988)):

r, = number of zeros of a;(z) with |z] < 1 R
s, = number of zeros of a,(z) with |z| > 1. )

A scheme (4) is said to be stable if

D(z,w)=0 jlw| < T and if |lw| =1, 3
Iz =1 then w is a simple root. ®)
A scheme (4) has error order p if for any smooth solution u(z, x) of (1) we have
2 Si ap+l
> > aijult+iat, x+ jax)=C S u(t, x)(Ax)PT + 0((Ax)P*?)
x)

=0 j=-ri
if Ax — 0 and u = constant.
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Since we are interested only in schemes with positive order, we assume that

2 Si
o1, )= ) a;=0.

i=0 j=-—r;

The next result expresses the order of a scheme as a property of the solution w of
D(z,w) =0.

PROPOSITION 2.1  (Equivalent order conditions, Jeltsch et al (1988), Strang & Iserles
(1983)) Let a scheme (4) with characteristic function @ (z, w) and Courant number 4 be
stable and satisfy ®(1, 1) = 0. Then the following three conditions are equivalent.

a) The scheme has order p.

b) ®(z,z*) = 0((z— DP ) asz — 1.

¢) The algebraic function w given by @(z, w(z)) = 0 has exactly one branch w, which
is analytic in a neighbourhood of z = 1 and satisfies

*—wi(2) =0z - 1P asz— 1.

The next theorem gives the highest possible order that a scheme can have if stability is
ignored. We introduce the index set of the difference stencil

I=((G,j)€ZxZ: 0<i<2 —r<j<sih

A scheme (4) is said to be regular if a characteristic line through any given stencil point
does not pass through any other point of the difference stencil (see Jeltsch et al (1988)).

PROPOSITION 2.2  (Regular stencil, Jeltsch et al (1988)) Let a scheme (4) have a regular
difference stencil with index set I. Then the highest possible order that the scheme can
have is

p=11l-2

where || denotes the number of indices in /1.

3. Main result: bound on order of stable schemes

Suppose we have a convex scheme (4) which is also regular. The characteristic through the
point (.42, Xm) (of the normalized scheme (4)) will be taken as the zero line. Then it is
possible to interpret the order bound of stable schemes in a simple geometrical way such
that for the highest order the number of points on each side of the zero line is balanced. If
R denotes the total number of downwind points and S the total number of upwind points
with respect to the zero line, then the order p of a stable scheme satisfies

p < 2 min{R, S}.
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This result can be related to the indices r;, s; of (4) in the following way: Define

0 if u<-n

R, = lrn+up)+1 if —rn<uwp<sy, Si=n+s+1-R
rn+s+1 if w>s
0 if 2u<-—ry

Ry = lro+2un] +1 if —ro<2u<so, So=ro+so+1—Ro,
ro+so+1 if 2u > s

where |« denotes the largest integer not exceeding &, and

R=Ry+Ri+r, S=3S+S5 +s2. &)

Then the main result is as follows.

THEOREM 3.1 (Maximal order of stable convex schemes) Let a convex scheme (4) with
an increasing stencil be normalized and have a fixed Courant number satisfying 0 <
| < % If the scheme is stable, then the order p of the scheme is bounded by

p < 2 min{R, S}.

REMARK 3.2

a)

b)

<)

In Jeltsch & Smit (1992) the bound (3) was proved for a small subclass of explicit
schemes of type (4). In this paper we generalize it, making use of a conjecture intro-
duced in Section 6, for the class of (explicit and implicit) schemes of type (4) which
are convex and have an increasing stencil.

In Section 7 we provide a partial proof of (3). In particular, for the maximal order
schemes, p = |I| — 2,

2R —l<pu<o0
< 2
p\{ZS O<p,<%.

The result (3) can be extended to |u| > % by making use of the following trans-
formation. Assume that a stable scheme is represented by @ (z, w), where w(z) ap-

proximates z* in a neighbourhood of the point z = 1, w = 1. Then we consider the
scheme represented by the characteristic function

(z,u) =7* D(z, u/z).

Since u = zw, the new scheme is stable and approximates 7% = z#*! with the same
order as the original scheme. The stencil undergoes the following transformations:

Fi=n—-1, Si=s1+1, Fo=ro—2, So=s0+2
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4. Properties of the algebraic function w

The algebraic function w, satisfying @ (z, w(z)) = 0, is multiple-valued, consisting in gen-
eral, for a given z, of two values w) (z) and w,(z). Associated with this algebraic function
is the Riemann surface M,

M={(z,w)eCxC: &(z,w) =0},

consisting of two sheets, one above the other, interacting at a finite number of branch
points z; (where w;(z;) = w»(z;)). The surface M is a closed connected set on which w is
single-valued and, except for a finite number of singular points, also analytic.

REMARK 4.1 (Branch points of w)

a) The branch points of w (except those that can occur at 0 and 00) occur at points z;
where af(zi) —4ay(z;) ap(z;) = 0. Since the coefficients of this polynomial equation
are real, the branch points are either real or they occur in complex conjugate pairs.
Branch cuts along which the two sheets of M are connected can therefore always
be taken to be straight lines which either fall on the real axis, or are orthogonal and
symmetric to the real axes or occur in conjugate pairs.

b) If a scheme is stable, the corresponding algebraic function cannot have a branch
point at z = 1 (see (8)). The sheet of M on which the point z = 1, w = 1 occurs,
is called the principal sheet. Since the Riemann surface is connected, this notion is
basically a local property in a neighbourhood of z = 1. We make the convention that
the principal sheet refers to that part of M which can be connected toz = 1, w = 1
without crossing a branch cut. The remaining part of M will be called the secondary
sheet.

REMARK 4.2 (Poles of w) The function w has a pole at every point where a;(z) = 0.
By the normalization condition (7) there are in total r, poles of w with |z| < 1 away from
z = 0 on the two sheets of M. Moreover, if max{ro, r1, r2} > 0, then w can have a pole at
z = 0 on one or both sheets of M (see Proposition 4.4).

REMARK 4.3 (Zeros of w) The finite points where w has zeros coincide with the points
where the function v(z) = 1/w(z) has poles. These points occur where ag(z) has zeros
and occasionally also at z = 0.

The expansion of w(z) around z = 0, determined by use of Newton’s polygons, is
important in the subsequent discussion.

PROPOSITION 4.4  (Expansion at 7 = 0) Let

Dz, w) = (A -pz2 "+ - tar, 2w + @z "+, 2w
+ (aO.—I‘o Z—VO + -+ ap. s, Z‘m)
be the characteristic function of a convex scheme (4) with an increasing stencil. Then the

algebraic function w satisfying @ (z, w) = 0 does not have a branch point at z = 0 and has
the following expansions at z = O:
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a) If ry —r, > ro — ry, then

wi (@) =z"""(co+crz4+c22+ --0)
w2 (2) =Z_(r0—rl)(d() +diz+d; 224 .. Y,

where

al.—n aO.—rO

and dy = —
a2.—r2 al.—rl

Co =

b) If r; —rp, =rg — ry, then

w1 2(2) =2" " (—ay (2)7" £ D)/ Qax(2)7?)
D(z) = (a?(z) — 4ax(z) ao(z))z*"
=d+ 0(2)

where d = a,z._,l —4ay ., Ao.—r,.

REMARK 4.5 From Proposition 4.4 we observe that z = 0 is not a branch point of w if
ri—ry >rog—ry.If2ry = rg + ry; and d # 0 then again z = 0 is not a branch point.
If d = 0 then z = 0 can be a branch point. In the following we shall restrict ourselves to
schemes where z = 0 is not a branch point in which case one has the two expansions

wi(2) =Z~(r'_r2)(60 +cz+ (:222 4+
wy(z) =27 (dy + diz + dpz? + - ).

5. Order stars

An order star is defined on the Riemann surface M of the algebraic function w in the
following way. Define the function ¢ by

Pz, w) =z7"w, (z,w)eM
and the order star §2 by
R ={z,w)yeM: |p(,w)|>1}

Because of the factor z7# the function ¢ is multiple-valued on M. However, the order star
£2, being defined by means of the modulus of ¢, is again well defined on M. £2¢ denotes the
complement of 2, i.e. 2° = M\S2. Because the coefficients a;; are real, £2 is symmetric
with respect to the real axis.

The order and stability of a scheme, which were interpreted in Section 2 as properties of
the function w, can be reinterpreted as properties of the order star. We give without proof
those properties which are standard results in investigations involving order stars (see e.g.
Wanner et al (1978), Iserles & Ngrsett (1991)).

LEMMA 5.1 (Stability) If a scheme is stable, then

2N{iz,wyeM: |z|l=1}=0.
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LEMMA 5.2 (Order) A scheme (4) has order p if and only if at the point z = 1 on the
principal sheet of M the order star consists of p + 1 sectors of angle 7/(p + 1), separated
by p + 1 sectors of £2¢, each with the same angle.

A subset A (with boundary dA) of §2 is said to be an §2-component if 9A C 92 and
A is connected. £2¢-components are defined similarly. An §2-component is said to be of
multiplicity m if it contains m §2-sectors at z = 1 on the principal sheet. Similarly for
£2°-components.

Note that the curve on M which has the projection |z| = 1 in the z-plane separates M
into two well-defined subsets. The set in M with |z] < 1 is called the unit disk A and
the set with |z] > 1 is called the outside of the unit disk. By Lemma 5.1 there is a clear
distinction between the portion of the order star inside and the portion outside the unit
disk. The components inside A are bounded, where a component §2; is said to be bounded
if sup, yyeg, 12| < 00.

In order to emphasize important features, our pictures of £2-components will not always
be the exact geometrical embeddings of M into R?. They will, however, display the basic
connectivity relations and cuts, and elucidate the important properties of both macroscopic
and microscopic scale.

According to Remark 4.5 we restrict ourselves to schemes where there is no branch
point of w at z = 0. Thus there are two values w? and w3 with @ (0, w) = 0, i.e. there are
two zero points (0, w?) and (0, wg) on M. Depending on the values of the indices r; we
know from Proposition 4.4 that there can be a pole of w at one or both of the zero points.
Further, because of the factor z7# occurring in ¢, this function in general no longer has an
integer-valued leading exponent of z at the zero points.

We know from Remark 4.2 that there are r; poles of w away from z = 0 inside A (if our
scheme is normalized). Since the expansion of z7# from any point zo 7 0 has the form

7*F =co+ ez —20) + 2z — 20+, Iz — 20l < lzol,

there will be poles of ¢ of exactly the same orders at the points with these z-values on one
of the sheets of M.

The influence of poles and the behaviour of ¢ at z = 0 on the multiplicity of the compo-
nents in which they occur is studied by means of the argument principle with respect to the
function ¢ (see Wanner et al (1978)). In this regard the factor z7# of ¢ introduces onto M
a new structure in the sense that it defines on M another Riemann surface which in general
has infinitely many sheets. To define z™* uniquely on M, branch cuts, L;, from (0, w?) to
(00, w), i = 1,2 are made. These cuts are made according to the following rules.

Rule 1 for cuts L;: The branch cuts L; have to be such that their projections onto the
z-plane are either identical, or ‘enclose’ a ‘sector’ of C which does not contain a branch
cutof M.

If we adhere to Rule 1, then z7# is defined uniquely on M (see Section 5.1 of Jeltsch &
Smit (1992)), even if the cuts L; are allowed to cross a branch cut of M. In the present
context, however, we can always avoid this. To this extent we introduce the following rule.

Rule 2 for cuts L;: The cuts L; have to be such that each cut occurs only on one sheet
of M, i.e. L between (0, w?) and (0o, w®) on the principal sheet and L, between (0, wg)
and (oo, w3°) on the secondary sheet.
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branch cut Iy

FIG. 2. Component £2; illustrating the integration path.

We can always adhere to Rules 1 and 2 by choosing the branch cuts L; to go along two
radial lines which have the same projection onto the z-plane and for which the projection
onto the z-plane does not pass through the point z = 1. This convention for making cuts
L; is adhered to unless explicitly indicated otherwise.

6. The role of the zero points on multiplicity

We start by restricting ourselves to the order stars of explicit schemes. Thus r, = 0 and
there are no poles away from z = 0. Hence, inside A, every bounded £2-component must
contain at least one of the points (0, w?), i=1,2.

Our investigation of the relationship between the multiplicity of a component and the
total order of poles/singularities of ¢ that it contains begins with a very simple type of £2-
component, §2; (say), which occurs only on the principal sheet of M and which contains
no branch points of w. This type of component was treated in Jeltsch & Smit (1992),
but the proof is repeated because it illustrates the appropriate application of the argument
principle.

PROPOSITION 6.1 (Multiplicity) Let §2; be such that the principal branch can be defined
as a single-valued function on the projection of §2; onto the z-plane. Assume ¢ has a
leading exponent of —« at z = 0. Then the multiplicity m of §2| satisfies

m< o] +1.

Proof. 1If §2, is of multiplicity m, there are m — 1 §2°-components emerging from (1, 1) to
the ‘inside’ of £2,. We evaluate

1 /(P/(L w)
- dz
2ri J, oz, w)

where y is the closed curve which consists of the positively oriented boundary of §2; and
a portion going around the zero point (see Fig. 2):



Yo:

vy

Vi

Vi eoos Vm—1:

Then

THREE-TIME-LEVEL DIFFERENCE SCHEMES

positively oriented (w.r.t. z = 0) ‘outward’ boundary of £2;. Accord-
ing to Wanner et al (1978) (proof of Proposition 4) the argument of
¢ decreases along yp.

two sides of a Jordan curve which connects the ‘outward’ boundary
of £2; with a circle around z = 0. According to Jeltsch & Smit
(1992) (Lemma 4.4) the contributions to the integral along y;* and

¥~ cancel out.

circular curve with small radius r, traversed clockwise. According
to Jeltsch & Smit (1992) (Lemma 4.3) the contribution of this curve
to the integral is .

boundary of £2, along m — 1 §2°-components emerging from (1, 1)
to the ‘inside’ of £2;. Again the argument of ¢ decreases along each
path y; and, because ¢ is single-valued in £2;\L,, every time the
boundary y returns to (1, 1) the argument has decreased by at least
2m.

y=w+vr+rn+v . +n+nrn+-+vna).

455

By application of the argument principle, and because there are no zeros or poles of ¢

inside y, we have

1

T 2w

<

1
2mi
N ——’

/ ¢'(z, w)
— 4z
Y o(z, w)

1 1 1
+ — (/ +/ ) + — f + — / .
‘/}:0 2mi )’t+ Ye 2mi Yr 2mi Vit tVm-1
—
0 =0

[S———
= =a <=(m-1)

By combining the first three terms and introducing the notation ¥E to indicate the positively

oriented curve

it follows that

Hence

W=wt+vi+wn+v.,

1 ¢'(z, w)
m ./}:E ———(p(z, w) dZ < I_OIJ

m< o]+ 1.

a

Clearly the component being treated in Proposition 6.1 involves only one sheet of M,
although nothing prevents it in general from crossing a branch cut of M from one sheet
to the other. We shall refer to a component of this kind as a non-binary component. With
two sheets of M available there also exist components which involve both sheets of M in
a very specific manner and which will be called binary. We shall make these statements
more precise in the following definition.
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FIG. 3. Symmetric binary component and cuts L; going through z = 1.

DEFINITION 6.2  (Binary/non-binary components) Let §2| be an £2-component contain-
ing exactly one zero point. Assume the branch cuts L; are radial lines with the same pro-
jection L onto the z-plane and this projection does not pass through the point z = 1. We
modify £2; into Q, by making cuts along L; and encircling the zero points with infinitesi-
mal small circles, see e.g. Fig. 2 and Fig. 4, such that 2, satisfies the following properties

1) .91 is connected.
ii) No closed curve in 2, whose interior is contained completely in 2, contains the
zero point.
iii) No projection of 3.(21 onto the z-plane intersects with L.

£2y is called non-binary if the zero point is encircled once by such an infinitesimal circle
of 3£2;. In all other cases the component is called binary.

If a component §2; has multiplicity m its boundary 32, can be decomposed naturally
into m curves y; which connect the point (1, 1). 8.(2. consists also of m curves y; which
connect (1, 1). These y; are either identical to y; or are extended, y, , by acut along L;
and a circle around a zero point as was done with yp in the previous proof.

. LEMMA 6.3 (Symmetric binary) Let 2, be a symmetric binary component containing
one zero point (0, w‘z’) (say), with leading exponent —c; of ¢ at (0, wg), while the leading
exponent of ¢ at (0, w?) ¢ £2, is —a;. Let §; denote the non-integer part of «;, i.e.

6,~=a,~—[a,-], l=l,2
Then the multiplicity m of £2; satisfies
m < 2|az] + 208 + 82]. (10)

Proof. The proof is conducted in two different ways depending on the way in which the
branch cuts L; are chosen. The first version highlights the binary character of the compo-
nent, while the second leads to the bound (10).

Version 1: We first deviate from our convention of making the cuts L; by choosing them
such that their projection onto the z-plane is the positive semi axis (see Fig. 3). With the
integration along y~ we have the situation that, on the principal sheet, we have gone once
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J;
i
Ll = Lz

FIG. 4. Symmetric binary component and cuts L; made according to convention.

around the zero point (0, w‘l)) without crossing L. Hence we end up with yOE at a point
where z7#, and therefore also ¢, has a value which differs from the value with which it
started at the point (1, 1). We then have to return along y; to our starting point at (1, 1).
Only then has the complete boundary of a component with respect to the function ¢ been
traversed. Hence, in terms of counting the multiplicity of §2; at (1, 1), we can regard the
point where y£ went over into y, as a point away from (1, 1). When we apply the argument
principle as we did in Proposition 6.1, this only accounts for the sectors of £2; ‘on one
side’ of the cut L. Disregarding the sectors in the lower halfplane /m z < 0 we have a
component with m /2 sectors in the upper halfplane which is, with respect to these m /2
sectors, a non-binary component. Hence

1 ¢' @z, w) ’
— ——dz <
2mi ./+y1 @(z, w) ¢S Ll

and, as in the proof of Proposition 6.1,
0< o] —(m/2-1) (11)

from which we obtain

< 2lep) +2.
In this case the integration along y, + y3, which has led to a drop in the argument by 2r,
has contributed two sectors as compared to just one for a non-binary component.

Version 2: In Version 1 of the proof the cuts L; were not made according to convention.
By making the cuts according to convention (see Fig. 4) we find

1 ¢'(z, w) 1 / ¢'(z, w)
ey ——d < 9 ~ . —d < - ’
5 ‘/;E oz ) z < oy + oz i ) ew 7 < |-y

1

and

L Pw 1 o'z, w) o
2 /y 0@z, w) Z+27ti _/}‘,35 0z, w) dz < o) + -] = -1
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L= L

FIG. 5. Symmetric binary component with three ‘inner’ boundary curves.

Assuming m /2 — 1 pairs of curves like y, + y3, application of the argument principle yields
0< g +az] + [—ai] — (m/2—1). 12)

Hence
m < 2{lon ]| + o] + 81 +82)) + [—a1]} +2

and
m < 2|on] + 2|8 + 82],

where we have made use of the fact that

lo) + —a) = -1  if a¢Z

REMARK 6.4

a) The zero point not inside §2, can be excluded by traversal of more than one ‘inner’
boundary curve which crosses the negative real axis; see Fig. 5.
If the integration process is carried out as in the proof of Lemma 6.3, we obtain

1 1 1
N < Lal +a2_]7 N / < L_al_]r . < I_al_lv
2mi 3 2mi £ 2mi E
Yo N ¢

1
Pyery / < L,
2mi vE
leading to the inequality

m—4
0 < {lag +az)] + [—a1] + o] + [—a1 ]} — (2—),

with m again bounded by
m < 2|ay] +2(8; + 82].
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m; sectors

my sectors

FIG. 7. Non-symmetric binary component and cuts L; going throughz = 1.

b) If (0, w?) is contained in £2; and (0, w}) is excluded the multiplicity of £2 is deter-
mined in the same way but with |«; | replaced by |« ], see Fig. 6.

LEMMA 6.5 (Non-symmetric binary) Let £2; be a non-symmetric binary component con-
taining one zero point (0, wg) (say), with leading exponent —a; of ¢ at (0, wg). Then the
multiplicity m of §2; satisfies

m < 2L(¥2J + 1.

Proof. The proof is again conducted in two ways as a result of two different choices of the
branch cuts L;.

Version 1: If cuts L; and L, were chosen as in Version 1 of the proof of Lemma 6.3 they
would intersect a branch cut of M. Therefore the cuts L; and L, are made such that the
projection winds from (0, 0) to (1, 1) without intersecting either the projection of 92 onto
C or the projection of any cut of M onto C, see Fig. 7. Then £2; is non-symmetric with
respect to L;. The argument principle is applied along the positively oriented boundary
y = yOE + y1 + 2 which starts out on one side of the cut L; and is assumed to consist of
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m; sectors at (1, 1). The contributions of the integrals are

1 @' (z, w) 1 ¢'(z, w)
- dz < o), =
2mi vE oz, w) 270 Jy4p ez, w)

dz < —1.

Application of the argument principle leads to
0< log] = 1= (m —2). 13)

Observing that in the optimal case m; = (m — 1)/2 + 1 we obtain the result.

The process is now repeated for the portion of §2;, ‘on the other side’ of L;, where we
assume a total of m, sectors. Integrating along y, we end up at a point A (say) where ¢ is
different to the initial value. Continuing along yOE to A again, and then along y; to return
to our starting point we obtain

1 "(z, w
— f Y@ 42 < s — 1),
2mi )/2+YOE+)/1 §0(Z, lU)

where the —1 accounts for the fact that we returned to A, on which occasion the argument
must have decreased by at least 2. Application of the argument principle leads to
0< (o] =1 = (my = 1). (14)

By combining (13) and (14) we obtain the following bound on the total number m =
my + m, of sectors of £2;:

m < 2|az] + 1.

Version 2: By choosing the branch cuts L; according to convention (see Fig. 8), we obtain
the following for the integrals:

1 ! 1 ! 1 !
— [ La<lml, —.f Lz < lal, —.f L4z < |-l
2mi vE ¥ 2mi vE @ 2mi vE @
Application of the argument principle leads to
m — 3)
0< (lea) + loa + L-en ]} - =2,

where the factor 2 accounts for the binary nature of the component and 3 is subtracted from
m because ¥y, 1 and y; contribute 3 sectors. Hence, we again obtain

m < 2lay] + 1.
a

In view of Lemmas 6.3 and 6.5 we have to conclude that the bound (10) is in general
too sharp if the non-integer parts of oy and «, satisfy 0 < 8; + 8, < 1. A combination of
Lemmas 6.3 and 6.5 leads to the following general result for binary components.
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Ly= Ly

FIG. 8. Non-symmetric binary component and cuts L; made according to convention.

0

- SESEE

FIG. 9. Non-binary component with m — | §£2-components.

PROPOSITION 6.6 (Binary) Let §2; be a binary component containing one zero point.
Assume that ¢ has a leading exponent of —, at the zero point inside £2; and —a; at the
other zero point. Let §; and &, be the non-integer parts of oy and 3, respectively, i.e.

S =0 — ), 8y =y — |a].
Then the multiplicity m of §2) satisfies

m < 2|o | + max{1, 218 + 821}

REMARK 6.7 (Efficiency)

a) In view of the factor 2 accompanying |« in the bound for binary components, we
say that the zero point inside a binary component has a higher efficiency than the
zero point inside a non-binary component. The zero point is in this case regarded as
contributing twice to the multiplicity of the component.

b) The multiplicity of a non-binary component 2, is achieved by (m — 1) £°-
components which are bounded by §2, and do not loop around either zero point, see
Fig. 9. On the contrary, the multiplicity of a binary component is achieved because
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Yo

FI1G. 10. Binary component with one ‘binary loop’.

F1G. 11. Binary component §2; combined with non-binary component £2;.

of £2¢-components which do loop around one of the zero points (Fig. 10). In Lemma
5.10 of Jeltsch & Smit (1992) these were referred to as binary loops. Moreover, the
connectedness of §2; requires branch cuts.

PROPOSITION 6.8 There can be at most one binary component containing one zero point
inside the unit disk A.

Proof. Let £21 be a binary component inside A and say (0, wg) is contained in £21, while
(O, w?), which does not belong to 21, is enclosed by (an) ‘inner’ boundary curve(s) of §2;
(see Definition 6.2). Suppose (0, w(l)) belongs to a second §2-component §2; (say). For §2,
to be binary, it has to have (an) ‘outward’ boundary curve(s) going through a branch cut on
the negative real axis and then enclosing (0, w?). However, this is impossible since (0, w(l))

is already enclosed by (an) ‘inner’ boundary curve(s) of £2;. Hence, §2, cannot be binary.
O

A binary component £2, can be combined with a non-binary component §2; (say), as
illustrated in Fig. 11. For such a combination the following theorem follows as a conse-
quence of Propositions 6.1 and 6.6.

THEOREM 6.9 (Binary plus non-binary) Let ¢ have leading exponents of —¢; and —a;



THREE-TIME-LEVEL DIFFERENCE SCHEMES 463

at the zero points (0, w?) and (0, wg), respectively, on the two sheets of M and suppose
O, w?) belongs to a non-binary component and (0, wg) to a binary component. Then the
highest total multiplicity m that these two components can contribute at (1, 1) is given by

m < (lar] + 1) + 2loz] + max{1, 2[81 + d2]}), s)

where §; = a; — o), i =1,2.

REMARK 6.10 The bound (15) is a sharper bound than (5.20) in Jeltsch & Smit (1992, p
29, Proposition 5.15) because the contribution due to |« ] is not doubled.

6.1 Components containing two zero points

An obvious way of obtaining a component with two zero points is to connect two com-
ponents with one zero point each by means of a branch cut of M. We shall show that our
technique to prove bounds for the multiplicity in such a situation will give a bound which
is larger than what one would obtain by ignoring the connecting cut and applying the re-
sults of the previous section to each component separately. Since we have not found any
example which shows that this higher bound is sharp we conjecture that the smaller bound
(15) is correct in all cases.

CONJECTURE 6.11 Let ¢ have leading exponents of —«; and —c;, at the zero points
(0, w?) and (0, wY), respectively, on the two sheets of M. Then the multiplicity m of the
£2-component £2; containing both zero points satisfies

m < |ay] + 1+ 2|z + max{1, 28 + 521}

Clearly, if §2; in the conjecture can be separated into two components then the conjecture
is proved.

We can prove this conjecture for a class of schemes of maximal order, p = |I| — 2.
The proof is obtained by contradiction. Hence we assume the converse and examine its
implications.

DEFINITION 6.12  (Double-binary component) An §2-component §2; which contains
both zero points is called double binary if the contribution to its multiplicity by both zero
points occurs via a doubling of |« | and |a3].

A double-binary component can be either symmetric or non-symmetric. We first con-
sider Fig. 12 which depicts a modification of the symmetric binary component illustrated
in Figs. 3, 4, in the sense that the ‘inner’ boundary curve is moved inward so as to include
the second zero point, and hence give a component containing both zero points.

LEMMA 6.13  (Symmetric double-binary component) Let §2; be a symmetric double-
binary component containing both zero points, (0, w?) and (0, wg) with leading exponents
—a and —a; of ¢ at (0, w?) and (0, wY), respectively. Then the multiplicity m of £2;
satisfies

m < 2oy ] + 2] + 14216 +82].
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FIG. 12. Symmetric double-binary component.

Proof. Clearly if cut A were not present one could apply Theorem 6.9 and we would have
Conjecture 6.11. But, since the cut A can’t be removed we apply the argument principle to
the whole component £2;. Hence

1 y’
0=— —d
2mi / y ¢

1 L] /+ 1
C2mi Jy o 2w Jyr o 2mi

n

s

9+

- (,

2j

+/ )+L[
VE 2ri J,E

2j+1 m—1

~.
]

m-—3
<l +az) + [—ar] + — (=1 + lai]

and this gives the bound
m < 2o ]+ 14 2]az] + 216 + 62]. (16)
O

Clearly, if || > O then the bound (16) is not as sharp as the conjecture bound. While in
this example the component could have been separated by removing cut A, such a separa-
tion is not as evident in the example depicted in Fig. 13. A comparison with Figs. 7 and 8
reveals that Fig. 13 is obtained from a non-symmetric binary component by replacing the
cut locally orthogonal to the real axis by a cut, cut A, lying on the projection of the real axis
onto C. Therefore a component of this kind will be called non-symmetric double-binary.

LEMMA 6.14  (Non-symmetric double-binary) Let £2; be a non-symmetric double-binary
component containing both zero points, (0, w?) and (0, wg), with leading exponents —o;

and —a;, of ¢ at (0, w?) and (0, wY), respectively. Then the multiplicity m of £2; satisfies

m < 2(log] + laz] + 1).
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FIG. 13. Non-symmetric double-binary.

Proof. As usual we apply the argument principle to the whole component §2;. Hence
1 y'
0=— —d
2mi / y z
m—4

1 +1[+1/+1§(
“omi Jyro2mi S 2mi Jp o 2mi 4

Yo 2 j=1

< lo) + Lar) + -] + ”’T"“ (lan) + Ll—an ) + L)

and this gives the bound

m < 2la] + 14 2le] + 1. a7n
Od

Again, if @] > O then the bound (17) is not as sharp as the conjectured bound. As in the
previous example the bound is wrong by the factor 2 in the term containing | ¢ .

We observe that the results suggested by Lemmas 6.13 and 6.14 lead to the following
general result for a double-binary component.

THEOREM 6.15 (Double-binary) Let ¢ have leading exponents of —a; and —a; at
(O, w(])) and (0, wg), respectively, on the two sheets of M, and suppose that both (0, w?)
and (0, wg) belong to one double-binary component, §2;. Then the highest multiplicity, M,
that this component can contribute at (1, 1) is given by

m < 2(lar] + laz)) + 1 4+ max{1, 2|8; + 6,]}.

7. The role of the branch cuts on multiplicity

Close inspection of the results derived until now will reveal that these results actually rely
on the occurrence of branch cuts to connect binary loops to the portion of the component
containing one or both zero points. If there are insufficient branch cuts, or equivalently
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F1G. 14. Suboptimal symmetric binary.

insufficient branch points, these multiplicities will not be achievable. It therefore becomes
appropriate to reformulate the earlier results in terms of the minimum number of branch
points used by a component in order to achieve a certain multiplicity. The implication is
that we now consider components which we will call suboptimal (Fig. 14); for example,
for a binary component, §2;, we allow for the possibility that there are insufficient branch
points for the zero point to be completely binary, and hence that there are also sectors of
§2; at z = 1 which contribute only a factor 1 rather than a factor 2 to the multiplicity.
To standardize our approach we will adopt the following notation:

K :=number of branch points utilized by the component
my :=number of sectors at z = 1 due to binary loops

m5 :=number of sectors at z = 1 due to non-binary loops.

We also make the assumption, without loss of generality, [oz] > | ]. Furthermore, to
ease comparison with the previous results, we will refer to the components as classified as
in the earlier sections. In each case we will employ the ‘Version 2’-type proofs since these
give the tighter bounds.

LEMMA 7.1 (Suboptimal symmetric binary component, cf Lemma 6.3) Let §2, be a sym-
metric binary component containing one zero point (0, w3), say, with leading exponent
—a; of ¢ at (0, wY), while the leading exponent of ¢ at (0, w) ¢ §2, is —a,. Further,
suppose that §2; contains at most K branch points of w(z, i). Then the multiplicity m of
£2, satisfies

m < lag) + 81+ 8] + min{LazJ + 181+ &, {ﬁ;_l” '

Proof. The proof follows as for Lemma 6.3 but note now that the number of binary loops
is limited by the number of branch points K. Each of the m, /2 binary loops contributes —1
to the argument but two sectors at z = 1. The m non-binary loops also contribute —1 to
the argument decrease but one sector at z = 1. Hence, the total number of sectors at z = 1
is

m=m;+my+2.
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d Ih=1L,

FIG. 15. Suboptimal non-symmetric binary.

Further, by the argument principle

mi
0< g +oa)+ -] — 5 M

Therefore

m
m=ml+m2+2<La|+azJ+L—a|J+—2'—+2

m
=loa) — 1+ 181+ 8] +2+ >

7
Now each binary loop uses at least one branch cut to connect that loop to £2;. Also one
branch point is required to make the component binary. Therefore

m<K-1,

and

m) K-1

L —].

2 2
Thus

K -1
m< |ag] + [61+ 8] +1+ [TJ

and by Lemma 6.3 the result follows. O

COROLLARY 7.2 The minimum number of branch points, Kmpi,, contained in a compo-
nent £2;, described as in Lemma 7.1, for which the maximum multiplicity, as indicated by
Lemma 6.3, is obtained, is given by

[KMn+ 1

> J = |z + (&1 + 82].

Proof. This follows immediately by observing that when m, =0, K > m — 1, and hence
Kmin = Mmax — 1, where mmax = 2|aa] + 218 + 82]. o

A non-symmetric binary component can also be suboptimal (Fig. 15).
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LEMMA 7.3 (Suboptimal non-symmetric binary component, cf Lemma 6.5) Let £2; be
a non-symmetric binary component containing one zero point (0, wg), say, with leading
exponent —a, of ¢ at (0, w)), while the leading exponent of ¢ at (0, w?) ¢ £, is —a.
Further, suppose that £2| contains at most X branch points of w(z, ). Then the multiplicity
m of §2; satisfies
. K+1
m < log) +m1n{|_a2_| +1, l_?-—,“ .

COROLLARY 7.4 The minimum number of branch points, K, contained in a compo-
nent £21, described as in Lemma 7.3, for which the maximum multiplicity, as indicated by
Lemma 6.5, is obtained, is given by

[ijn"i‘l

> J=L0¢2J+1-

These suboptimal binary components can be combined with a non-binary component in
exactly the same way as a binary component is combined with a non-binary component in
Theorem 6.9:

THEOREM 7.5 (Suboptimal binary plus non-binary) Let ¢ have leading exponents of
—ay and —o; at the zero points (0, w‘l’) and (0, wg), respectively, on the two sheets of M,
and suppose (0, w?) belongs to a non-binary component while (0, wg) belongs to a binary
component containing K branch points. Then the highest total multiplicity m that these
two components can contribute at (1, 1) is given by

m< (la]+1)+ (LotzJ +min“K—;—lJ + 181 + &2, o] +max{1, 2[4 +52J}}>

Theorem 7.5 implies that there is actually a combination of two components which
yields a multiplicity between that which would be indicated by (i) both components of
non-binary type, and (ii) one component optimal binary and the other non-binary. In the
same way double-binary components can also be suboptimal with a multiplicity greater
than that indicated by Theorem 6.9 but less than that indicated by Theorem 6.15. Such
components are again limited in multiplicity by the number of branch points they contain.

LEMMA 7.6  (Suboptimal symmetric double-binary, cf Lemma 6.13) Let 2| be a symmet-
ric double-binary component (Fig. 16) containing both zero points, (0, w?) and (0, w)),
with leading exponents —«; and —a; of ¢ at (0, w(,’) and (0, wg), respectively. Further,
suppose that £2; contains at most K branch points of w(z, 1). Then the multiplicity m of
§2, satisfies

m < lon] + o] + [61 + 82) +mi“{L‘x‘J+La2J It Lot al, {K;-IJ]

Proof. The argument principle is applied assuming m, non-binary loops of £2, at z = 1,
and m; /2 binary loops of §2; at z = 1. In this case

m=my+m; +3,



THREE-TIME-LEVEL DIFFERENCE SCHEMES 469

FIG. 16. Suboptimal symmetric double-binary component.

and by the argument principle,

0< oy +ap] + -] + o] —ma— 212—1

Therefore
m < oy + o — 1+3+%,
where m, is limited by the total number of branch points K,
m; < K —3.

Therefore,

m < o] + o) + L6 + 82 + lelJ
and the result follows in combination with Lemma 6.13. a

Again there is a minimum number of branch points for which an optimal double-binary
component can be obtained.

COROLLARY 7.7 The minimum number of branch points, K, contained in a compo-
nent £2;, described by Lemma 7.6, for which the maximum multiplicity, as indicated by
Lemma 6.13, is obtained, is given by

Kmin +1
2

The non-symmetric double-binary component, as illustrated by Fig. 13, may also be
suboptimal, see Fig. 17.

J = lag] + oz + 16 +62] + 1.

LEMMA 7.8 (Suboptimal non-symmetric double-binary, cf Lemma 6.14) Let 2, be a
non-symmetric double-binary component containing both zero points, (0, w?) and (0, w),
with leading exponents —a; and —a; of ¢ at (0, w?) and (0, wg), respectively. Further, sup-
pose that §2 contains at most K branch points of w(z, u). Then the multiplicity m of £2;
satisfies

m < lan) + LazJ+1+min=LalJ+ LazJ+1,[K—;—1J}.
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F1G. 17. Suboptimal non-symmetric double-binary component.

COROLLARY 7.9 The minimum number of branch points, Kmis, contained in a compo-
nent £2;, described as in Lemma 7.8, for which the maximum multiplicity, as indicated by
Lemma 6.14, is obtained, is given by

[KMn+ 1

) J=L¢¥1J+L0tzJ+1-

Combining the conclusions of Lemmas 7.6 and 7.8 we deduce the following theorem.

THEOREM 7.10 (Suboptimal double-binary) Let ¢ have leading exponents of —c; and
—a; at the zero points (0, w?) and (0, w3), respectively, on the two sheets of M, and
suppose that both zero points belong to a double-binary component §2; which also contains
K branch points. Then the highest total multiplicity, m, that this component can contribute
at (1, 1) is given by

m < || + |az] + max {min{[alj + |z + 2, LE_;_IJ + 1}’

min {LanJ laa) + 14208 + 821, {%J + 18 +62J”-

7.1 Proof of Conjecture 6.11 for maximum order schemes

Here we derive bounds on the order, p, of explicit schemes, under the assumption that the
double-binary components described in Sections 6.1 and 7, exist. But we note that their
multiplicities depend very intimately on the number of branch points contained inside the
unit disk. These components cannot use branch cuts completely outside the unit disk since
then stability would be violated. We also know, by Lemma 5.2, that the total number, m, of
sectors at z = 1, both from inside and from outside the unit disk, satisfies p + 1 = m. Let
m; and m o be the number of sectors of 2 at z = 1 from inside, and outside the unit disk,
respectively. Then m = m; + mo, and by Lemma 5.2,

m0—1<m1<m0+1.
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FIG. 18. Stencil of reversed scheme.

Therefore, if considered independently
p < max{2m;,2mop}. (18)

But, since m can be seen to be limited by the number of branch points of w(z, u) outside
the unit disk, the bound on m ¢ actually depends on the bound on m,, via the number of
branch points, K/, inside the unit disk, limiting the number of branch points, K¢, outside
the unit disk, because for convex schemes

2(ri +s1) = K; + Kop.

We will show that for schemes of maximal order, p = |I| — 2, an argument in which both
m; and m¢ are determined is required to derive a tight bound on p. But first we have to
consider how to obtain mg.

Instead of repeating the analyses of the earlier sections we apply a symmetry argu-
ment for the £2-sectors outside A. For generality, we consider here implicit schemes. The
functions a; defined in (6) will be written here in the form a;(z, ;) to emphasize the u-
dependence of the coefficients a;;. Suppose we have a stable scheme (4) and that its stencil
is regular for a certain value of u, with R downwind and S upwind stencil points according
to (9). Let £ denote the number of §2-sectors of the corresponding order star 2 emerging
from the point (1, 1) outside the unit disk A. Then consider the reversed scheme

rn

r
Z ay_j(—W) Uny2,m+j + Z ay —j (=) Unt1.m+j
j=—% Jj==5 (]9)

ro

+ Z aO.—j(—“)un.m+j =0.

Jj==50

This scheme can be thought of as being obtained by a transformation of the space variable
x into —x. Hence the stencil is reflected about the line x = x,, (see Fig. 18).

The new scheme has R* = § downwind and S* = R upwind stencil points with respect
to the characteristic u* = —pu. The characteristic function @* of the reversed scheme is
obtained from the characteristic function @ by using the transformation

7> = and n—> —.
b4
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Hence
O*(z, w*, u*) = P(L, w*, —pu)
=a (L, —WW*? +ai}, —pw* + a3, —p)
=a3(z, pHw*? +af(z, pHw* +aj(z, u*).
Therefore the algebraic function w* satisfies
w*(z, W) = w(i, —W. (20)

From this relationship it follows that the reversed scheme is stable and of order p if and
only if the original scheme is stable and of order p. The order star £2* of the reversed
scheme (19) is related to £2 of (4) in the sense that the portion of §2 outside the unit disk

A is mapped to the inside of A and vice versa by the mapping z — i

2
Therefore, in order to determine m for a given value of u, we should map z — % and
investigate the portion of £2 inside A for u* = —pu. For explicit schemes the corresponding
leading exponents of ¢ will be —g; and — B, at (0, w?) and (0, wY), respectively, where
B1 = so — 51 + 1*, By = 51 — 2 + p*. Effectively, this maps the pole at infinity to zero,
so that the effects of the infinity points can be examined via the effects of the zero points
for u*. Note here that the form of B8; and B, explicitly assumes s; — s2 = So — §1, see
Proposition 4.4 and Remark 4.5. Hence the argument we adopt enforces convexity on both
sides of the characteristic line.
To complete the methodology we also need to be able to count the number of branch
points of w*(z, u*) inside the unit disk for u*. But, by (20) this is just the number of
branch points of a)(%, —u*), which we have already denoted by Ko .

LEMMA 7.11 (Conjecture 6.11 for explicit maximal order schemes ) Suppose we have an
explicit stable scheme of type (4) of maximal order, p = |I| — 2, with a convex increasing
stencil, with a fixed Courant number g, —% < u < 0. Assume that the algebraic function
w of @(z, w) = 0 has no branch point at z = 0 and that ¢ has leading exponents of —a;
and —a; at the zero points (0, w?) and (0, wg), respectively, on the two sheets of M. Then
the multiplicity m of the £2-component £2; containing both zero points satisfies

m < lar] + 1+ 2|z + max{l, 2|81 + 821}

Proof. Note that this is a statement of Conjecture 6.11 for the schemes of maximal order,
Popt = || — 2. Hence what we seek to prove is that for these schemes there cannot exist
components of double-binary or suboptimal-binary-type. In particular we show that if these
components exist the order is necessarily less that pop.

From Proposition 4.4 and Remark 4.5 we have the following expansions of ¢(z, w;(z))
atz =0:

(p(z’ wl(Z)) = Z_r'_“(bo + b]Z + b2Z2 + . .)’
@z, wr(2)) =27V (co + 1z + €zt + -+ ).
It should be noted here that we have no means of associating a certain expansion with the

zero point on a specific sheet. Hence the expansions will be associated with the zero points
in the way which leads to the highest possible multiplicity.
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Equivalently, for u* = —u we have the expansions of ¢(z, w;(z)) atz =0

oz, W) =27 (by + bz + b3 + - ),
(p(z, w;(z)) = Z—(SO—SI)—/M (Ca + CTZ + C;z* + .. ‘),

obtained via the transformation z — % To avoid confusion we denote the exponents asso-
ciated with u by

ay=ro—ri+u
ay=ri+ U, (21)

and those associated with u* by

Bi=s0— 51+ u*,
Br=s1+ " (22)

By convexity, |@2] > |a1] and | 2] > |B1]. Furthermore, we explicitly assume |a;] > 0.
Otherwise the zero point at (0, w?) does not lie inside §2 and the argument is considerably
simplified. Similarly, assume |or2] > [o].

Clearly —% < u < Oimplies |8; +682] = 126:] = 121 +w)] = 1.

(i) By Theorems 7.5 and 7.10 we see that the optimal configuration is dependent on the
number of branch points utilized by the components. In particular define K; and Ky
to be the minimum number of branch points for which an optimal binary—non-binary
configuration, and a double-binary configuration is possible, respectively. Then

lon) + Lo +2+ [ K5H ], K; <KL

lon] + 14 2]a2] + 2, K=K,
mi < o 23)
log] + lea] + 1+ |25=), KL <K; <Ky
2(log] + le2] + D + 1, K; 2 Ky.
Note that the bounds in (23) imply that the binary components are symmetric. Hence
by Corollaries 7.2 and 7.7
Kp+1 Ky +1
[ L2 J = |a]+1 and [ U2 J = lon] + la2) +2.  (24)

Substituting for |e; | and |z ] in (23) and (24) we obtain

ro+ |55, L&) < ny

ro+ri, | &t ) =r ’
mr S K41 Kj+1 25)

ro—1+ 52, < 8] <n

2rg — 1, LELEL ] > o
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Now we consider the outside of the unit disk and apply an equivalent argument with
respect to By, B and u* = —p. In this case in the bound for m we use |8, + 8, ] =
[26:] = 2] = 0. Thus by Theorems 7.5 and 7.10

B+ 18]+ 1+ [ Ket ) kp <Ky

Br] +1+2(8]+1, Ko =K,
mo < o (26)
LBi) + LB) + 25 + 1, KL <Ko <Ky
2([p] + [B2] + 1), Ko 2 Ky.
These components are non-symmetric and therefore, by Corollaries 7.4 and 7.9,
Kp+1 Ky +1
[ > J=LﬂzJ+1 and [ = J=Lﬁ|J+LﬁzJ+1- @7)
As in (i), substitution of values for | 8] and | 8,] in (26) and (27) leads to
so+ 1+ [%gH),  [Ketl) <5 41
S0+ 51 +2, L5t =51 +1
mo < 1 (28)
s0+L£Q2+—J—|—1, s1+1<[£92+—lj<s0+1
2(s0 + 1), [#52] > 50+ 1.

We now combine the results from inside and outside A.

" First, observe that if K, is even, so is K¢, and because the total number of branch

points is 2(r; + s1),

Kr+1 Ko+1
55

whereas, if K; and K, are odd,

K;+1 Ko +1
[12 J+[ 02 J=r|+s1+l.

Therefore bounds on K; imply bounds on K, and vice versa. Hence, only certain
combinations of components inside and outside A are possible.

In particular, suppose that inside A there is a double-binary or suboptimal double-
binary configuration. Then by (25) | ¥4t | > r; and

Ko+1 <si 4 0 K; even
2 ! 1 K;odd.

Therefore outside A there can be at most a suboptimal binary configuration and

Ko+1 K +1
m,+m0<r0—1+s0+l+[ 02 J+[ ’2+ J

0 K| even
1 K] odd.

=r0+S0+"1+Sl+{



THREE-TIME-LEVEL DIFFERENCE SCHEMES 475

Hence
0 K; even
mi +mo <'”_“{ 1 Kjodd,
By Lemma 5.2, therefore
p<I-3,

and (15) follows for —-% <u<0.
0O

We could now repeat the arguments for 0 < p < % but it is sufficient to examine the
order star outside A for —% < < 0. Hence again we would like to show that the bounds
on mo, (28), for double-binary components, lead to a contradiction. For these components
| £2tL | > 5 + 1, and hence | X5 | < ry. Thus by (25)

K 1
ml<r0+[ 1+ J
2
and
K;+1 Ko+1
mo+m,<ro+so+[ 12 J+[ 02 J+1
0 K
<ro+so+r1+s1+1+{1 Kgfxvifi“
This time
0 Ko even
’"0+’”’<”"2+{1 Ko odd

and we do not obtain the required contradiction, unless it can be demonstrated that Ko is
even.

Note that at no point did we explicitly impose stability in the above proof, because K;
and Ko are simply the number of branch points used by §2 from inside and outside A,
respectively. But if a component inside A utilized a cut outside A then this would in fact
require that the stability condition, Lemma 5.1, be violated. Hence K; and K¢ do actually
refer to the number of branch points inside and outside A, respectively, and stability is
required.

8. Implicit schemes: the role of poles away from z = 0 on multiplicity
8.1 Components containing zero points and poles

Assume we have inside a binary component poles of total multiplicity p. When applying
the argument principle — p is added on the left side of the equation, e.g. (11) or (12). This
leads to a bound for m with an additional term 2 p. If the component is non-binary then this
additional term is clearly only p. Hence, having poles in a non-binary component is less
efficient than having one in a binary component. However, we shall show that we can then
get a contribution 3 p if the poles have multiplicity 1. To be able to do this the component
is not allowed to contain a zero point. Such components are treated in the next section.
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2 (1,1)

FIG. 19. Component with pole P on positive real axis on principal sheet of M.

FIG. 20. Binary component with pole P on negative real axis and one zero point encircled.

8.2 Components containing only poles away from z =0

We consider the relationship between the number of poles inside a component §2; and its
multiplicity under the assumption that §2; contains neither zero point. Suppose a single
pole P of multiplicity p lies inside £2;.

EXAMPLE 8.1  The pole P occurs on the positive real axis (for simplicity we locate it on
the principal sheet in Fig. 19), or at any other location away from the real axis inside A. In
this case the zero points do not have any effect on the component £2,, since the cuts L; can
be chosen such that they do not interact with £2; in any way. Then £, corresponds to the
type of component treated in Wanner et al (1978), where it was shown that the multiplicity
m of §2; is bounded by

m< p.
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FI1G. 21. Component with pole P and with both zero points encircled.

EXAMPLE 8.2  For the components in Fig. 20 the argument principle yields

1 1 1 m/2—1
—p=r— | 47— +—f:Z:/
Y,

2mi vE 2mi vE 2mi =

<l + =) = (m/2 = 1).

ELE
25 FY2)41

Hence, m < 2p as expected.

EXAMPLE 8.3 Let £2; be such as in Fig. 21, with the pole P on the positive real axis on
the secondary sheet of M and both zero points excluded from £2;. The branch cuts L; are
chosen such that their projection onto the z-plane passes through z = 1. From one side of
L, we obtain

1

/ 1 /
— L dz < o), — / £ dz < [~z
270 JyEyy, @ 2ni Jyr @

and
—p < log] + [—az] — (my = 2).

From the other side of L, we obtain

1 ¢
—— —dz< |~ +ay—1].
2mi ®

rtyvE+vi

By applying the argument principle with the pole P inside the component and m; sectors
at z = 1, we obtain

—p<—1 = (my—1).

A combination of these results leads to the following bound on the total multiplicity m =
m + my of the component:

m<2p+ 1. (29)
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FIG. 22. Component with pole P and with both zero points encircled.

EXAMPLE 8.4  Let £2; be such as in Fig. 22, with the pole P again occurring on the
positive real axis on the secondary sheet of M and both zero points excluded from £2;.
Then by choosing the branch cuts L; to go through z = 1 and by applying the argument
principle in exactly the same way as in Example 8.3, we again obtain the bound m < 2p+1
occurring in (29).

The question arises whether a pole P away from z = 0 can yield multiplicity higher
than in Examples 8.3 and 8.4.

LEMMA 8.5 (Multiplicity of a single pole) Let P be a pole of order p away from z = 0
inside an £2-component £2; from which the two zero points are excluded by positively
oriented portions of 352 which encircle both zero points. Then the multiplicity m of £2; is
bounded by

m<2p+ 1.

We can deduce from Lemma 8.5 that the highest possible multiplicity of a component,
£21, relative to the order p of a pole P away from z = 0 inside it, is obtained if p = 1.
Or, directly formulated: the most efficient poles away from z = 0 are simple poles. For
such a simple pole we obtain the bound m < 3 on the multiplicity of the corresponding
component. This entails that, if we have a normalized scheme which introduces into the
corresponding order star poles of total order p > 1 inside A, then the highest possible
contribution of these poles to the number of §2-sectors inside A is obtained if these poles
are simple and occur on the real axis. But then the complication occurs that the symmetry
of components with respect to the real axis does not allow the simultaneous occurrence of
two separate components, each with a multiplicity of 3. As before this problem is overcome
by means of two components of multiplicity 3 which are joined via a branch cut to yield
one component of multiplicity 6. In this new component each simple pole still contributes
3 to the multiplicity of the component. This is illustrated in Fig. 23, where there are three
simple poles, each leading to a contribution of 3 sectors to the total multiplicity inside A.
The rightmost pole belongs to a separate component, while the other two have joined to
form a component of multiplicity 6. This situation is generalized.
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FIG. 23. Three simple poles, each leading to multiplicity 3, inside §2-components.

PROPOSITION 8.6 (Maximum multiplicity of poles) Let the order star of a stable, nor-
malized scheme have poles of total multiplicity p away from z = 0 inside A. Then the
highest possible contribution of these poles to the multiplicity m of components inside A
is obtained if the poles are simple and real, leading to a multiplicity bounded by

m < 3p. 30)

REMARK 8.7 Instead of two components with simple poles being joined to form one
component such as in Fig. 23, a component containing a simple pole can also be joined with
a component containing a zero point, such as in Fig. 24. There the combined multiplicity
is 4. (The zero point (0, w?) belongs to a separate binary component of multiplicity 2.) It
can be seen that the efficiency of the pole and of the zero point (0, w‘l)) remain unchanged
as if they occur in separate components.

REMARK 8.8 Observe from Figs. 21-24 that in order for the poles in these components
to each contribute a maximum multiplicity, of 3, branch cuts are required. In particular,
for a single pole a minimum of 3 branch points inside A are utilized. But for components
containing more than one pole the branch points are used more efficiently. For two poles
again just 3 branch points in A are sufficient. As further poles are added to the component
each requires an additional cut inside A. We therefore deduce the following corollary:

COROLLARY 8.9 Let the order star of a stable, normalized scheme have n, poles away
from z = 0 inside a component £2,, inside A. Then the minimum number of branch points,
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FIG. 24. Component with a pole and one with a zero point which have been joined to form one component.

Kmin, contained in £2; such that the multiplicity of §2; is given by m = 3n,, satisfies
Kmin =2n, — 1.

The question then arises as to whether Conjecture 6.11 can still be proved for the
schemes of maximal order. This, however, turns out not to be so difficult. First let us con-
sider both the order of the zero points and the number of branch points for the implicit
schemes. When r, > 0, s, > 0 the exponents of ¢ in the expansion around z = 0 are given

by

ay=ro—rn-+u
a=r—rn+u

and

Br=s0— 51+ pn*
Ba=s1 —s2+ u*,

as compared with (21) and (22), respectively, when r, = s, = 0. But, by convexity, we
still have |op] > o] and | B2] = |Bi1], even though |ay] and | B;] are reduced by r,
and s,, respectively. Hence the number of branch points K utilized by the zero points is
reduced by 2r, — 1 if K is odd and 2r; if K is even. But, by Corollary 8.9, the r, poles
inside A need at least 2r, — 1 branch points in order to contribute maximum multiplicity.
Note further that for K even, it was demonstrated in Lemma 7.11 that p = |I| — 2 could
not be achieved. Hence the branch points left unutilized by the reduction of |, | and |82],
when r;, s, > 0, are immediately required to contribute maximum multiplicity from the
poles. Furthermore, since the contribution due to the poles gives a factor 3, rather than 2,
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in front of n, and |, |, respectively, we deduce that the optimal configuration uses branch
points to maximize multiplicity due to the poles rather than due to the zero points. This
leads us to conclude that Conjecture 6.11 is also valid for convex implicit schemes:

LEMMA 8.10 (Conjecture 6.11 for implicit schemes of maximal order) Suppose we have
an implicit stable scheme of type (4) of maximal order, p = |I| — 2, with a convex in-
creasing stencil, with a fixed Courant number u, —% < p < 0. Assume that the algebraic
function w of @ (z, w) = 0 has no branch point at z = 0 and that ¢ has leading exponents
of —a; and —a, at the zero points (0, w?) and (O, w(z’), respectively, on the two sheets of
M. Then the multiplicity m of the £2-component §2; containing both zero points and no
poles satisfies

m < |lag] + 142 o] + max{l, 28 +82]}.

9. Proof of the main theorem

The proof of Theorem 3.1 is divided into stages. One part of it is proved in Lemma 9.1 and
the other part in Lemma 9.2. The numbers R and S denote the number of downwind and
upwind stencil points, respectively, with respect to the characteristic through (¢,42, xn) as
defined in (9).

LEMMA 9.1 (Maximal order with stability) Suppose we have a convex, normalized
scheme of type (4) with a fixed Courant number u, 0 < |u| < % If the scheme is sta-
ble, and Conjecture 6.11 is satisfied, then the order p of the scheme is bounded by

p <2R. a31)

Proof. Since the scheme is stable, there will be a clear distinction between the portion of
the corresponding order star §2 inside A and the portion outside A. In this proof we restrict
ourselves to the portion inside A.

From Proposition 4.4 we have the following expansions of ¢(z, w;(z)) atz = 0:

0z, w1 (2)) = 2~ MR (by + biz + brz? + - - 1),
@z, wa(2)) = 27" H(co+ c1z + 222 + - - -).

Again we have no means of associating a certain expansion with the zero point on a specific
sheet. Hence the expansions will be associated with the zero points in the way which leads
to the highest possible multiplicity.

In the remainder of the proof we have to work separately with the cases where u < 0 and
where 1 > 0. Note also that where we assume Conjecture 6.11, Lemmas 7.11 and 8.10
give the result for p = pop, and —% <u<0.

a) We first assume —% < pu < 0. Then the following choices of the indices ro, ry, r2
lead to different combinations of §2-components inside A.

(i) ro = r1 = r, = 0. Then also R = 0. According to the Courant—Friedrichs—
Lewy condition the scheme cannot be convergent, i.e. it is impossible to have
order p > 1 and stability simultaneously.
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ro = r1 = rp > 0. There are r; poles away from z = 0 inside A, while both
@(z, w1 (2)) and ¢(z, wy(z)) have positive leading exponents of —o; = —u at
z = 0, implying that both zero points belong to £2¢. We apply Proposition 8.6 to
obtain

m<3r,=ro+r +r=R.

0=rg—r, <ri—ry. Then —a; = —u > 0, implying that (0, w?) € £2¢, and
—ay = —(r; — r) — u < 0, implying that (0, wg) € £2. The highest possible
multiplicity is obtained if (0, w9) belongs to a binary component, in which case
we apply Proposition 6.6. If r, > 0, the poles away from z = 0 are again treated
according to Proposition 8.6. Then we have

m<3r+2 1 —ro+pl +22+2u)
=3r+2(rn—rn—-1D)+2
= rp+2rp=rp+r +ro=R.
O<rg—ry <rp—ry.Then —ay = —(rg—r)) — 4 < 0and —ap = —(r; —
ry) — i < 0, implying that both (0, w‘l)) and (0, wg) belong to §2. Since o) < g,
the highest possible multiplicity is obtained by applying Conjecture 6.11, with
O, w‘])) inside a non-binary and (0, wg) inside a binary component. If r, > 0,
the poles away from z = 0 are again treated according to Proposition 8.6. Then
the total multiplicity m inside A is bounded by
m<3r+ {2 —r+pl+21242ul}+{lro—r +nl+1}
=3rn+{2n-rn-D+2}+{ro—rn -1 +1}
= ro+r +r,=R.

b) Assume 0 < u < % Then we have —a; = —(rg —r)) — u < 0and —ay =
—(r1 — ry) — u < 0, implying that both (0, w?) and (0, w) belong to £2. Since
a; < ay, the highest possible multiplicity is obtained, assuming Conjecture 6.11, if
« is inside a non-binary and «; is inside a binary component. If , > 0, the poles
away from z = 0 are treated according to Proposition 8.6. This leads to the bound

m<3rn+2n—rn+ul+1}+{lro—r+unl+1}
=3rp+{2(r1 —r2) + 1} +{(ro — r1) + 1}
= ro+rn+r,+2=R.

In all the foregoing cases we obtained

m < R.

The remainder of the proof makes use of Lemma 5.2 and hence equation (18) to give for
the order p of the scheme

p+1<m+(m+1)<2R+1,

which leads to p < 2R. a
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Concerning the upwind points of a difference stencil we now prove the following lemma.

LEMMA 9.2 (Maximum order with stability) Suppose we have a convex and normalized
scheme of type (4) with a fixed Courant number p satisfying 0 < |u| < % If the scheme
is stable, then the order p of the scheme is bounded by

p <2S.

Proof. Instead of repeating the argument of Lemma 9.1 for the §2-sectors outside A, we
apply the symmetry argument introduced in Section 7 to prove this result.

Hence, if (31) is proved for a value of u for which the stencil is regular, we obtain by
the mapping z — 1 and 4 — —u for —p that

L< R =S
By making use of Lemma 5.2 this result leads to

p <28
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