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5Centre Suisse de Recherches Scientifiques, 01 BP 1303, Abidjan 01, Côte d’Ivoire
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SUMMARY

Progress has been made in mapping and predicting the risk of schistosomiasis using Bayesian geostatistical inference.

Applications primarily focused on risk profiling of prevalence rather than infection intensity, although the latter is par-

ticularly important for morbidity control. In this review, the underlying assumptions used in a study mapping Schistosoma

mansoni infection intensity in East Africa are examined. We argue that the assumption of stationarity needs to be relaxed,

and that the negative binomial assumption might result in misleading inference because of a high number of excess zeros

(individuals without an infection). We developed a Bayesian geostatistical zero-inflated (ZI) regression model that assumes

a non-stationary spatial process. Our model is validated with a high-quality georeferenced database from western Côte

d’Ivoire, consisting of demographic, environmental, parasitological and socio-economic data. Nearly 40% of the 3818

participating schoolchildren were infected with S. mansoni, and the mean egg count among infected children was 162 eggs

per gram of stool (EPG), ranging between 24 and 6768 EPG. Compared to a negative binomial and ZI Poisson and negative

binomial models, the Bayesian non-stationary ZI negative binomial model showed a better fit to the data.We conclude that

geostatistical ZI models produce more accurate maps of helminth infection intensity than the spatial negative binomial

ones.
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INTRODUCTION

Empirical maps of schistosomiasis transmission are

important tools in guiding control interventions.

Usually, these maps are based on hospital records

or data arising from cross-sectional epidemiological

surveys carried out over a number of locations within

a designated study area (Doumenge et al. 1987;

Brooker et al. 2000; Brooker, 2007). The data are

spatially correlated because common exposures

influence transmission similarly at neighbouring

locations. Among other factors, these common ex-

posures include climatic and environmental features

governing the survival and longevity of the inter-

mediate host snails (Stensgaard et al. 2006) and

proximity of human habitations to transmission sites

(Booth et al. 2004; Kitron et al. 2006). Risk maps of

schistosomiasis are produced by predicting the trans-

mission outcome at non-sampled locations. These

predictions are more accurate when they are based on

models relating transmission to known environ-

mental predictors of schistosomiasis, and when they

make use of the spatial correlation present in the data,

which filters the noise and highlights the existing

patterns. The standard regression models assume in-

dependence of the data, leading to inaccurate esti-

mation of the precision of the parameter estimates

and of the predictions when they are applied to

spatially-correlated data (Cressie, 1991).

In this paper, we first summarize how our ability to

map and predict the distribution of schistosomiasis

transmission has improved as a result of advances

made with Bayesian geostatistical approaches. How-

ever, research has mainly focused on mapping and

prediction of prevalence data. In view of morbidity

control being the declared goal of national schisto-

somiasis control programmes, new research is needed

for modeling infection intensity data (WHO, 2002;

Bergquist, Johansen and Utzinger, 2009). Thus far,

only one attempt has been made to predict infection
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intensity of Schistosoma mansoni using Bayesian

inference (Clements, Moyeed and Brooker, 2006b).

We examine the underlying assumptions of that

model, i.e. stationarity and negative binomial dis-

tribution of egg counts. We then propose an ap-

proach that might predict the infection intensity

of S. mansoni more accurately ; namely a Bayesian

non-stationary zero-inflated (ZI) negative binomial

model. We compare the performance of this model

with a negative binomial and a ZI Poisson model on

the basis of credible intervals of the predictive ability

of the models, using an existing high-quality geo-

referenced database from western Côte d’Ivoire.

Finally, we discuss future research directions to

further improve upon the mapping of infection in-

tensity of schistosomiasis and other tropical diseases

that are often neglected.

BAYESIAN APPROACHES FOR MAPPING AND

PREDICTING SCHISTOSOMIASIS

Spatial geostatistical models introduce at each ob-

served location an additional parameter, the so-called

random effect, and build spatial correlation on the

distribution of the random effects. The latter is done

by assuming that the distribution arises from amulti-

variate normal distribution with correlation matrix

often to be a parametric decreasing function of dis-

tance between any pair of locations. Fitting these

models, however, is not straightforward, which is

illuminated on the following grounds. First, the

models include a large number of parameters,

proportional to the number of observed locations.

Second, computational challenges arise in relation to

the large correlation matrices. Bayesian formulation

of these models (Diggle, Moyeed and Tawn, 1998),

facilitates parameter estimation via Markov chain

Monte Carlo (MCMC) simulation methods. The

availability of software for fitting these models,

although for a relatively small number of locations

(Lunn et al. 2000), together with the earlier estab-

lished geographical information system (GIS) soft-

ware and remote sensing (RS) tools enabled spatial

analyses of cross-sectional prevalence data and the

generation of model-based schistosomiasis risk

maps (Raso et al. 2005, 2006a ; Yang et al. 2005a ;

Clements et al. 2006a, 2008; Beck-Wörner et al.

2007;Brooker andClements, 2009).These riskmaps,

emphasizing areas where the prevalence of schisto-

some infections is higher relative to other locations,

are useful tools for spatial targeting of control inter-

ventions and to enhance cost-effectiveness (Brooker

et al. 2008, 2009).

Interestingly, only a single effort has been made

to date for mapping and predicting schistosomiasis

transmission intensity levels (Clements et al. 2006b).

In that study, the authors made the following as-

sumptions. Firstly, the spatial correlation of S. man-

soni infection intensity is stationary. Secondly, the

distribution of excreted eggs, which is a proxy for

quantifying transmission intensity, shows a negative

binomial distribution. The assumption of negative

binomial distribution was tested against ZI Poisson

and ZI negative binomial models in a non-spatial

context. Both assumptions warrant scrutiny, before

presenting a promising approach for mapping

S. mansoni infection intensity, i.e. a Bayesian non-

stationary ZI geostatistical model.

The issue of stationarity

Stationarity is a common assumption in geostatistical

modelling. It asserts that spatial correlation is only a

function of distance between locations and in-

dependent of the location itself. The covariance is

the same between any two points that are at the same

distance apart nomatter which two points are chosen.

However, local effects such as man-made ecological

transformations (e.g. water resources development

and management projects; for recent reviews see

Steinmann et al. 2006; Li et al. 2007), climate change

(Suthers, 2004; Yang et al. 2005b ; Zhou et al. 2008)

or disease control interventions (Yang et al. 2005a ;

Brooker, 2007) may alter correlation, and hence re-

sulting in non-stationarity.

Non-stationary models in disease mapping have

been developed and find increasing application in

malaria (Gemperli et al. 2004; Gosoniu et al. 2006;

Silué et al. 2008). Recently, these models have been

extended from malaria to helminth infections, in-

cluding schistosomiasis (Raso et al. 2005, 2006b ;

Beck-Wörner et al. 2007).

The issue of overdispersion

The transmission intensity of schistosomiasis is a

function of the parasitic worm load within a group of

individuals, which can indirectly be quantified by

the number of eggs that are excreted. Host hetero-

geneities in exposure and susceptibility to infection

lead to an aggregated distribution of worm burden

across individuals (Bradley, 1972; Polderman, 1979;

Anderson and May, 1985). Hence, a few individuals

harbour large numbers of worms, whilst the majority

of individuals are uninfected or only carry a low

worm burden. In addition, widely used diagnostic

approaches for schistosomiasis (e.g. the Kato-Katz

technique for S. mansoni diagnosis) fail to detect

some infected individuals, particularly when only a

single stool sample is examined and infection inten-

sities are light (de Vlas and Gryseels, 1992; Engels,

Sinzinkayo and Gryseels, 1996; Utzinger et al. 2001;

Booth et al. 2003). Due to these two issues, often a

large proportion of individuals are considered as

‘zero egg excretors ’.

The standard Poisson distribution, which assumes

equal variance and mean and is commonly employed

to model count data, is not appropriate to fit the

P. Vounatsou and others 1696

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S003118200900599X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:24:28, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S003118200900599X
https:/www.cambridge.org/core


observed egg counts since the variance of the counts

is much larger than their mean. Three decades ago,

the use of the negative binomial distribution was

proposed to model the excessive variation, known as

overdispersion, in helminth egg counts (Cohen,

1977). In themeantime, negative binomial regression

models have been widely used to analyse helminth

infection intensity data (Utzinger et al. 2002; Scott

et al. 2003; Yapi et al. 2005; Brooker et al. 2006).

ZI MODELS

Rationale and previous applications

Negative binomial models are not the only approach

to tackle overdispersed count data. Recently, there

has been considerable interest in modelling count

data with an excessive number of zeros, and the use of

ZI models is particularly noteworthy. These models

assume that a proportion of individuals have no

chance to be infected, as they are not exposed. In

other words, there is a process which determines

whether an individual is likely to be infected at all and

a second process determining the number of excreted

eggs among those who are at risk of infection. ZI

Poisson (ZIP) models assume that the number of

excreted eggs follows a Poisson distribution. ZI nega-

tive binomial (ZINB) models assume that the num-

ber of worms among those who are at risk of infection

has a negative binomial distribution. ZI models

have been initially developed by Mullahy (1986)

and further extended by Lambert (1992). A Bayesian

analysis of ZIP models is given in Rodrigues (2003)

and of ZINB models in Denwood et al. (2008). To

our knowledge, Agarwal, Gelfand andCitron-Pousty

(2002) were the first to employ ZIP models for

stationary count data in a Bayesian framework.

Motivating example

The data which motivated the current Bayesian geo-

statistical application stem from a study for mapping

and predicting the spatial distribution of S. man-

soni and hookworm monoinfection and single infec-

tion (Raso et al. 2005, 2006b, 2007), S. mansoni-

hookworm co-infection (Raso et al. 2006a) and

Plasmodium falciparum infection in the Man region,

western Côte d’Ivoire (Silué et al. 2008). Details of

the study area, population surveyed, geostatistical

analyses used and implications for schistosomiasis,

soil-transmitted helminthiasis and malaria control

have been described in previous publications. In

brief, the field work was carried out between May

and August 2002 in the Man region, which is the

major focus of intestinal schistosomiasis in Côte

d’Ivoire (Doumenge et al. 1987;Utzinger et al. 2000;

Raso et al. 2005). All children attending grades 3–5

from 55 rural schools were enrolled. Demographic

data (name, age and sex) were obtained from existing

registries for the respective school year. Children’s

socio-economic status was indirectly assessed by

means of a questionnaire that collected information

on household assets ownership (e.g. possession of a

radio) and household characteristics (e.g. walls con-

structed with bricks). Parasitological data were ob-

tained following the microscopic examination of a

single Kato-Katz thick smear per child, using a stan-

dardised, quality-controlled method (Katz, Chaves

and Pellegrino, 1972; Raso et al. 2005). The number

of S. mansoni eggs was counted and the number of

eggs per gram of stool (EPG) recorded. S. mansoni-

infected children were treated with a single 40 mg/kg

oral dose of praziquantel (WHO, 2002). The

S. mansoni risk map was discussed with local and

national health authorities and governed the spatial

targeting of prevention and control interventions,

facilitated by the establishment of village health

committees and improved access to anthelminthic

drugs.

Geographical coordinates of each school were col-

lected using a hand-held global positioning system

(GPS; Thales Navigation, Santa Clara, CA, USA).

Streets, village boundaries, rivers, elevation lines and

soil types were digitized from existing ground maps.

A GIS database was built linking the parasitological

data with RS environmental and climatic factors as-

sociated with transmission. In particular, normalized

difference vegetation index (NDVI) and land surface

temperature (LST) were extracted at 1r1 km spatial

resolution from Moderate Resolution Imaging

Spectroradiometer (MODIS) from USGS EROS

Data Centre. Rainfall estimate (RFE) data with an

8r8 km spatial resolution from Meteosat 7 satellite

were obtained from the Africa Data Dissemination

Service (ADDS). A digital elevation model (DEM)

was employed originating from the Shuttle Radar

Topography Mission (SRTM) to delineate water-

sheds and rivers (Beck-Wörner et al. 2007). Rivers

were ordered after a system proposed by Strahler

some 50 years ago (Beck-Wörner et al. 2007).

Model specification

Negative binomial model. Let Yij be the S. mansoni

egg count of child j in village i. We assumed that Yij

arises from a negative binomial distribution, Yijy
Nb(mij,r) with mean mij, dispersion parameter r and

probability density function

f (Yij=yijjr,mij)=
(yij+rx1)!

yij!(rx1)!

r

r+mij

 !r

r
mij

r+mij

 !yij

, r>0

(1):

The negative binomial model assumes that the

variance of the counts, var(Yij) is equal to

var(Yij)=mij+k*m
2
ij (2)
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with k=1/r, known as aggregation parameter. The

Poisson distribution arises as rp1 (or equivalently

kp0) and thus var(Yij)=mij.

ZI models. The ZI count models have mixed speci-

fications that add extra weight to the probability of

observing a zero (Lambert, 1992). In particular they

are mixture models having two components and

mixing probability, p related to the proportion of

non-infected individuals who have no chance to be

infected. (1xp) corresponds to the probability of ob-
serving a positive egg count arising from an adopted

count distribution f(yij) such as Poisson or negative

binomial. In the general form, the model can be

written as:

P(Yij=yij)=pI 0f g(yij)+(1xp)f (yij) (3)

where I{0}(yij) is the one-point distribution, putting

all its mass at zero, that is I{0}(yij)=1 if yij=0 and

zero otherwise. Equivalently the model can be speci-

fied by:

P(Yij=yij)=
p+(1xp)f (yij), yij=0

(1xp)f (yij), yij>0

�
(4):

The ZIP model has the Poisson density f(yij)=
(1xp)exp(xmij)mij

yij/yij !, yij>0 and the ZINB model

has the negative binomial density function which is

given in equation (1). The mean of the ZI model

is equal to pI{0}(yij)+(1xp)mij(1xI{0}(yij)) and

the variance is Var(Yij)=(1xp)2Varf(Yij), where

Varf(Yij)=mij for the ZIP model and it is given in

equation (2) for the ZINB model.

Bayesian non-stationary overdispersed count model.

In the above negative binomial and ZI models we

introduce covariates Xij and village-specific spatial

random effect wi on the log(mij), that is log(mij)=
Xij

Tb+wi, where b is the vector of regression coeffi-

cients. We assume that the random effects model a

continuous spatial process that is w=(w1, w2, …,

wN)
TyMVN(0,S), has a multivariate normal distri-

bution with variance-covariance matrix Sil=
s2exp(xrdil), where dil is the shortest straight-line

distance between villages i and l, s2 is the geographic

variability known as the sill, and r is a smoothing

parameter that controls the rate of correlation decay

with increasing distance. To take into account

non-stationarity, we partitioned the study area in K

ecologic sub-regions, i.e. watersheds of the local

hydrology (Beck-Wörner et al. 2007), and assumed a

local stationary spatial process vk in each sub-

region k=1, 2, …,K. We then viewed spatial corre-

lation in our area as a mixture of the different spatial

processes and modelled the spatial random effect wi

at location i as a weighted average of the sub-region-

specific (independent) stationary processes as fol-

lows: wi=
PK

k=1 aikvki, with weights aik, which are

decreasing functions of the distance between location

i and the centroids of the sub-regions k (Banerjee

et al. 2004). Assuming vk � MVN(0,Sk), (Sk)il=
sk
2exp(xrkdil), we have w=N(0,

PK
k=1 A

T
k SkAk),

where Ak=diag{a1k, a2k, …, ank}. The range is de-

fined as the minimum distance at which spatial cor-

relation between locations is below 5% and it can be

calculated as jk=3=rk
.

Model fit and implementation. Model fit was carried

out in WinBUGS version 1.4 (Imperial College &

Medical Research Council, London, UK) and in

specialized Bayesian geostatistical codes written in

Fortram 95 by the authors. Following a Bayesian

model specification, we adopted prior distributions

for the model parameters. We choose vague Normal

distributions for the b parameters with large vari-

ances (i.e. 10 000), gamma prior for r with large

variance, inverse gamma priors for sk
2 and uniform

priors for rk, k=1, 2, …, K. MCMC simulation was

employed to estimate the model parameters (Gelfand

and Smith, 1990).We ran a single chain sampler with

a burn-in of 5000 iterations. Convergence was as-

sessed by inspection of ergodic averages of selected

model parameters. Covariates from the multivariate

model were used to generate a smooth risk map for

S. mansoni infection intensity using Bayesian kriging

(Diggle et al. 1998).

Model validation. For the model validation a train-

ing sample from the current databasewas used. From

the 55 schools, 43 schools were randomly selected

and fitted into the models. The remaining 12 schools

were used for validation purposes. Validation was

done at the individual level to take into account age,

sex and socio-economic status as these factors sig-

nificantly influenced S. mansoni infection intensity

(n=731 children). The predictive ability of the

models was assessed by calculating for each model

credible intervals (the equivalent of confidence in-

terval in Bayesian statistics) with probability cover-

age varying between 1% and 100% of the posterior

predictive distribution of test data. The model with

the best predictive ability was the one with the

highest percentage of locations within the interval of

smallest coverage.

Results

Complete demographic, socio-economic and para-

sitological data were available for 3818 school-

children. The S. mansoni infection prevalence was

38.9% with a mean egg count among infected chil-

dren of 162 EPG (range: 24 to 6768 EPG). Fig. 1

shows the average S. mansoni infection intensity at

the unit of the school ; the mean egg excretion ranged

from 0 to 875 EPG.

The non-stationary ZINB model showed a better

fit to the data than the ZIP model and the negative

binomial model. Table 1 summarizes the results
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from the model validation, according to the per-

centage of test data with S. mansoni infection inten-

sity falling within credible intervals of probability

coverage ranging between 10% and 40%. The ZINB

model included 100% of the test data in the narrowest

15% credible interval.

Table 2 displays the results from the best fitting

non-stationary ZINB regression model. The co-

variates that explained significantly the geographical

variation of S. mansoni infection intensity were age

group and watershed, since the mean coefficient

estimates were within the credible intervals. The ZI

mixing proportion parameter (p) was 0.723 (95%

credible interval=0.667–0.780) suggesting that the

proportion of zero counts which was higher than that

assumed by the negative binomial distribution was

72.3%. A possible interpretation could be that over

half of children who tested negative had no chance to

be infected with S. mansoni because they were not

exposed. The aggregation parameter kwas estimated

equal to 1.386 (95% credible interval=1.282–1.500),

indicating that there is still over-dispersion even

Fig. 1. Observed mean S. mansoni infection intensity at the unit of the school in the region of Man, western

Côte d’Ivoire.
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though some of the excessive zeros have been mod-

elled separately. The range parameters jk, k=
1, 2, …, K were similar for the three fixed tiles,

indicating that spatial correlation was not significant

at distances of approximately 2.6 km and above. In

contrast, the geographical variability varied be-

tween the tiles from 0.364 to 4.496 indicating non-

stationarity.

Fig. 2 displays the S. mansoni intensity risk ob-

tained from the non-stationary ZINB regression

model. The model predicted low intensities in the

north-eastern part of the study area, and high in-

fection intensities in the southern and north-western

region. The highest intensities were predicted along

the rivers.

The lowest prediction error of the infection in-

tensity was estimated in the north-eastern part of the

study area, where accordingly the infection intensity

was predicted to be low (Fig. 3).

IMPLICATIONS OF OUR FINDINGS AND FUTURE

RESEARCH DIRECTIONS

Areas of intensive schistosomiasis transmission are

usually associated with a high morbidity, and hence

burden of the disease. Although schistosomiasis

prevalence maps are useful tools in guiding control

interventions (Brooker et al. 2000; Raso et al. 2005;

Clements et al. 2006a ; Brooker, 2007), maps of

transmission intensity provide additional infor-

mation on the severity of the infection. Such maps

allow identification of hot spots with potentially high

morbidity and the largest attributable disease frac-

tion, and hence provide insight about where to target

‘preventive chemotherapy’ for morbidity control.

Geostatistical models which are based on realistic

assumptions about the distributions which generated

the intensity data, including the underlying spatial

processes, will provide more accurate estimation of

the environment-transmission relations, and hence

improve the current prediction accuracies (Brooker,

2007).

A general feature of helminth egg output data is

that approximately one-fifth of the population are

responsible for an estimated 80% of the environ-

mental contamination (Anderson and May, 1985). It

follows that the egg count data which quantify

transmission intensity usually include a large num-

ber of zeros or very light infections, which lead to

overdispersion. Hence, the variance of such a typical

helminth egg distribution is considerably larger than

the one assumed by the Poisson distribution. Con-

ventionally the negative binomial distribution has

been adopted to take into account overdispersion by

an alternative variance-mean specification (Cameron

and Trivedi, 1986). However, this approach ignores

that a proportion of individuals have no exposure to

the disease and therefore neglects the process which

generated the additional zeros. ZI models explicitly

incorporate this process in the modelling framework.

The models we have employed in the current appli-

cation assume that exposed individuals have a prob-

ability to be negative according to the Poisson or

negative binomial model which is applied to fit the

counts. This may be true due to diagnostic error or

possibly genetic factors. We could assess this as-

sumption by applying an alternative class of models,

the so-called hurdle, two-part or conditional models

(Mullahy, 1986; Heilbron, 1994), which assume a

zero-truncated standard distribution (Poisson or

negative binomial) in the exposed group. Such a

model would require further modification to take

into account the possibility of false-negatives, which

otherwise will be wrongly allocated to the unexposed

group.

Another extension of the ZI models discussed here

arises when allowing covariates not only on the

average count of the exposed group, but also on the

mixing proportion, that is the proportion of the non-

exposed individuals. An issue related with modelling

covariates is that of linearity. Environmental co-

variates influencing the transmission intensity is less

likely to have a linear effect on intensity. The stan-

dard approach of categorising the covariates relies

on arbitrary cut-off values of those covariates. An

alternative modelling approach that could be as-

sessed in mapping infection intensity and other

transmission-related outcomes could include the

use of spline functions (Eubank, 1988; Dimatteo,

Genovese and Kass, 2001). Our own experience with

spline regression models in malaria mapping

(Gosoniu et al. 2009) suggests that this is a promising

approach, when taking into account non-linearity in

disease mapping.

Table 1. Absolute and cumulative frequency

of S. mansoni infection intensity among 731

schoolchildren within the 12 test locations falling

within credible intervals of probability coverage

ranging between 10% and 40% of the posterior

predictive distribution

Probability
coverage
of credible
interval

Zero-inflated
negative
binomial
(ZINB) model

Zero-inflated
Poisson
(ZIP) model

Negative
binomial
model

10% 659 (90.2%) 507 (69.4%)
11% 690 (94.4%) 522 (71.4%)
12% 704 (96.3%) 532 (72.8%)
13% 720 (98.5%) 553 (75.6%)
14% 729 (99.7%) 0 (0%) 570 (78.0%)
15% 731 (100%) 655 (89.6%) 591 (80.8%)
16% 722 (98.8%) 605 (82.8%)
17% 731 (100%) 617 (84.4%)
18% 636 (87.0%)
19% 649 (88.8%)
20% 657 (89.9%)
30% 722 (98.8%)
40% 731 (100%)
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Table 2. Posterior summaries (medians and 95% credible intervals)

of the parameters of the non-stationary ZINB multiple regression.

The estimate of the regression coefficients parameters represent density

ratio (DR) of excreted egg counts. The range parameters jk, k=1,2,3

are given in km

Indicator

Non-stationary ZINB
multiple regression

Estimate
95% credible
interval

Age group (years)
6–10 1
11–16 1.172 1.025, 1.337

Sex
Male 1
Female 0.902 0.773, 1.029

Socio-economic status
Most poor 1
Very poor 1.052 0.852, 1.284
Poor 0.978 0.787, 1.197
Less poor 1.162 0.925, 1.437
Least poor 1.149 0.911, 1.425

Household within village boundary 0.895 0.711, 1.105
Elevation 0.770 0.486, 1.187

Stream order
1 1
2 2.202 0.878, 4.781
3 3.184 0.700, 10.315

Watersheda

1 1
2 6.512 1.464, 17.28
3 7.072 1.729, 24.49
4 7.926 0.878, 33.17

Normalized difference vegetation index 0.715 0.457, 1.074

Land cover
Woody savannah 1
Tropical forest 0.522 0.192, 1.174
Deforested savannah and crops 1.412 0.393, 3.809
Tropical rainforest 1.336 0.339, 3.679

Distance to permanent water bodies 1.095 0.685, 1.603

Distance to temporary water bodies (m)
f200 1
201–500 1.184 0.527, 2.414
>500 2.119 0.545, 6.284

Mean land surface temperature (xC)
<25.0 1
25.0–26.4 0.593 0.217, 1.366
o26.5 0.787 0.107, 2.645

Distance to dispensaries (km)
f1 1
1.1–5 1.154 0.338, 2.645
>5 2.024 0.682, 4.885

Aggregation parameter (k) 1.386 1.282, 1.500
Zero-inflated proportion (p) 0.723 0.667, 0.780

Spatial correlation parameters
j1 2.250 1.364, 26.118
j2 2.606 1.371, 21.076
j3 2.404 1.364, 19.623

s1
2 0.364 0.007, 2.153

s2
2 4.496 0.815, 9.055

s3
2 0.822 0.014, 4.827

a Arbitrary measure (for further details ; see Beck-Wörner et al. 2007).
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Fig. 3. Prediction error of S. mansoni infection intensity based on the Bayesian geostatistical ZINB model.

Fig. 2. Smoothed map of S. mansoni infection intensity based on the Bayesian geostatistical ZINB model.
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Non-stationarity is an important aspect of geo-

graphically-explicit databases, which should be con-

sidered, especially when fitting spatial models over

large areas. The non-stationary modelling approach

we have adopted here relies on a partition of the study

region into meaningful ecological sub-regions, such

as those governed by water catchment areas (Beck-

Wörner et al. 2007). This approach is more appro-

priate when modelling schistosomiasis data over

large areas covering different ecological zones which

define the fixed partitions. An extension of the model

will allow different covariate effects in each zone

since it is likely to have an interaction effect between

the zone and environmental effects on transmission.

The model, in addition, smoothes the estimates at

the border of the regions, and hence avoids discon-

tinuities, which would otherwise arise (Sogoba et al.

2007).

Another form of non-stationarity is anisotropy

which implies that spatial correlation depends not

only on distance between any pair of locations but

also on their relative orientation. To our knowledge,

anisotropy has not been considered in any of the

schistosomiasis transmission mapping exercises

carried out thus far. We speculate that the spatial

correlation is stronger on directions towards trans-

mission sites rather than in the opposite direction,

governed by hydrological factors upon which the

intermediate host snails depend (Kitron et al. 2006;

Stensgaard et al. 2006; Clennon et al. 2007).

Modelling multiple species parasitic infections

is receiving increasing interest recently (Raso et al.

2006a ; Brooker and Clements, 2009) as it has

been recognised that in tropical and sub-tropical

environments multiparasitism is the norm rather

than the exception (Raso et al. 2004; Utzinger and

de Savigny, 2006; Brooker and Utzinger, 2007;

Steinmann et al. 2008). Individual exposures or gen-

etic factors are likely to introduce positive or negative

correlation in the infection intensities of the different

parasites. It is conceivable that control measures can

be employed in a more cost-effective manner, once

areas of high infection intensities of multiple para-

sites have been identified and the underlying risk

factor(s) determined, so that an integrated control

approach can be envisaged. These analyses will re-

quire extending the ZIP and the ZINB models to

their multivariate analogues, as well as considering

multivariate spatial processes (Majumdar and

Gelfand, 2007) to model spatial correlation of co-

infection intensity data.
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Silué, K. D., Raso, G., Yapi, A., Vounatsou, P.,

Tanner, M., N’Goran, E. K. and Utzinger, J. (2008).

Spatially-explicit risk profiling of Plasmodium

falciparum infections at a small scale: a geostatistical

modelling approach. Malaria Journal 7, 111.

Sogoba, N., Vounatsou, P., Bagayoko, M. M.,

Doumbia, S., Dolo, G., Gosoniu, L., Traoré, S. F.,
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