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ABSTRACT

Future photometric supernova surveys will produce vastly more candidates than can be fol-
lowed up spectroscopically, highlighting the need for effective classification methods based on
light curves alone. Here we introduce boosting and kernel density estimation techniques which
have minimal astrophysical input, and compare their performance on 20 000 simulated Dark
Energy Survey light curves. We demonstrate that these methods perform very well provided
a representative sample of the full population is used for training. Interestingly, we find that
they do not require the redshift of the host galaxy or candidate supernova. However, training
on the types of spectroscopic subsamples currently produced by supernova surveys leads to
poor performance due to the resulting bias in training, and we recommend that special atten-
tion be given to the creation of representative training samples. We show that given a typical
non-representative training sample, S, one can expect to pull out a representative subsample
of about 10 per cent of the size of S, which is large enough to outperform the methods trained

on all of S.
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1 INTRODUCTION

Type Ia supernovae (SNela) provided the first widely accepted ev-
idence for cosmic acceleration in the late 1990s (Riess et al. 1998;
Perlmutter et al. 1999). Based on small numbers of predominantly
spectroscopically confirmed SNela, those results have been con-
firmed by independent analyses (Eisenstein et al. 2005; Percival
etal. 2007, 2010; Fu et al. 2008; Giannantonio et al. 2008; Komatsu
et al. 2011; Mantz et al. 2010) and by a series of steadily improv-
ing SNela surveys. These modern SNela surveys have acquired
about an order of magnitude more SNela than those early offer-
ings, now covering redshifts out to z ~ 1.5 (Filippenko et al. 2001;
Aldering et al. 2002; Astier et al. 2006; Clocchiatti et al. 2006;
Kessler et al. 2009; Folatelli et al. 2010). In addition, these surveys
now have excellent light-curve coverage with rolling search strate-
gies and multifrequency light-curve data with significantly better

*E-mail: james.newling @ gmail.com

© 2011 The Authors
Monthly Notices of the Royal Astronomical Society © 2011 RAS

control of photometric errors due to the use of a single telescope to
acquire the data in each major survey.

The next generation of SNela surveys will be integrated into ma-
jor photometric surveys, such as the Dark Energy Survey (DES;
Wester et al. 2005), PanSTARRS (Kaiser & Pan-STARRS Team
2005), SkyMapper (Schmidt et al. 2005) and Large Synoptic Sur-
vey Telescope (LSST; Tyson 2002). These next generation surveys
promise to catalyze a new revolution in SNIa research due to the
sheer number of high-quality SNIa candidates that will be discov-
ered: tens of thousands and perhaps millions of good SNIa can-
didates over the decade 2013-2023. Spectroscopic follow-up will
probably be limited to a very narrow subset of these candidates and
so finding ways to best choose the follow-up subset to utilize the
photometric data is a key challenge in SN cosmology for the coming
decade.

In this paper we are interested in methods that can be used to
accurately identify SNela from their light curves alone, i.e. their
variation in brightness in different colour bands as a function of time.
This is a departure from traditional studies of SNela where all SNe
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used in cosmological parameter estimation studies have had their
type confirmed via one or more spectra. Previous endeavours to use
light curves for classification include Poznanski et al. (2002) and
Rodney & Tonry (2009). In addition template-based photometric
typing was used in the Sloan Digital Sky Survey II (SDSS II)
SN survey (Frieman et al. 2008) to select the most likely SNIa
candidates for spectroscopic follow-up with high confidence.

There are two ways that one can imagine using photometric can-
didates. The first approach is to use all the SNe, irrespective of how
likely they are to actually be a SNIa. This is the approach exempli-
fied by the BEAMS formalism, which accounts for the contamina-
tion from non-Ia SN data using the appropriate Bayesian framework
(Kunz, Bassett & Hlozek 2007). The more conservative approach
is to try to classify the candidates into Ia, Ibc or II SNe, and then
only use those objects that are believed to be SNela above some
threshold of confidence.

The origin of this paper was the Supernova Photometric Clas-
sification Challenge (SNPCC) run by Kessler et al. (2010a). The
SNPCC provided a simulated spectroscopic training data sample of
approximately 1000 known SNe. The challenge was then to predict
the types of approximately 20000 other objects from their light
curves alone. The challenge is now over, and the results from the
different contributors are summarized in Kessler et al. (2010b).

In this paper we present the details of a number of approaches
to this problem, and their successes and failures. In Section 3 we
discuss methods we have implemented to go from multiband light
curves to probabilities, while in Section 4 we discuss the perfor-
mance of the methods in the SNPCC. In particular we highlight
how a non-representative training sample negatively affects the per-
formance of the different algorithms. Finally, we conclude with
recommendations for the future.

2 THE LIGHT-CURVE DATA

2.1 The supernova challenge data

The data used in this paper consist of ~20000 simulated SN light
curves with associated SN types released after the SNPCC.! The
SNPCC data® are only relevant in our discussion of competition
scores. Our reason for using the post-data is that it has numerous
improvements and bug fixes and is a more accurate simulation.
The simulation was based on a DES-like survey, consisting of five
SN fields, each of 3 deg?, such that 10 per cent of the total survey
time is allocated to the SN survey. The SNPCC data set consists
of a mixture of SN types (Ia, II, Ib, Ic), sampled randomly with
proportions given by their expected rates as a function of redshift.
Each simulated SN consists of flux measurements in the griz
filters (Fukugita et al. 1996) and includes information about the
sky noise, point spread function and atmospheric conditions that
are anticipated for the DES site. Distances were calculated assum-
ing a standard A cold dark matter (ACDM) cosmology (2m =
0.3, 25 = 0.7 and w = —1), with anomalous scatter around the
Hubble diagram drawn from a Gaussian distribution with o, =
0.09 and applied coherently to each passband. The SNPCC data
include two selection criteria. Each object is required to have at
least one observation with a signal-to-noise ratio (S/N) above 5 in

! These post-SNPCC light curves are available at http:/sdssdp62.fnal.gov/
sdsssn/SIMGEN_PUBLIC/

2 These competition light curves are available from http://www.hep.
anl.gov/SNchallenge/
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Figure 1. Above: a typical well-sampled SNIa light curve, in this case at
redshift z = 0.694. Below: the light curve of a typical well-sampled non-
TaSN atz =0.663. Overplotted are the best-fitting curves using equation (1).

any filter, and must also have at least five observations after explo-
sion. A complete summary of the SNPCC is given in Kessler et al.
(2010a,b).

We took part in two of the SNPCC challenges. In the first
(+HOSTZ) challenge, participants were provided with photometric
host galaxy redshift estimates, based on simulated galaxies analysed
using the methods discussed in Oyaizu et al. (2008) and asked to
return the type of each SN candidate. In the second (—HOSTZ)
challenge, no redshift estimates for simulated SNe were provided.
Both challenges are considered in this paper, but with emphasis on
the +HOSTZ challenge. We did not attempt to distinguish between
non-Ia subtypes (such as Type II and Type Ib/c SNe).

Fig. 1 shows the multiband light-curve data for a randomly se-
lected Ia and non-Ia SN. To these measurements, a parametric curve
has been fitted as discussed in Section 2.2.1.

2.1.1 Training samples

The aim of the SNPCC was for the participants to classify each
of the simulated SNe into Ia or non-Ia (and non-Ia subclasses if
they desired) with the aim of minimizing false Ia detections and
maximizing correct Ia detections. To aid this, a spectroscopic train-
ing sample of ~1000 SNe with known type was provided which
is a simulation of expected spectroscopic observations on a 4-m
class telescope with a limiting magnitude of r ~ 21.5, and an 8-m
class telescope with limiting i band magnitude of 23.5. Because
spectroscopy is harder than photometry the distribution of SNe in
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Figure 2. The tail function W, which is used in fitting equation (1). Param-
eters (v, ¢, 7) are kept fixed at (0.5,0, 1) here.

this spectroscopic sample is much brighter on average than the full
photometric sample, and hence is not representative of the full sam-
ple. This is a crucial point to appreciate and as a result in this paper
we refer to this sample as the non-representative training sample.

We will often compare with the results from a representative
sample, generated by spectroscopically following up a sample of
objects that is representative of the full photometric SN population.
To produce an unbiased training sample, at the conclusion of the
SNPCC when the types of each SNPCC object were revealed, we
randomly selected ~1000 SNe from the entire SNPCC data set, and
considered the effect of using this as our training sample. This is
referred to in the text as the representative training sample. We refer
to the SNe that require classification as the unclassified set.

2.2 Post-processed data

2.2.1 Fitting a parametrized curve

In the provided photometric data the number, sampling times, fre-
quency and accuracy of the sampled magnitudes varies greatly for
each SN, as illustrated in Fig. 1. In order to standardize the raw
data we fit, by weighted least squares, a parametrized function to
the light curves in each of the four colour bands. Our parameters
are (A, ¢, ¥, k, o) and the flux in each band is taken to be’

k
FiH)=A (ﬂ) exp (_ﬂ) ket + win). )
o o

The five parameters to be fit in each band have the following in-
terpretations: A + ¢ is the peak flux, ¢ is the starting time of the
explosion, k determines relative rise and decay times and o is a tem-
poral stretch term. , the time of peak flux, is determined by these
parameters via T = ko + ¢. The function W is a ‘tail’ function such
that F(t) — i as t — oo. The exact form (illustrated in Fig. 2) of
v is

0 —00 <t < ¢,
W(t) = ¢ cubic spline ¢ <t<r,
v T <t <00,

where the cubic spline is uniquely determined to have zero derivative
att = ¢ and t = 7. The effect of each parameter is illustrated in
Figs 3-6. We have also posted two files at Cosmology at AIMS
(2010), each containing 200 randomly selected and fitted SNe to
illustrate the range of fits possible. With five free parameters, A, ¥,
¢, k and o in each colour band and a host redshift (in +HOSTZ
challenge), we have 21 parameters specifying each SN. We do not
require that there be any correlation between the derived parameters

3 This function has a single maximum and therefore cannot fit examples
which have a double peak. However, for the data we use in this paper this
turns out not to be an important limitation.

© 2011 The Authors, MNRAS 414, 1987-2004
Monthly Notices of the Royal Astronomical Society © 2011 RAS

Statistical methods for photometric typing 1989

Figure 3. The effect of varying A on the function F(f) from low (dark) to
high (light). We keep the parameters (k, o, ¢, V) fixed at (1, 1,0, 0).
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Figure 4. The effect of varying ¥ on the function F () from low (dark) to
high (light). We keep the parameters (k, o, ¢,A) fixed at (1, 1,0, 1).
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Figure 5. The effect of varying o on the function F(¢) from 0.1 (dark) to
1.0 (light). Increasing o linearly stretches the curve away from the t = ¢.

‘We keep the parameters (A, ¢, k, 7) fixed at (1, 0, 1, 3).
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Figure 6. The effect of varying k on the function F(¢) from 0.2 (dark) to
1.8 (light). Increasing k decreases the ratio of rise to decay time (rapid rise
relative to decay means low k). We keep the parameters (4, o, ¢, 7) fixed at
(1, 1.5,0,3).

in any band, e.g. between explosion time, time at peak or stretch.
This is a natural extension to study in future work.

2.2.2 Sparse data sets

About 5 per cent of all the SNe had fewer than eight observations
in one or more of the four bands. To avoid overfitting, we did not fit
these SNe with equation (1). Instead, these sparsely sampled SNe
were each fit to a five-dimensional point — the maximum flux in each
of the four colour bands plus the host redshift. The kernel density
estimation (KDE) and boosting methods (Section 3) were applied to
these SNe in the same way as was done in the 21-dimensional (21D)
case (Sections 4.1.1 and 4.2.1). Unless otherwise stated, discussions
and illustrations will all reference the 95 per cent of SNe which had
eight or more observations in all bands and hence were fitted with
21 parameters.
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2.2.3 SALT fits

In Section 4.4, we consider classification methods that require in-
formation on the distances to SNe to constrain their type. Distance
moduli for all SNPCC SNe were derived using the publicly avail-
able light-curve fitter SALT2 (Guy et al. 2007). Fits were carried
out using the g, r and i passbands (i.e. z colour band data were
not included). All available SNe were considered, which is signif-
icantly more liberal than the usual data-quality cuts applied during
past SN cosmology analyses (Kessler et al. 2009). In this way, we
maximized the number of SNe available for this work. We applied
SALT2 to 1256 SNe available in the non-representative training
sample. Immediately, we found that 165 SNe failed to pass through
SALT?2 with the reported error of the light curve either having a
too low S/N or missing g-band data. We did not investigate these
errors further and simply exclude these SNe. Furthermore, when the
S/N is low, SALT?2 fits some SNe but returns a default upper limit
magnitude of 99 and is unable to produce meaningful parameters
from the light-curve fit. This affected 62 SNe in the training sample,
which were also removed from the sample. For the 1029 SNe that
were successfully fitted, SALT2 returned a best-fitting value for four
parameters M, X, X; and ¢ for each event (which relate the peak
magnitude and stretch/colour corrections to the light curve). The
best-fitting Ia model light curve was also returned in the observer
frame, which we used to calculate the x? value for each SN in each
passband (g, r, i) which are used in Section 4.4 to classify SNe.
Distance moduli are calculated with

u=mp— M)+ ax; — fc, (@)

where we used values of « = 0.1, 8 = 2.77 and M = 30.1 to
calculate the distance moduli, as discussed in Lampeitl et al. (2010).
These values are consistent with those found in other analyses and
were not expected to significantly affect our results. Fig. 7 shows
the Hubble diagrams for the two training samples considered in
this analysis. Also shown is the best-fitting cosmology to each
Ia data set assuming a flat ACDM model. The non-representative
training sample has a best-fitting value of €2, = 0.30 compared to
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Figure 7. Hubble diagrams for the two training samples considered in
this paper. SNela are shown as red triangles, while non-Ia SNe are plotted
as blue squares. Also shown is the best-fitting cosmology to each SNIa
sample. Above: the representative training sample, with 2, = 0.23. Below:
the non-representative training sample, as provided for the SNPCC, with
Qn =0.3.

a value of ,, = 0.23 for the representative training sample. In the
non-representative training sample, non-la SNe are predominately
found at lower redshifts than the representative training sample
due to the effective magnitude cuts coming from the spectroscopic
requirement of the non-representative sample.

3 NEW CLASSIFICATION METHODS

We now describe in very general terms the classification algorithms
we have used to facilitate application to other areas of cosmology
and astrophysics. In order to classify a given object Y as either la
or non-la, one would like the posterior probabilities P(Y = Ia|x)
and P(Y = non-lajx) = 1 — P(Y = la|x). Here x are the parame-
ters or features that characterize the SN. Knowing these posterior

probabilities is equivalent to knowing the odds:
PY=1I

odds(x) = L =1l

P(Y = non-la|x)

Now one classifies Y as a Ia for example if odds(x) > 1, i.e. if
P(Y = Ia|x) > 0.5. The two methods we discuss in this section
approximate the odds in different ways.

(1) KDE estimates P(x|Y = la) and P(x|Y = non-Ia), the density
of the features in classes Ia and non-la, respectively, and then uses
Bayes formula to give

P(x|Y =1Ta) P(Y =Ta)

dd = .
odds(x) P(x|Y = non-Ia) P(Y = non-Ia)

(2) Boosting directly estimates odds(x) through regression meth-
ods, as a sum of small trees built by a type of functional gradient
descent.

These methods are discussed in detail below.

3.1 Kernel density estimation

KDE is a non-parametric method for estimating the probability
density function (pdf) of a sequence of observables. Within this
paper, the probability densities of the post-processed data described
in Sections 2.2.1-2.2.3 are used for classification. Pdfs are useful as
we may base a classification rule upon the relative probabilities that
a candidate SN is either Type Ia or not Type Ia. Such a classification
rule will require both the Ia and the non-Ia probability densities for
the observed SN data. KDE enables us to derive these pdfs in a
fairly model-independent manner, as we now discuss.

Suppose we have a set of d observables and that we would like
to estimate the value of the pdf at a point x in this d-dimensional
space. Given a training set with n observations, i.e. n points X; in
this d-dimensional space, the KDE is given by

. 1< 1 x—X;
fh(x)=;§jh—dl<,-( - ) 3)

i=1

where f » (x) is the KDE, X; is the ith training observation, K;
is the kernel function for the ith training observation and 4 is the
global kernel bandwidth. % is a tuning parameter: the kernels become
more ‘peaked’ about the training observations as .z becomes smaller.
The optimal bandwidth may be obtained by cross-validation (see
Appendix A). The choice of kernel is arbitrary, except that any
proposed kernel should satisfy the following two conditions:

() [K@x)dx =1,
(i) K(—x) = K(x).

© 2011 The Authors, MNRAS 414, 1987-2004
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Figure 8. Schematic figure illustrating the idea of a KDE in one dimension.
The training data points are shown as dark points with arrows. The Gaussian
kernels are shown together with the sum of the kernels. Note that the KDE
is not normalized in this figure and is thus close to what we actually use in
this paper.

The first condition ensures that the KDE integrates to unity and
that all observations carry equal weight, whilst the second condition
ensures that the KDE is unbiased and is centred about one of the
n d-dimensional training data points. The basic idea of the KDE
method is illustrated in Fig. 8 in a simple 1D example. A commonly
used kernel (and the kernel that we will use throughout this paper)
is a multivariate Gaussian, normalized to unit volume:

- ex —l(x_Xi)TEI (xi—Xi) 4)
VG BN A\ )

Here x and X; are d-dimensional vectors and X; is a d x d co-
variance matrix that changes the orientation and shape of the kernel
around each training observation #; for example the covariance ma-
trix X; can be estimated from the nearest £ neighbours of a training
data point, which is what we do, as described in Section 4.1 and
as illustrated in Fig. 9. This provides the possibility of adapting
the kernel to local variation. In contrast the bandwidth parameter /

[P T
0,\

Figure 9. A realization of 50 points from an unusual distribution. Around
each observed point a kernel is constructed. The axes of each kernel are the
eigenvalues of the point’s (2 x 2) X; matrix (equation 4). Each X; is the
covariance matrix of the nearest £ points multiplied by the global bandwidth,
h.Here h = 0.6 and £ = 10.
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affects the global behaviour of the kernels. While it is more com-
mon to choose the covariances to be equal, for the SNPCC and the
current application this would have been a bad choice (as described
in Section 4.1).

3.1.1 Integration over data errors

In order to classify a SN with light-curve measurements x, we must
evaluate the KDE at x. However, in our case we are not sure where x
lies in parameter space as the light-curve measurements have errors
and are not perfectly sampled.

Using a Gaussian kernel, we write the KDE as

A 1 1 )C—X,'
f(x):nZth( - ,2,-). 5)

For simplicity we suppress vector notation but all quantities (other
than /) are d-dimensional vectors or matrices, and the index i runs
over the points in the training set.

Now assume that the location of a point in the d-dimensional
space is not known exactly and is instead given by a Gaussian pdf.
We take the mean to be x and the covariance matrix to be Y. The
KDE value is then given by integrating the KDE over the unknown
pdf of the point being classified:

/de(z -xY) f@

_ ! ' (e vk (=X 5

We notice that this reverts back to the original value if K is a §
function located at x. Further, the function being integrated is a
product of two Gaussians, which is itself another Gaussian. The
KDE value then simplifies to

~ 1 1 - X; _
f(x)=;Zh—dK (XT;EmLh Zdy), 7

i.e. the KDE kernels simply have an increased variance, given by the
sum of their covariance matrix and the covariance matrix of the point
being evaluated, scaled by #~2¢. The importance of including this
increased variance for uncertain observations should not be ignored,
especially when the variances of the points being classified are large
(as is the case in this paper). Correctly implementing equation (7)
can significantly improve classification performance. In Section 4.1
we compare analyses on the SN data including and ignoring the
covariance Y.

3.2 Boosting

Boosting (Freund & Schapire 1995) is a learning algorithm for clas-
sification. Until recently the most popular boosting algorithm was
AdaBoost (Freund & Schapire 1997). AdaBoost works by combin-
ing weak classifiers into a committee, whose combined decision
is significantly better than that of individual weak classifiers. The
precise workings behind AdaBoost’s success remained hazy until
it was shown (Friedman, Hastie & Tibshirani 2000) that boost-
ing produces the powerful committee by sequentially adding to-
gether weak classifiers calculated by steepest descent. The further
ideas of slow learning (Friedman 2001) and bagging (Friedman
2002) were later introduced into boosting, culminating eventually
in the gradient boosting machine (GBM) algorithm. The algorithm,
implemented as a package in the statistical programming language
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Figure 10. Above: a tree of depth 2 for classifying an object into one of 2%
regions. Below: the tree domain containing 22 distinct regions as defined by
the tree.

R,* is described in Section 3.2.3. A brief discussion of trees and loss
functions is presented in Sections 3.2.1 and 3.2.2 in preparation for
the presentation of the GBM algorithm.

3.2.1 Tree functions

The most widely used weak classifiers (a.k.a. basis functions) in
boosting are trees. Trees are discontinuous functions which take
discrete values in different regions of a domain. That is to say, a tree
T has the form

21 if x € Ry,
T(x)=

K lfx € Rzu

where the K distinct regions R, - - - Rx together partition x space.
The region boundaries can be described through the branchings of
a tree, as illustrated in Fig. 10. For boosting, it is common to only
use trees of a very simple form, that is only trees with branchings of
the form x < v, where x is one of the dimensions of x space and
v is a real number. In the case of the SNPCC, x are the parameters
fitted to the light curves in Section 2.2.1.

3.2.2 Loss function for classification

Suppose we have observed » training points, each consisting of data
and type: (X;, 1;), where the data X; is a d-dimensional vector, and
the type 7; is £1, corresponding to the two classes. Suppose that
we are required to find a function F: RY — R which minimizes the
following loss function:

L(F)=_log(l+ exp[-2F(X)7]). (8)
i=1

The specific form chosen for the loss function (8) can be explained

by considering its partial derivatives with respect to F(X;). Doing

4R and its associated packages can be downloaded from http://www.r-

project.org

so (Hastie, Tibshirani & Friedman 2009), it can be shown that the
form of F which minimizes (8) is given by
# observations: X;,t =1

1
F X,' == *l . 9
(X2) 2 o8 # observations: X;, v =—1 ©)

This is an approximation to half the log odds (the log of the odds):
P(n = 11 = X))

1 dds =1 .
O8O = b = C1x = X))

(10)

This is the key result: a function which minimizes the loss function
(8) is a good approximation to half the log odds. A good approxi-
mation to the log odds is exactly what is needed for classification
problems. The boosting algorithm aims to approximately minimize
this loss function and in so doing arrive at an approximation of the
log odds which can then be used for classification.

If you have observations at every possible data point, you can
directly approximate the log odds through (9). In reality, you will not
have observations at all possible data points, and so cannot do this.
This trivially corresponds to not having observed all possible light
curves, and so needing to make inferences from similar light curves.
Boosting does this inference through constrained minimization of
the loss function, as described in the following section.

3.2.3 The gradient boosting machine

The GBM (Friedman 2001) works by sequentially adding new trees
to a function F, each addition reducing L(F) (8) and so improving
the approximation of F' to half the log odds.

The trees, which have depth D, are appended to F at each of
the M iterations of the GBM algorithm. Choosing larger M and D
values results in a final L(F) nearer to the global minimum value
(9). However, our end objective is not to reach the global minimum
but to construct a good approximation to the log odds, and trees of
lower depth are generally better suited to this end.

Algorithm 1 (below) outlines an implementation of the GBM. A
few subtleties have been omitted from it here, and we refer you to
Appendix E for a fuller description. We recommend watching our
demonstrative animation of the algorithm while reading Algorithm
1. The animation can be found at Cosmology at AIMS (2010), the
URL in the references.

Algorithm 1 — gradient boosting machine

Input: X;, 7; for observations i = 1 to n.

1 1+7 I <
Initialize: Fp(x) < —lo , Wwhere T = — Ti.
o(x) < 3 log 7—— n%}
Initialize: z; < O for observations i = 1 to n. The z;s will measure
how much of a ‘misfit’ each observation is.

Choose tree depth D and number of trees M.
Form =1 to M:
(1) fori =1 to n, update z;:
oL 27;
TF 1 (X)) T+exp2F(X)T]

Zi <

(2) Fit by least squares T, the new tree: z; ~ T,,(X;) (Where T,,

has regions R,, ; - - - R,, ,p fitted to minimize the in-group variance:
see Appendix C for details).
(3) Choose constants ¥, 1 - - V.20 for Ry, 1 - - - R,, oo (chosen to

minimize L(F,_; + T,)).
(4) Fm <~ Fm—l + Tm
Finally, F < Fy.
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F is our final approximation to half the log odds, and it can now be
used to classify with a simple rule of the form

IF F(x;) > v =1, = 1; ELSE 1; = —1, where the optimal v
depends on the figure of merit (FoM).

Notice that the variable z;, updated in step 1, is positive if t; =
1 and negative if t; = —1. For this reason, when 7, is fit to the z;s
at step 2, observations of the same type are more likely to fall into
the same region of 7,,. Moreover, observations with large z;s carry
more weight while fitting 7,,, and hence are even more likely to
be placed with objects of the same type. This acts to place special
attention on unusual objects, or objects whose type is not clear.

While values are fitted for each tree region in step 2 (as described
in Appendix C), these values will not necessarily result in a reduced
L(F,—1 + T,). Hence at step 3 of the algorithm, y,,; values are
explicitly chosen to minimize L(F,_; + T,,). In effect, only the tree
shape is taken from step 2.

4 RESULTS
The entries in the SNPCC were evaluated using the FoM:
f ( N. v NX

s Noon-1) = efficiency x pseudo-purity

_ ( Ny ) ( N )
B N;I;OT Nfz( + 3Nr)1(on-1a ’

where N}/ is the number of correctly classified SNela, N¥ _ is the
number of non-la SNe classified as SNela and N7 is the total num-
ber of SNela. Had the coefficient of N} ;. in the denominator of the
pseudo-purity term been 1 and not 3 the term would have been true
purity, i.e. the proportion of SNela in the final Ia-classified group.
How relevant this FoM is to cosmology is not absolutely clear, but it
is a robust measure of how well a classification algorithm penalizes
both missed detections and false discoveries. For applications such
as BEAMS (Kunz et al. 2007) a FoM which takes type probabilities
as inputs would be more useful.

In this section we discuss the implementation and performance
of each of our methods. Unless stated otherwise, the scores given
in this section refer to the SNPCC, while all figures are using the
post-SNPCC data described in Section 2.1. Of particular interest to
us is the comparison of results obtained when the training is done
with representative and non-representative samples. We also briefly
mention applications that these methods have previously found in
cosmology and related fields.

4.1 21D KDE

4.1.1 Application

KDEs have been used before in astronomy for estimating the pdf
from a discrete or noisy data set (Fadda, Slezak & Bijaoui 1998;
Bissantz et al. 2007; Ascasibar 2010), identifying groups (Balogh
et al. 2004) and clusters (Valtchanov et al. 2004) in galaxy surveys
and determining the timings of millisecond pulsars (Carstairs et al.
1991) and gamma-ray bursts (de Jager, Raubenheimer & Swanepoel
1986), to name a few examples.

In Section 2.2.1 we described how we fit the SN light curves in
each of the four bands using the parametrized function (1), resulting
in 20 light-curve parameters. With the addition of host redshift in
the case of the +HOSTZ challenge, each SN is described by a 21D
point. We use KDE to approximate the 21D Ia and non-Ia pdfs based
on the training data.

We allowed the 21D training points to have different covariance
matrices, as described in Section 3.1. As previously mentioned a
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Figure 11. Ia (red crosses) and non-la (blue circles) in the non-
representative training sample. The KDE values at calculated using 10-fold
cross-validation.

single global covariance is most common for KDE, but in cases
where a pdf has large regions of high and low probability, this
can be problematic. In low-probability regions the kernel density
will be too ‘spikey’, while in high-probability regions it will be too
smooth. To understand this, consider what would happen if, in Fig. 9,
the ellipses were constrained to all be of the same size. Chosen
too small and the low-probability region would have ‘bumps’, too
large and the high-probability region would lose features. The 21D
points for the SNPCC are not uniformly distributed, as illustrated
by the cumulative plots of Appendix F, and so are susceptible to
this problem. Using cross-validation we chose £ = 10 and & = 0.6
(using the notation from Section 3.1).

Having constructed two KDEs from a training sample, each un-
classified SN may be classified as follows.

(i) Fitequation (1) to each of the four light curves thus obtaining
a 21D point for the candidate.

(ii) Evaluate the Ia and non-Ia kernel probabilities derived from
the training sample at the 21D point, and then evaluate the odds.

(iii) If the odds (or log odds) is above some threshold, classify
as la.

In cases where one or both of the KDEs are a poor representation
of the underlying pdf, it may be preferable to modify step (iii). For
example if one of the KDEs is particularly inaccurate, one may
prefer to classify by using only the other KDE. For the SNPCC
leaving step (iii) unchanged was advisable, as can be deduced from
Fig. 11. The lines in Fig. 11 are lines of constant odds. If KDEs are
accurate approximations to pdfs, a line of constant odds is optimal
for discriminating between las (below the line) and non-Ias (above
the line), irrespective of the FoM used. Furthermore, if the KDEs are
accurate approximations to pdfs, there should be an equal number
of Ias and non-Ias on the line odds = 1 and 1000 times more las as
non-Ias on the line odds = 1000. This is roughly observed in Fig. 11
and so we can proceed to choose the odds line which maximizes
the SNPCC FoM.

For the entry in the SNPCC, we failed to include the parameter
covariance matrices when calculating KDE values (in effect, we set
Y to be a matrix of zeros in equation 7). Our final score suffered
as a result — the benefit of correctly implementing the calculation
(7) is illustrated in Fig. 12, where we see from both the histograms
and the cumulative plots an increased separation between las and
non-Ias when equation (7) is correctly implemented. We find a
15 per cent increase in score when correctly implemented on the
post-SNPCC data. The KDE method still obtained the second and
third highest scores in the —HOSTZ and +HOSTZ competitions,
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Figure 12. Histograms (above) and cumulative plots (below) of the 21D
(representatively constructed) KDE log odds. Left: the parameter covariance
matrix is not included in KDE evaluation as proposed in Section 3.1.1. Right:
the parameter covariance matrix is included in KDE evaluation.

respectively, with scores of 0.37 and 0.39. Of interest is that the
20D KDE (—HOSTZ) is almost as good at classifying as the 21D
KDE (+HOSTZ). The winning competition scores (Kessler et al.
2010b) were 0.51 (—HOSTZ) and 0.53 (+HOSTZ).

4.1.2 Non-representative versus representative

As with all of our methods, we constructed classifiers using both the
non-representative sample provided and a representative sample of
equal size, as described in Section 2.1.1. In each case, the remaining
unclassified SNe were used as a test of the performance of the
classifier.

Fig. 13 carries useful information about the performance of
the non-representatively trained KDEs and representatively trained
KDEs. For example, the efficiency of classifying Ias with a log
odds threshold of 2 is simply the cumulative value of the unclassi-
fied Ias (solid red) at log odds = 2. For both representatively and
non-representatively trained KDE:s this is about 0.75, meaning that

1.0
208
206

204
20.2
0.0°

1.0 ‘ ‘ -
V08| Ia training /
>

g= || = Iafinal
=< 0.6 . .

= nla training

=

g 041| — nla final

00.2r |
00— 0 2 ¥ 6

log odds

Figure 13. The cumulative frequency of log odds for non-Ia (blue) and
Ta (red) SNe, for the training (dashed) and unclassified (solid) samples.
The training log odds was calculated using 10-fold cross-validation. Above:
using non-representative training. Below: using representative training.

about 75 per cent of SNela are correctly classified when a threshold
of log odds = 2 is used.

To obtain high purity, the log odds threshold must be chosen
such that the non-Ia cumulative frequency is low compared to the
Ia cumulative frequency. To obtain high efficiency, the log odds
threshold must be chosen such that the Ia cumulative frequency is
high. Putting these together, to obtain both high purity and high
efficiency, a log odds threshold must be found at which the non-
Ia cumulative frequency is low and the Ia cumulative frequency is
high.

The dashed lines in Fig. 13 are the cumulatives of the training
data using 10-fold cross-validation. In the case of representative
training, we see that these are accurate predictors of the true cu-
mulatives. However, in the case of non-representative training, the
non-Ia cumulatives of training and unclassified SNe are vastly dif-
ferent. If in the case of non-representative training one assumed that
the training sample were in fact representative, one would predict a
non-Ia misclassification rate of under of 10 per cent using a log odds
cut-off of 1. In reality it is 30 per cent. Such dangerous predictions
are impossible to make if a representative sample is used in KDE
construction, as illustrated by the hugging of the solid lines to the
dotted lines.

4.2 Boosting

4.2.1 Application

Boosting has been used in particle physics for example by the
MiniBooNE neutrino oscillation experiment (Roe et al. 2005) and
is implemented in the photometric redshift package aBorz (Gerdes
et al. 2010). In the SNPCC we applied boosting to the 20 fitted
light-curve parameters for the —HOSTZ competition, and the 21
parameters for the +HOSTZ competition. Using 10-fold cross-
validation we chose to use 4000 trees to maximize the FoM (11).
We chose the learning rate to be 0.05 and the bagging fraction to be
0.5 (these parameters are described in Appendix E).

During the training phase of the SNPCC we expected, based on
the idea that the training sample was representative, that boosting
would significantly outperform the 21D KDE. In reality boosting
performed more poorly than the 21D KDE, obtaining scores of 0.20
(—HOSTZ) and 0.25 (+HOSTZ; Kessler et al. 2010b) strongly
suggesting that the 21D KDE method is more robust to biases in
the training set than boosting.

In the case of the post-SNPCC data, the score obtained with
non-representative training is even lower (0.15) (+HOSTZ) due to
bugs in the original SNPCC data such as too dim non-Ias which
made classification easier, as described in Kessler et al. (2010c).
As a result comparison of scores in this paper with those in the
competition cannot be made directly.

4.2.2 Non-representative versus representative

Our failure to correctly predict our score in the SNPCC was a result
of the biases in the training sample. Boosting appears to be even
more sensitive to training sample bias than the 21D KDE method.
This is illustrated by the large deviation in Fig. 14 of the unclassified
non-Ia curve from the training non-Ia curve with non-representative
training.

While boosting is more sensitive to bias in the training sample
than the 21D KDE, it is a superior classifier when a representative
training sample is used. This is illustrated in Fig. 14 by the large
vertical separation between non-Ia and la cumulative curves when
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values are approximations to (1/2)log odds.
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Figure 15. Small black circles: the score obtained by boosting when trained
with random representative samples of varying size (100 to 6000 SNe). Large
red circle: training on the given non-representative sample. Blue cross: the
score obtained in the + HOSTZ competition. Green triangle: the performance
when trained with a ‘random’ sample with non-random Ia:non-Ia ratio of
1:1 as opposed to true ratio Ia:non-Ia ~ 1:3.

a representative sample is used. The vertical separation between
the Ia and non-Ia curves is larger in the case of the boosting than
the 21D KDE, resulting in a lower contamination rate and higher
efficiency when boosting is used.

We see from Fig. 15 that training with 1000 representative SNe
results in a score three times greater than training with 1000 non-
representative SNe. We also see from Fig. 15 that training with a
non-representative sample of size 1000 can be matched by train-
ing with only 50 representative SNe. The score obtained when
500 representative Ia and 500 representative non-Ia SNe are used
for training, as opposed to the truly representative case where the
Ia:non-Ia training ratio is 1:3, is only slightly higher; the advantage
of extra Ias at the cost of non-Ias is marginal.

We did not include the parameter covariance matrices in any way
in boosting. It is not clear how this inclusion would best be done,
but the noticeable improvement to the 21D KDE score when the
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covariance is included suggests that it is worthwhile considering
this question for future implementations. Two possibilities are (a)
‘supersampling’ — converting each training point into 100 training
points drawn from a distribution with covariance given by the pa-
rameter covariance matrix, and (b) including the covariance matrix
determinant as a 22nd boosting parameter.

We find that with boosting if a non-representative training sample
is used the cumulative frequency lines of the unclassified SNe do
not follow those of the training sample. On the other hand if a repre-
sentative sample is used, 10-fold cross-validation provides accurate
predictions for the unclassified SNe boosting values, as illustrated
by the close hugging of training and unclassified cumulative lines
in Fig. 14.

We see that boosting the 21D light-curve parameters with a repre-
sentative sample results in a robust photometric classifier. To illus-
trate this point we have created on online archive of 200 randomly
selected unclassified SNe, and labelled them according to boosting’s
output Cosmology at AIMS (2010). In some cases it is difficult to
identify obvious Ia or non-la features, yet the algorithm classifies
correctly.

4.3 Parameter importance

One advantage of the boosting algorithm is its ability to quantify
the importance of parameters in classification (see Appendix D
for details). In this section we look at these quantities in an effort
to discover which fitted parameters are most useful for classifi-
cation. We also ask which are the parameters that distinguish the
non-representative training sample from the representative training
sample, i.e. what makes the non-representative las and non-Ias a
biased sample. We answer this question by performing boosting
on a sample of representative and non-representative las, as if the
SNPCC had been a competition to determine if a SN attains a spec-
trum or not.

Fig. 16 illustrates which parameters are most useful in distin-
guishing Ia from non-Ia in the representative training sample. One
interesting feature illustrated in Fig. 16 is that every parameter ap-
pears to carry information.

The third most important parameter (after redshift and A in z
band) is the parameter k in the i band. To interpret this piece of
information, we first see in Fig. F3 that non-Ia SNe have on average
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Figure 16. The importance of each of the 21 parameters in classifying SNe
as Ia (or not) using boosting on the representative training sample.
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Figure 17. The importance of parameters in distinguishing representative
from non-representative SNela using boosting.
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Figure 18. Cumulative plot of redshift, non-representative training (dashed)
versus unclassified (solid), and Ia (red, thick) versus non-Ia (blue, thin).

lower k values than Ias. From this we then infer from Fig. 6 that Ias
have a higher rise-time to decay-time ratio than non-Ia SNe.

The equivalent figure for the non-representative training (Fig. G1
in Appendix G) paints a similar picture with one noticeable differ-
ence: the information for distinguishing between Ia and non-Ia SNe
in the non-representative training sample is carried almost exclu-
sively in the r band.

We now turn to the comparison of representative and non-
representative SNe. Fig. 17 suggests that the most biased parameter
in the non-representative training sample is redshift. This is not sur-
prising given that we know that the non-representative SNela are
at lower redshift than the true Ia population (Fig. 18). Indeed, we
see from Fig. 18, 70 per cent of Ia SNe in the non-representative
training set are at a redshift of less than 0.6, while only 20 per cent
of Ias in the unclassified set are within this redshift.

In the case of non-las SNe (Fig. G2 in Appendix G) boosting
allocates the majority of the bias in the non-representative sample
to the As. This is also unsurprising given that we are more likely
to obtain a spectrum from bright objects than dim objects. It is not
clear to us why boosting designates non-Ia bias to the As and Ia bias
to redshift.

4.4 Hubble KDE

4.4.1 Applications

An alternative method for using the idea of KDEs is to use the
SALT? light-curve fitter (with « = 0.1 and g = 2.77 as in Hicken

400,

200

KDE(la) - KDE(nla)
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Figure 19. 3D contours of the difference between the Ia and non-Ia Hubble
diagram KDEs as a function of redshift and distance modulus (1) together
with the actual non-representative training data used to produce the KDEs.
The data used to construct the KDEs are also shown: Ia data as red cir-
cles and non-Ia data as blue crosses. There is a clear offset in the two
KDE:s reflecting the fact that in this training data the non-las are fainter,
hence predominantly at lower redshift and with a much larger scatter than
the Ias.

et al. 2009) to estimate distance moduli, u; and errors o; for all
the objects in both the training and unclassified data, assuming that
all the data are SNela. We can then construct two 2D KDEs for
the training data: one consisting of all the known SNela and one
from all the non-la data. Each kernel is normalized to have a total
volume of unity and we use a slight modification of the standard
KDE formalism because we do not normalize the KDE. Instead
the heights of the summed KDEs are proportional to the number
of SNela and non-Ia, respectively. In this way we include prior
information related to the SN rates. A redshift range where there
are many more SNIa than non-Ia will automatically tend to lead to
a larger Ia KDE as a result. Of course, this does increase sensitivity
of the method to biases/non-representativity in the training sample
rates.

The 2D Gaussian kernel chosen for the Hubble KDE algorithm
had a fixed bandwidth (standard deviation) in the redshift direction
of 0.05 (chosen simply to avoid being too peaked but small enough
that the distance modulus does not change significantly across it),
while the bandwidth in the p direction was determined by the error
o, on the distance modulus coming from SALT?2, and also includes
a0.12 mag intrinsic dispersion error as usual. This means that points
with large errors contribute very broad, low-amplitude humps to the
final KDE, while points with small errors are much more peaked,
reflecting our confidence in that point. For illustrative purposes we
plot the difference KDE;, — KDE, -1, of the two KDEs in Fig. 19.
Positive values correspond to places where the Ia KDE dominates,
negative values to where the non-Ia KDE dominates. In addition we
plot the training data used to construct the KDEs.

Classification using these KDEs is then simple. For any candidate
object, we run it through SALT2 to give an estimated u and . We
can only use this approach on the data with a redshift estimate, z,
unlike the 21D KDE and boosting algorithms which do not require
a redshift. We then simply find the values of the two KDEs at that
(u, z) to yield probabilities of the object being a Ia or non-la. As
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in the other KDE method, one should fold in the error o on the
candidates which, assuming Gaussianity, is simple, as described in
Section 3.1.1. The result of this analysis is that each candidate has
a pair of probabilities: (P, Pon-12) that can be used to classify the
candidate.

4.4.2 Non-representative training sample

We applied this methodology to the whole sample of unknown SNe
supplied. In total, we started with 17 065 SNe and lost 4578 SNe
as junk because of SALT?2 failures previously mentioned (of which
2619 were complete failures and 1959 failed to return meaning-
ful parameters from the Ia light-curve fit), leaving 12487 SNe for
further analysis.

Essentially this Hubble KDE approach simply checks whether or
not an object lies close to the true cosmology curve on the Hubble
diagram (defined by the Ia KDE) at that redshift. However, there
are many non-las which lie close to the true cosmology curve. As
aresult one either has to be very strict with cuts (and therefore lose
many true las) or one has to accept a large number of false positives:
non-Ias that are classified as Ias.

Because there are so many non-las this and similar Hubble-
diagram-based methods (such as the Portsmouth entry to the
SNPCC) are less competitive as classifiers. In addition they also
require a redshift estimate for the SNe and are hence doubly infe-
rior compared with the 21D KDE and boosting.

4.5 Combining 21D and Hubble KDEs

In Section 4.1 we described the 21D KDE approach, and in Sec-
tion 4.4 we described the Hubble KDE approach. In this section,
we describe how we combined these approaches. As outlined in
Appendix B, there are several ways of combining odds from dif-
ferent algorithms to construct a better combined classifier. For our
combination entries in the SNPCC, we constrained our classifier to
be of the form

(Hubble odds)* (21D odds)? > n. (11)

This corresponds to a straight line in Fig. 20. The scores for the
combination entry was 0.28. Surprisingly, this was less than the
score obtained using the 21D KDE alone, and so we believe that
the line chosen for the SNPCC was poor. A straight line does seem
to be a good choice for the distribution of values in Fig. 20, but
perhaps a better choice would be of the form

Hubble odds > y; and 21D odds > y,. (12)

A pure 21D odds classifier would rely on a vertical decision line,
and a pure Hubble odds classifier would rely on a horizontal line, but
it is clear from Fig. 20 that a classifier of the form (11) (dashed) or
(12) (solid) should work better. Fig. 20 shows the separation of las
and non-las that come from using the Hubble KDE odds and 21D
KDE odds with the integration of errors presented in Section 3.1.1.
The optimal lines of forms (11) and (12) result in scores of 0.24 and
0.22, respectively, in the case of non-representative training and 0.45
and 0.42, respectively, in the case of representative training. These
scores are calculated using a purely 21D odds classification for the
~8000 SNe without SALT? fits, and a 21D—Hubble combination for
the remaining ~12 500 SNe with SALT?2 fits. As with boosting, the
21D KDE classifier is significantly worse using the post-SNPCC
data as previously discussed in Section 4.2.2, and so comparison
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Figure 20. SNe of Type Ia (cross) and non-la (circle), located according
to their 21D odds (x-axis) and Hubble odds (y-axis). Above: odds were
calculated from KDEs constructed using the non-representative training
sample. Below: a corresponding plot where KDEs were constructed with the
representative training sample. We see that the separation obtained is smaller
when non-representative training is used, and indeed the score obtained in
the non-representative case is significantly lower. Note that the SNe in this
figure are a random sample of the ~12 500 with a meaningful SALT? fit.

between these post-SNPCC scores and other SNPCC scores should
not be made until further analyses have been done.

To be in the top right-hand corner of Fig. 20, and therefore be
classified as Ia, requires that a candidate must simultaneously lie
close to the true cosmology distance modulus and have multiband
light curves that have the right shape; a very natural approach to
SNIa classification. It would be interesting to combine the Hubble
odds with 21D boosting instead of 21D KDE, as boosting the 20
parameters produces better results, as seen in Section 4.2.

An obvious extension, if one wanted to combine the outputs from
more than two classifiers, would be to use them as inputs to a new
boosting analysis. The odds from the 21D KDE, the Hubble KDE,
the 21D boosting and indeed any classifier of sufficient ability can
be used as weak classifiers in boosting. A reason to exercise caution
in using boosting or a neural network as a final classifier in this way
is the possibility of overtraining, but this can be prevented by using
10-fold cross-validation.

5 BIAS REDUCTION

We saw in Fig. 15 that representative training samples with more
than 50 objects outperform the 1000 strong non-representative train-
ing sample. In light of this astonishing fact we ask: how large a
representative sample can be extracted from the non-representative
sample?

Extracting a representative sample involves removing particular
SNe from the non-representative training set such that what remains
is representative of the unclassified set. This involves removing a
large proportion of bright, low-z SNe from the training set (see
Fig. 17). To decide exactly how many SNe of a given brightness or
redshift need be removed, we look at the distributions of parameters
A and redshift, and remove SNe from the training set such that
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Figure 21. 500 randomly selected unclassified (orange) and training (blue)
boosting values. The black line is proportional to the unclassified (orange)
histogram. Therefore, the set consisting only of training (blue) SNe falling
under the black line forms a representative sample of the unclassified SNe.
In other words, if we discard all the training SNe with boosting values below
—2, keep a certain fraction of the training SNe between —2 and 3 and keep
all the training SNe with boosting values greater than 3, the resulting training
set will be representative.

the distributions of the remaining training SNe coincide with the
distributions of the unclassified SNe. Doing this we conservatively
estimate that by appropriately removing 90 per cent of the training
set we will be left with a representative sample. In other words, in
the cumulative plots of Figs 18 and F1, the dashed lines will sit
atop the solid lines if the appropriate 90 per cent of training SNe
are removed.

A second approach required the calculation of boosting probabil-
ities of the SNe being unclassified. Note that these new probabilities
are distinct from the previously discussed Type Ia probabilities. Had
the training set been representative, the distributions of these proba-
bilities would have been the same for training and unclassified SNe.
However, the training set has many unusually bright SNe which
have particularly low probabilities as they do not look like typical
unclassified SNe. As a result the distribution of the boosting values
for the training set is skewed towards low probability. We therefore
wish to remove some low-probability training SNe so that the prob-
ability distribution of the remaining SNe is proportional to that of
the unclassified SNe. Doing this we again estimate that 90 per cent
of the training SNe need to be removed. This is illustrated in Fig. 21,
where by keeping only the 10 per cent of training SNe under the
black curve, we obtain a training set whose probabilities are repre-
sentative of the unclassified set.

In practice one would not discard SNe from the training set.
Instead of removing 2/3 of SNe in a particular bin, one should
rather give each SN in that bin a weight of 1/3. Note also that to be
able to know which SNe to remove from the training set required
that we knew the types of the SNe in the unclassified set. For real
surveys this is of course unrealistic, but if simulations of the rates
observed at different redshifts and magnitudes are accurate, these
can be used to decide which SNe to remove from the actual training
set.

6 DISCUSSION AND CONCLUSIONS

In this paper we have discussed the problem of classifying SNe
into subclasses (Type la or non-la) based on photometric light-
curve data alone, i.e. multiband fluxes as a function of time. This
will be necessary for future surveys which will detect vastly more
candidates than will be possible to follow up spectroscopically.

We have investigated two novel classes of classification algo-
rithms, KDE and boosting, and applied them to simulated SNe
light-curve data, finding that the methods performed impressively
as long as they were trained on a representative sample. Using the
KDE approach, we considered both a 21D case based on light-
curve parameters from all bands and a 2D version based on fits
to the Hubble diagram, using redshift information and an estimate
of the distance modulus obtained using standard light-curve fitting
software.

A key issue for the classification methods we used was the issue
of the training data sets. We compared the results based on train-
ing on two very different data sets: the first, a non-representative
set, mimicking the kind of spectroscopic sample available as part
of the follow-up program of a typical current-generation SN sur-
vey. The second was a representative sample of the same size
where training objects were selected at random from the full
sample.

In general we found that the training on the representative sam-
ple produced exceptionally good results and that cross-validation
on the training sample was able to accurately predict the purity and
efficiency of the method on the full sample. On the other hand,
training on the non-representative sample leads to relatively poor
performance on the full data set. The importance of having an
unbiased, representative sample is illustrated by the fact that for
boosting, representative samples larger than about 50 objects outper-
formed the full non-representative sample of 1000 objects, as shown
in Fig. 15.

Our primary result and recommendation therefore is that boost-
ing and KDE are powerful methods for SN classification, with re-
markably little astrophysical input. However, they require training
samples that are as unbiased and representative as possible. Further,
we found that a small unbiased training sample outperforms a much
larger, but biased, training sample.

Our other main result is that neither boosting nor the 21D KDE
method suffered particularly when the SN redshift information
was unavailable. This is particularly gratifying given that accurate
SN/host galaxy redshifts will not be available for most candidates in
the future and that methods based on the Hubble diagram critically
require redshift information to perform successfully.

While the algorithms we have presented were successful, there
are modifications to our boosting implementation that should
be experimented with for example different choices of light-
curve parametrization. Further it would be very useful to in-
vestigate methods to reduce sensitivity to biases in the training
data.

Finally, it is perhaps useful to comment on how our methods
compare to the winner of the SNPCC (the methods we described
in this paper finished second and third in the competition) which
used a template-based method and performed very well. Our first
comment is that comparison is hard because there was an overlap
between the templates used by Sako and those used to generate the
SNPCC, as described in Kessler et al. (2010b), so it is not clear
how the method would perform on completely independent data.
Secondly, it is not known how the various classification methods
would perform with different FoMs. For cosmological applications
(see Figs 22 and 23) one might prefer to use a FoM which looks at the
bias in recovered cosmological parameters such as the wy, w, dark
energy equation of state parameters. Investigating this important
issue is left to future work. It is clear that finding the best approach
to SN classification, and the best way to combine results from
different classifiers, will be an active area of research in the coming
decade.
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Figure 23. Cumulative histograms of the residuals from the best-fitting
Hubble diagram, determined using the SNela in the representative training
sample. Above: residuals for the representative training sample. SNela are
plotted in blue, with non-Ia SNe shown in red. Below: residuals for the
boosting results. SNela that were correctly typed are shown in blue, with
correctly typed non-IaSNe shown in blue. SNela that were considered to
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APPENDIX A: CROSS-VALIDATION

Cross-validation is a statistical technique that enables one to tune
model parameters so as to optimize model prediction. Within the
context of the 21D KDE, both the kernel bandwidth /4, the number
of nearest neighbours k and the odds threshold may be optimized
for some FoM by 10-fold cross-validation. This entails partitioning
the training set into 10 roughly equal parts. One may then use nine-
tenths of the data to estimate the Ia and non-Ia probability densities
and then use these probability densities to classify the remaining
one-tenth of the training set. This may be repeated 10 times, predict-
ing the class for each of the 10 partitions of the data using the KDEs
estimated from the remaining nine partitions. Since we know the
SN types of the training set, we can then find a combination of the
aforementioned three parameters that maximizes the FoM. Cross-
validation can be used in a similar way for boosting. Fig. E1 uses
cross-validation to determine that 4000 trees will be near optimal.

APPENDIX B: PROBABILISTIC
INTERPRETATION AND COMBINATION
OF PROBABILITIES

By evaluating each KDE, we may obtain the probability of observ-
ing a light curve (with the light-curve data denoted as x) conditioned
on the SN being a la or not, i.e. we get p; = p(x|Ia) and p, = p(x|non-
Ia). The ratio of p; to p, is known as the Bayes factor, B1,. What
interests us, however, is the relative probability of the observation
x being from a Ia SN versus another type. That relative probability,
called the odds ratio, odds(x) is

P(la)
P(x)’

P(non-Ia)
P(x)

P(lalx) = p;

B

P(non-Iajx) = p, , (B2)

P(alx)  piP(la)

P(non-la|x) ~ p,P(non-Ia)
P(a
= 312#‘ (B3)
P(non-Ia)

The probabilities P(Ia) and P(non-la) are the prior probabilities to
observe a Ia SN or one of another type, respectively.

To convert the relative probability back into absolute probabilities
we need use the fact that there are only two possibilities (Ia or not),
so that P, = (1 — P;). In this case we have that

P, = odds(x)/(1 4 odds(x)). (B4)

odds(x) =

If we have two independent observations x and y then we can
update the relative probability odds(x) from observation x:

p(y|la)

odds(x, y) = odds(x) —————.
p(y[non-Ia)

(B5)
We can use this to combine for example the probability from the
21D KDEs with information from the Hubble diagram, but we
have to be careful if the 21D KDEs already contain some of
the Hubble information implicitly e.g. through the evolution of
the overall amplitudes of the light curves as a function of redshift.

It is possible that the KDEs should not be interpreted as probabil-
ities. This may be due to oversmoothing of too wide kernels, or shot
noise from too narrow kernels. With a sufficiently large training set
one can test how accurately the KDEs represent probabilities — the
proportion of SNela in a (calculated) odds bin should equal that
predicted by equation (B4). If it is not, one can consider making a
mapping from the calculated odds to the true odds.

If in combining probabilities one does not want to assume inde-
pendence, or does not trust the probabilities and does not want to
make a mapping to true probabilities, there are several alternatives
to equation (B5). Some of these include capping unreliable odds
at 1, using linear combinations of odds instead of products, using
p-values instead of probabilities and down-weighting particularly
small/large Bayes’ factors. Often an optimal method can be decided
on by considering a scatter plot (like Fig. 20) of the training set.
In Section 4.5 we considered two new ways of combining odds,
equations (11) and (12).

APPENDIX C: BEST TREES

Suppose we have some data X; € R?, z; € R, and we would like to
fit z; ~ X using a tree. To be precise, we would like to find a tree
which minimizes Z;’ZI(T(X,-) — z;)?, where T(X;) = v, when X
falls into node k of the tree. We therefore need to find two things,
the tree shape and the ‘leaf’ values (the v;s). Fig. C1 illustrates the
idea of ‘greedy’ tree construction. Note that this may not be the best
depth three tree. The greedy approach ignores several potential trees.
However, it is quick and easy, and for boosting where thousands of
trees are made it is not necessary to have exactly minimizing trees at
each step. See also our animation of tree construction on the arXiv
at Cosmology at AIMS (2010).

0.4} cee e ]

02} ]
0.1k ]
0.0

0 1000 2000 3000 4000 5000 _ 6000
Number of trees in F

Figure C1. Above left: at several X; € R? we have a value z; € R, rep-
resented by a rectangle if negative and a circle if positive, with the size of
the shape being proportional to the magnitude of z;. We want to split the set
of observations by XV or X to minimize the average in-group variance.
Above right: after considering all vertical and horizontal lines, we settle on
this vertical line as our first ‘branching’ as it minimizes in-group variance.
Below left: subbranches are chosen to minimize in-group variance. Below
right: a tree of depth 3.
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APPENDIX D: CALCULATING PARAMETER
IMPORTANCE

To measure how much information each parameter carries in the
boosting classifier, we can do the following. For each branching
within each tree constructed from the training data, calculate how
much total in-group variance was reduced by this branching. Then
for each parameter, for all the branchings which it defines add up
the in-group variance reductions. This value is a good indicator of
a parameter’s importance in classification.

APPENDIX E: GBM IN FULL

In this appendix we complete the GBM algorithm presented in
Section 3.2.3. There was no mention in Section 3.2.3 of the learning
rate v, or the bagging fraction ¢. The learning rate v € [0, 1] should
appear in step 4 of the main loop. Originally given as

Fy < Fy + T,
step 4 should appear as
Fk <~ Fk*l + l)Tk.

The learning rate should be set quite low, we used 0.05. It acts to
reduce the sensitivity of F to the initial tree choice.

The use of bagging has been shown to improve the efficiency of
the GBM algorithm and the accuracy of the final classifier (Friedman
2002). The idea of bagging is that instead of all the training data
being used for every tree construction, a fraction (¢) is randomly
chosen to fit the tree at each step. For the SNPCC we used ¢ = 0.5.
To include bagging, the inner for loop should be modified to read

for i in {sample of size N from integers 1 to N}.

The last modification that needs to be made to complete the GBM
algorithm is at step 3 of the main loop. Full line searches for optimal
Y«,;S are not used, instead to speed up the algorithm only the initial
step of Newton’s method is used:

Zzi

Xi€Ry, j

PRETCRE

X, €Rx,j

Yej = (ED)

APPENDIX F: PARAMETER DISTRIBUTIONS

In this appendix we look at how the five light-curve fitting pa-
rameters and redshift differ between Ias and non-Ias, and between
training and unclassified SNe. Ia SNe cumulative frequency lines are
red and thick, while non-Ia SNe are blue and thin. The cumulative
frequency lines for training SNe are dotted, while the cumulative
frequency lines for the unspecified SNe are solid. This appendix
comprises Figs F1-F5.

APPENDIX G: ADDITIONAL FIGURES

This appendix contains two more boosting parameter importance
figures: Figs G1 and G2.

APPENDIX H: RANDOM SNe

This appendix contains a random selection of unclassified la and
non-la SNe and their boosting values from representative training.
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Figure F1. Cumulative plots of parameter A in bands g, 5 i, z. Non-
representative training (dashed) versus unclassified (solid), and Ia (red,

thick) versus non-Ia (blue, thin). In all bands, the magnitude A of SNe
is far larger in the non-representative training set than in the unclassified set.
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Figure F2. Cumulative plot of parameter tail in bands g, r i, z. Non-
representative training (dashed) versus unclassified (solid), and Ia (red,
thick) versus non-Ia (blue, thin).
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Figure F3. Cumulative plot of parameter k in bands g, r i, z. Non-
representative training (dashed) versus unclassified (solid), and Ia (red,
thick) versus non-Ia (blue, thin).

They are Figs H1-H10. Also, had a threshold of zero been used on
the boosting value, would the classification have been correct (v')
or incorrect (x). An extension of this appendix (200 SNe) can be
found online at Cosmology at AIMS (2010).
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