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In this paper, | examine-equilibria of stationary dynamic economies with heterogeneous agents
and possibly incomplete financial markets. | give a simple example to show that even for arbitrarily small
¢ > 0, allocation and prices can be far away from exact equilibrium allocations and prices. That is, errors
in market clearing or individuals’ optimality conditions do not provide enough information to assess the
quality of an approximation. | derive a sufficient condition forsarquilibrium to be close to an exact
equilibrium. If the economic fundamentals are semi-algebraic, one can verify computationally whether
this condition holds. The condition can be interpreted economically as a robustness requirement on the
set of e-equilibria which form a neighbourhood of the computed approximation. | illustrate the main
result and the computational method using an infinite horizon economy with overlapping generations and
incomplete financial markets.
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1. INTRODUCTION

Given a numerically computegtequilibrium of a dynamic stochastic economy with heteroge-
neous agents, how can one verify whether or not this is a good approximation to an exact compet-
itive equilibrium? In this paper, | show that if economic fundamentals are semi-algdategier

period utility and production functions can be described by finitely many polynomialsggge,
Blume and Zamgl993 Kubler and Schmedder2010g, one can validate numerically when a
computeds-equilibrium provides a good approximation to an exact equilibrium. The basic idea
is as follows. One can create a setze¢quilibria by constructing a neighbourhood around the
computed approximation. Under some regularity conditions explained in detail below, one can
ensure that this set contains an exact equilibrium by verifying that, if the next period’s endoge-
nous variables lie in the set, the conditions necessary for competitive equilibrium imply that
endogenous variables in the current period must also lie in the set. | show that this verification
can be done relatively efficiently by using methods from polynomial optimization and therefore
that the method can be used for medium-sized dynamic stochastic models. While this is only a
sufficient condition for the computed approximation to be close to an exact equilibrium, | argue
that, under an economically intuitive robustness requirement on the exact equilibrium, it is also
necessary.

Applied researchers routinely computeequilibria of dynamic stochastic economies
although almost nothing is known about the nature of exact equilibria in these models. For dy-
namic models where the solution can be characterized as a planner’s pr8hletms and Vigo-
Aguiar (1998 andSantog2000 have developed sufficient conditions under which they can give
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explicit error bounds both on policy functions and on allocations. Under these conditions, error
bounds on allocations can be derived from Euler equation residuals-eqdilibria are always

close to exact equilibria. Unfortunately, however, these results do not generalize to models with
heterogeneous agents and incomplete markets or overlapping generations (OLG). In these mod-
els, it is not known if recursive equilibria exist or if policies are continuous functions of the state
(see,e.g.Kubler and Polemarchaki2004). Even if, for given prices, each agent makes only

a small error in his utility maximization problem, it is possible that the exact market clearing
price is far from the computed approximation. The set-efjuilibria in these economies might
therefore be very large and the computed approximation might be nowhere near to an exact
equilibrium. In Section 2, | construct a simple example of a deterministic economy with OLG
where | find two approximate solutions. | can show that eveguilibrium is close to an exact
equilibrium, while the otheg-equilibrium, which exhibits similar errors in market clearing and
optimality conditions, is far away from any exact solution.

So far, no sufficient conditions were known which allow the derivation of error bounds on
computed equilibrium prices and allocations in the models considered in this gapér and
Schmedder£2009 show that, in these models,equilibria can be interpreted as exact equilibria
of close-by economies. Their paper does not make any statements about the geeqgtidibria
or about howe-equilibria are related to exact equilibria of the given stationary ecohohhyw-
ever, it suggests that if a competitive equilibrium is well behaved (in a sense to be made precise
later), perturbations of exogenous variables should not lead to large perturbations in the equilib-
rium and, if one considers the setgkquilibria that results from such perturbations, it should
form a well-behaved neighbourhood around the exact equilibrium. In this paper, | build on this
idea, derive a simple condition that ensures that a setexfuilibria contains an exact equi-
librium and argue that, in well-behaved cases, a neighbourhood of a compeatadlibrium
should satisfy this condition if it contains an exact equilibrium.

| define a set of-equilibria to berobustif it satisfies the following property. Suppose at date
T economic fundamentals are perturbed so that ffoomwards the new competitive equilibrium
realizes in thes-equilibrium set. Then robustness of this set requires that up toTdathe
endogenous variables of the competitive equilibrium in which all agents anticipate the changes
at T also realize in the set. The main reason for introducing this concept is that robustness
ensures that an-equilibrium set contains an exact equilibrium and that one can effectively
check if a (semi-algebraie)-equilibrium set is robust. For semi-algebraic economies, rabust
equilibrium sets that are semi-algebraic exist forsall 0. It is economically sensible to focus
on competitive equilibria whose neighbourhoods form robustjuilibrium sets since otherwise
small perturbations of fundamentals will lead to large changes in the equilibrium.

While the theoretical analysis is conducted using abstract equilibrium sets, one has to con-
sider recursive-equilibria for the practical error analysis. Computational algorithms typically
use recursive methods to approximate equilibria numerically and fos-thiguilibria are written
as functions mapping the state of the economy into current endogenous variables. If this is the
case, one of course wants to verify that the computed recursdgeilibrium is close to an exact
equilibrium for all permissable values of the state. In order to do so, | construct candidate robust
g-equilibrium sets by creating a strip around a computed recursdgguilibrium. | show that one
can verify that thes-equilibrium set is robust for all relevant initial values of the state by solv-
ing a polynomial optimization problem. While this is not a convex programming problem, there
now exist algorithms which find lower bounds on global minima of relatively large constrained
polynomial problems (see Laurent, 2008, for an overview).

1. lillustrate the differences between the two approaches in the example in Section 2.
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Throughout the paper, | take as given that a candidate approximate equilibrium has been com-
puted by some existing method and that this is described by a continuous and semi-algebraic
(policy) function p. While the existence of a recursive exact equilibrium is not guaranteed in
general Citanna and Siconolf201Q give conditions for the generic existence of recursive equi-
libria in economies with OLG), recursiveequilibria always exist. However, typically there is
no guarantee that a recursizquilibrium can be described by continuous functions. This pa-
per is not about the computation efequilibria (seeJudd 1998 for detailed descriptions of
algorithms for the computation of equilibria in dynamic stochastic models) but about the verifi-
cation that a recursive-equilibrium is close to an exact equilibrium. Even if there is a recursive
g-equilibrium with a continuous policy function, it is not guaranteed that the construction of a
candidate robust-equilibrium set always works. However, if this is not the case, the economy
is likely to be so “badly behaved” that it seems hopeless to derive accurate numerical solutions
at all.

As an example, | study a stochastic economy with OLG which is a generalizatitamaodiel-
son (1959 to uncertainty. In many applications, researchers routinely compute approximate
equilibria for versions of this model and find that low-degree polynomials suffice for very good
approximations of policy functions. This might strike one as surprising since it is well known
that in many dynamic economic models with Oltl& setof competitive equilibria can be al-
most arbitrarily wild. In particular, the issue of determinacy of equilibria in deterministic OLG
models received a lot of attention and it is now well understood that extremely restrictive as-
sumptions are needed to guarantee local uniquenesse(geehoe and Leving1990. But
this obviously says little about the existence (or non-existence) of simple equilibria that can be
approximated by low-degree polynomials or by piece-wise polynomial&ek®e and Levine
(1990 point out, in deterministic OLG models the fact that the equilibrium set is complicated
does not necessarily imply anything about the practical computation of equilibria.

The rest of the paper is organized as follows. In Section 2, | give a simple example to illustrate
the main points of the paper. In Section 3, | abstractly describe the economy, definesrobust
equilibrium sets, and prove the main theoretical result that relates retaegtilibria to exact
competitive equilibrium. Section 4 introduces recursive methods and relates the theoretical result
to polynomial optimization. | argue in this section that whether or not a recussiepiilibrium
is close to an exact equilibrium can be verified by solving a series of constrained optimization
problems. Section 5 applies the methods to examine simple dynamic equilibria in stochastic
models with OLG.

2. AN EXAMPLE

To illustrate the main ideas, | examine one of the simplest examples where serious problems
can arise. Consider an exchange economy with a single perishable commodity and OLG. Time
extends from zero to infinity, = 0,1, .... At eacht, a representative agent is born and lives for
three periods. In each period, individuals receive endowments depending on thej bging

the endowment of an agent of age=1, ..., 3. Utility is time separable with the utility of an

agent born at timé given by
cie
1-0'

3
Ur(ca. C2.C3) = D _ 42
a1

At eacht, agents can trade in a risk-free bond with piage). Letd,(t) denote the bond-holding
of an agent of age at time t. Att = 0, the initial conditions of the economy are determined by
the bond-holding of the initially alive agents of ages- 1, 2.
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A competitive equilibrium is defined as usual by market clearing and agent optinality,
is given by a sequendg(t), (ca(t))?’:l, (Ga(t))zzl) such that for each, Zgzlaa(t) =0and
such that each agent maximizes his utility given pri@gs));° .

Since utility is concave and satisfies an Inada condition, and agents are finitely lived, the
first-order conditions for agents’ optimality are necessary and sufficient. A competitive equi-
librium can therefore be described by first-order conditions and market clearing. It is useful to
definez(t) to be the vector of all endogenous variables relevant attjme. z(t) = (61(t — 1),

a), (ca(t))3_;, @a(t))2_,). Given initial conditionsf1(—1), a competitive equilibrium can
then be characterized as a seque(&®));°, with ca(t) > 0 for all t and alla = 1,2, 3 that
satisfieh(z(t), z(t+ 1)) =0forallt =0,1, ..., where

1 B
~AO 57 + Garn

A0 g + i

c1(t) — e +q(t)oa(t),

h(z(t), z(t + 1)) = 1)
Co(t) —ex—01(t — 1) +-q(1)G2(1),

c3(t) —e3+01(t - 1),

[ 01(1) +02(1).

The beginning-of-period wealth of the middle-aged at tirisegiven byd; (t — 1), i.e. the savings
of the young in the last period. It is convenient to build market clearing into the definitian of
andh and take the beginning of period wealth of the old todgk (t — 1).

A competitive equilibrium is a steady state if there iz auch thatz; = z for all t, i.e. if
there is & with h(z, Z) = 0. At least one steady state always exists in this example (the situation
will be quite different once uncertainty is introduced). Generally, however, one is interested in
competitive equilibria for initial conditions which are not part of a steady state. Ideally, one
would like to describe competitive equilibria for an entire interval of initial conditions. In this
case, one needs a convenient method to numerically describe or approximate the equilibrium.
In this paper, | assume throughout that the approximate solution is in the fornmectiesive
e-equilibrium. In this example, the natural state sp@ceonsists of beginning-of-period bond-
holdings of the middle-aged and there are approximate policy functions that map thé_state,
O into current period consumptions, savings, and prige® — R, x Ri x R2. That is for
eacht, z(t) can be written as

z(t) = (G1(t = 1), q(0), (Ca())3_1, Ga(®)2)) = Gr(t — 1), p(1(t — 1))

and satisfies for eadh |h(z, z1+1)| < &.

For the concrete example, suppose there is no discounting X), that the coefficient of
relative risk aversion is given kyy = 3 and that individual endowments ag= 1, e, = 10.575,
andes = 0-5. Suppose one is interested in equilibria for initial conditiéns= —6.

| turns out that for this specification, there exist recursivequilibria for whichp can be
written as a polynomial of degree 4. It is not clear if polynomials are always the right choice
in these economies as policies could be backward bending—however, for this example (and all
the ones consider in Section 5 below), it turns out fine. There are the following two candidate
solutions.
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FIGURE 1

(1) The admissible state spacedis=[—6, 0] and approximate savings policy of the middle-
aged is given by

py2(—) = 0-000433% +0.002243 — 0.000589?2 + 0.028%_ — 0-154
The bond price is given by
pq(6—) = —0-001* +0.0382° + 1.350% + 1490_ + 52.7.

(2) The admissible state spaceds=[—6, —5-4] and the approximate savings policy (of the
middle-aged) is given by the following polynomial

pe2(6-) = 0-245)% + 4.540% +2870_ +554.
The bond price is given by
pq(0-) = 0-038%3 +0.7112 4 4.560_ + 10.

Figure 1 shows the approximate portfolio policies for the two candidate solutions. Clearly, the
two equilibria are quite different. Solution (1) is inefficient, with very low consumption of the
old, while Solution (2) is efficient with high consumption of the old.

In this simple example, one can verify that there is something “wrong” with the second
approximate solution as the model has a unique steady state at #tound-0-15839. The
second solution seems to converge to an approximate steady state at @round5.44571,
but all exact steady states in this model are characterized by a finite number of polynomial
equations and the methodsKubler and Schmeddef2010h can be used to show that there is
a unique steady state in this economy. In fact, building on this, | show in Appendix of the paper
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that there cannot be a competitive equilibrium anywhere close to candidate solutioe. (Ris
g-equilibrium cannot be part of a cyclical equilibrium either.

The question is how to determine which one of these candidate solutions provides a good ap-
proximation to an exact equilibrium without knowing the steady states. As mentioned above, in
models with stochastic shocks, there are no steady-state equilibria and the quality of an approx-
imation has to be judged differently. The standard measure is relative errors in Euler equations.
That is, one can impose market clearing and budget constraints on the approximate equilibrium
by computing consumptions from the budget constraints. The only error is then in the Euler
equations and it is useful (sdadd 1998 to report the maximum relative error

o max[max(ﬂ e+ 1 pest+1H)™7 1)] _
t q(t)cu(t)= qt)ca(t)—°

In both cases, these errors turn out to be very small (in Solution 2 the maximum erroPis 10
in Solution 1 around % 10~°) and therefore this criterion cannot discriminate between the
good approximation and the candidate solution that is far from any exact equilibrium. In fact,
it is clear fromSantos(2000 that one can only infer from these errors how far away agents
choices are from optimal choices, given fixed prices. In this example, both choices and prices
are approximate.

The analysis irKubler and Schmedde(2005 implies that for both approximate equilibria
one can construct some “close-by” economy so that these equilibria become exact. In fact, it
turns out that for a slightly larger endowment of the middle-aged, for €2 = 10576, the
economy has three steady states and the second candidate solution is close to an exact solution.
However, fore? < 10-575, there is certainly no exact equilibrium anywhere close-by. Therefore,
it is not possible to conduct local comparative statics in any meaningful way and the second
candidate solution is not robust even ascamquilibrium. In a stochastic setting, the situation
is even worse. The construction Kubler and Schmedde(2005 generally does not yield a
stationary economy and it is possible that there is no “close-by” economy that is stationary and
for which the computed equilibrium is exact. Even if one performs careful robustness analysis
and computes many examples with similar endowments and preferences, it is possible that one
never obtaing-equilibria that are good approximations of exact competitive equilibria for the
stationary economies under consideration.

In the following two sections, | will describe a method which can be used to prove that the
first candidate solution is close to an exact equilibrium. In Section 5, | will illustrate the method
using the example from this section.

3. AN ABSTRACT MODEL

In order to formally present the main theoretical result, | first introduce a general stochastic
dynamic framework that fits both models with OLG and models with infinitely lived agents and
incomplete markets. At this stage, | do not assume that the approximate equilibrium is recursive
since the main result is easiest to prove in a general framework.

3.1. The dynamic economy

| consider a general abstract formulation of dynamic general equilibiufie et al. (1994

use a similar framework (not assuming differentiability and semi-algebraic fundamentals, as
| do) and show in their paper that it encompasses general equilibrium models with OLG as well
as models with infinitely lived agents. It will turn out that most dynamic general equilibrium
models used in applications fit the framework.
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Time and uncertainty are represented by a countably infinitedrdeach node of the tree,

o € X, is a finite history of shocks = s' = (s0,5;,...,%) for a given initial shocksy. The
process of shock& ) is assumed to be a Markov chain with finite supgrfo indicate thas!’
is a successor af (or st itself), | write st = st. The number of elements ifiis S. TheSx S
transition matrix is denoted by. With a slight abuse of notation, fer' = ¢, | write 7 (¢'|c) to
denote the conditional probability ef givene.

| consider dynamic economic models where an equilibrium can be characterized by a system
of semi-algebraic equalities and weak inequalities relating current-period exogenous and en-
dogenous variables to endogenous and exogenous variables one period ahead. Examples of such
conditions are individuals’ Euler equations, firms’ first-order conditions, and market clearing
equations for goods or financial assets.

A subsetA c R" is a semi-algebraic subsetRf if it can be written as the finite union and
intersection of sets of the forfx € R": g(x) > 0} or {x e R": f(x) =0}, wheref andg are
polynomials inx with coefficients inR, i.e. f,g € R[x]. Let A c R" be a semi-algebraic set.

A function §: A — R™ is semi-algebraic if its grapf(x,y) e Ax R™ y = 6(x)} is a semi-
algebraic subset @&"*™. Blume and Zam¢1993 andKubler and Schmedde(0104 discuss
in detail the assumption of semi-algebraic fundamentals in finite exchange economies.

Current period endogenous variables are denoted ®RM. | assume that the system of
inequalities characterizing equilibrium can be written as follows:

h,z,z1,...,29) =0, 9(5,2 >0, )

where for each fixed € S, h, andg are continuous semi-algebraic functions. The arguments
(5, 2) denote the exogenous state and endogenous variables for the current period. The vector
zs € RM denotes endogenous variables in the subsequent period irssTtis is identical to
the characterization in the example in Section 2, except that now one also has to c@nsider
possible exogenous shocks in the subsequent period.

A competitive equilibrium is then a proce€gs!)) such that for each'

h(s, z(s), z(s', 1), ..., 2(s', 9) =0, g(s,z(sh)) > 0. 3)

It is useful to describe a competitive equilibrium not by infinite sequences but by a set that
consists of at least all elements of the sequence but might also contain several equilibria at the
same time.

Definition1. An equilibrium setisasefE =21 x...x ZsC RMS, such that for al € S and
all ze Zs, 9(5,2) > 0, and there exidizy, ..., zs) € Z such that

h(g, 2,77,...,2s) = 0.

Given the equilibrium equationg); | define ébackward operatoto map variables in the next
period into variables in the current period that are consistent with the equilibrium conditions.
That is, given set&g, K1, ..., Ks c RM, | define for eacls,

Bs(Ko, (K1,...,Kg)) ={Ze Kg: Jzs € Ks,s=1, ..., Ssuch thah(§,z,z1,...,2s) =0,
9(5,2) > 0}
Very roughly speaking, in the subsequent analysis, this operator will play a role similar to the
role of the Bellman operator in dynamic programming. The main difference is that it is defined

on sets and not on functions and that in general one cannot prove any contraction or monotonicity
properties for this operator.
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3.2. Robust-equilibria

Given anyz > 0, define are-equilibrium set to be a sef® = Z¢ x ... x Z& ¢ RMS, such that
forallSe Sandallze Z¢, g(§,2) > 0, and there exigizy, ..., zs) € Z° such that

IhGS.2,z1,...,29)| <.
The following is an abstract definition of a robuséequilibrium set.

Definition2. An s-equilibrium setz? c RMS is robust if it is closed and bounded and if for
allse s,
Bs(RM, (2,..., 28) c 2.

The definition requires that for all endogenous variables iratbquilibrium set which could
realize in the subsequent period, all variables in the current period that are consistent with equi-
librium must also lie in the set. | present a more intuitive economic interpretation of the concept
below after characterizing robustequilibrium in terms of exact equilibrium. The following
lemma provides the theoretical foundation for this.

Lemmal Suppose thatthere are (hon-empty) closed and bounded@%ts . Kg) such that
if one defines recursively, for eash

=Bs(KQ, (K7, KE ™)

each I<‘S is non-empty and closed. Then there exists an equilibrium set&ith K? for all
s=1...,S

Although the lemma follows directly frorBuffie et al. (1994, | provide the proof for com-
pleteness. The proof also helps with understanding the subsequent analysis.

Proof of the LemmaThe main step of the proof consists in showing, by induction, that
KL c Ki=tforalli and for alls. By definition,K2 c K2 for all s. To show that ifK§ ¢ K' -1
|t must also be the case thigft! c KL, observe that |f for a gives, z, there existzs € KL,

,Ssuchthah(§,z,z,...,25) =0,9(5,2) > 0 then smceK' K' —1 there must also eX|st

zS € Kg‘l, s=1,..., Ssatisfying this property, and henzenust lie |nK' Slnce the |ntersect|on
of nested closed non-empty sets is non-empty, one can how def|ne fs edhzs = 0K'
Clearly, the collection of setsZ1, ..., Zg) satisfy the conditions of an equilibrium set

The lemma states that if one has candidate equilibriumis@nd one can somehow prove
that the recursively definell! are non-empty for alil, then one can infer that eadt{ in fact
contains an equilibrium seds. If one takesk ° to be a robust equilibrium set, in order to apply
the lemma, one still somehow needs to verify that détlis non-empty.

It is useful to do this by showing the existence of truncated equilibria.

Definition 3.  Given arbitrary set§Z,,...,Zs), Zs C RM, define aT-truncated equilibrium
with terminal condition(Z1, ..., Zs) as a finite horizon procegg(s'))i<t such that for each',
t < T —1, the equilibrium conditions3) hold and such that(s") e Zs; for all terminals’.

The concept s closely related to the standard definition of equilibrium in truncated economies.
The only difference is that in the final period, agents face prices, consumptions, and invest-
ments prescribed b¥ and not, as in the standard concept, zero asset prices, and no new trade.
Showing existence of &-truncated equilibrium with terminal condition turns out to be not much
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harder than showing existence of equilibria for truncated economies (which is part of standard
existence proofs in these models). A sufficient condition for existence is typically thaZgach
contains a continuous function that there are constraints on trades which guarantee that it is never
feasible to leave the specified state space and that budget sets are non-empty for all choices and
prices. | illustrate this with an example in Section 5.1 below.

If for an arbitrarye-equilibrium setZ#, there exists a truncated equilibrium with terminal
condition Z¢ for all T, it is not guaranteed that the set contains an exact equilibrium since it
is not guaranteed that the truncated equilibria take value® irHowever, if thez-equilibrium
set is robust, it is clear from the definition that the truncated equilibria (if they exist) must take
values in the set. One can apply Lemihand ensure that an exact equilibrium set must be
contained in the-equilibrium set. The following theorem states this formally.

Theorem 1. SupposeZ® constitutes a robust -equilibrium and that for each T there exists a
T -truncated equilibrium with terminal conditiaf®. Then there exists an exact equilibrium set
Z with Zs c Z¢ for each se S.

While the definition of robust-equilibrium makes no mention of an exact equilibrium, this
theorem allows for the following interpretation of robusequilibrium in terms of exact equi-
librium.

One typically hopes that competitive equilibria in infinite horizon models are good approx-
imations to equilibria in models with large finite horizons, and that these equilibria converge
to the infinite equilibrium. In fact, one hopes that changes in exogenous variables in the far fu-
ture have negligible effect on endogenous variables todayKusder and Schmeddef2009
show,e-equilibria can be interpreted as equilibria oparturbedeconomyj.e. equilibria of an
economy with slightly different endowments or preferences. Robustness:edauilibrium set
requires that no matter how exogenous variables in the future are (locally) perturbed, as long as
the new equilibrium realizes in theequilibrium set, the effect on endogenous variables today
must be no larger than the effect on endogenous variables at the date of the perturbation.

Note that a reverse interpretation is not possible. If up to sorel endogenous variables
realize in anys-equilibrium set, the only way that all equilibrium conditions framonwards
hold exactly is that at the value of all endogenous variablds ats) already lies in an exact
equilibrium set.

3.3. Verification and existence of robustequilibria

The main advantage of the concept is that (at least in principle) one can always check numeri-
cally whether a given semi-algebraic set constitutes a rabagquilibrium. This follows directly

from the so-called Tarski—Seidenberg principle and the quantifier elimination algorithm (see,
e.g.Bochnak, Coste and Rq1998 Chapter 5)). More precisely, there is an algorithm that de-
cides for a given semi-algebraic setséquilibria if it is a robust-equilibrium sef. If it is, it

must contain an exact equilibrium. This raises the question of whether one should expect robust
e-equilibrium sets to exist and to be semi-algebraic.

3.3.1. Existence of robust-equilibrium. Suppose from the economic model, one can
find a priori bounds on all endogenous equilibrium variables (the example below shows this is
usually not very difficult, these bounds typically arise from non-negativity constraints in con-

2. Itis well known that quantifier elimination is hopelessly inefficient. | introduce more tractable methods for this
below.
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sumption, market clearing etc.) L&° satisfy these bounds and, without loss of generality,
impose the bounds in the equilibrium inequaliy) > 0.

Itis clear that, if 9 is semi-algebraic, the constructid are semi-algebraic foralk=1, ...,
and eacts. Fixing ane > 0, there must now exist a sufficiently largesuch thatk' actually
constitutes am-equilibrium set. By boundedness P, for eachs > 0, there must be ainsuch
that for alls, if ze KL, there must be ae Ki*+! with |z—2|| < J. For eache, there must be a
d, so thatifh(s,z,zi,...,zs) =0, then||h(§, 2,7, ..., Zs)|| < & whenever|z—Z|| < J.

‘The construction also implies th&t' is robust: if there existed son%z with z e Bs(RM,
(K}, ...,Ky)) butz ¢ K{, clearly by Lemmal, we must have ¢ K2. But this is impossible
because the inequality(-) > 0 imposex Kg by constructions.

4. A RECURSIVE FORMULATION

So far, the analysis has been conducted for absteaatquilibrium sets. However, while it is
easy to compute one “recursive” approximate equilibrium, researchers typically do not explicitly
compute entire sets of equilibria. In this Section, | use the theoretical results from above to show
that it is possible to verify that a recursigeequilibrium is close to an exact (not necessarily
recursive) competitive equilibrium.

For this, | need to impose a bit more structure on the abstract economy and define a recur-
sive e-equilibrium. As in Section 2, | write the vector of endogenous variables-ag6_, r),
with 6_ being the “endogenous state.” The relevant endogenous state spaeg(i81, ..., 0g)
where eacl®s c RP depends on the underlying model and is determined by the pay-off-relevant
predetermined endogenous variables by variables sufficient for the optimization of individ-
uals at every date event, given the price®Iis the “endogenous state space” there must exist
set-valued functiongs: ®s = RM~D such that eaclEs = graph(ps) for all s € S.

The functionh(-) typically uniquely determineé_s for each shocls, as a function of. In
the simplest example, the beginning-of-period portfolio holding is the endogenous state and this
is equal to the last period’s choices across agents. | illustrate this point in the next section.

The value of the state variablese S, 6_(0) € O, in Period 0 is called “initial condition”
and is part of the description of the economy. It will often be useful to make this explicit. In par-
ticular, | often want to require that an equilibrium set describes a family of equilibria arising from
different initial conditions in a set @f_ (0) that contains an open set. Through this requirement,
the state spac® is partly specified exogenously, but it is of course endogenous in the sense it
must contain all realizations ¢t that occur in equilibrium. In some models with exogenous
constraints on trade® can be taken as exogenous since the realizatiods @fre predeter-
mined through these restrictions. This applieg,.in models with asset markets and short-sale
constraints on these assets. For the purpose of this section, it will be useful to assume that there
are sufficient constraints on trades that ensure that indastspecified exogenously. | will give
an example below where this is not the case and show that it is without loss of generality to
assume that agents face trading constraints that are never binding in equilibrium.

A recursiveg-equilibrium consists of set®s, and functionsps: ®s —» RM-D se S such
that if ZZ = graph(ps) for all s € S, then Z¢ constitutes arz-equilibrium set. Note that the
comment made about the exogeneity@falso applies td®. Again, | will assume tha® is
given through the description of the economy and that therefigre- O for all s € S. From
now on, | will also assume thal is a continuous semi-algebraic function (which implies that
Os is a semi-algebraic set) for alle S.

It is easy to see thdls itself since it is a function will never describe a robustquilibrium
set (unless it is an exact equilibrium). The first step is therefore to create a function strip around
p that describes an entire setwequilibria.
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4.1. Constructing robust-equilibrium sets

For a given approximate recursive equilibrigts, Ps)ses and fixeds > 0, | take as a candidate
g-equilibrium set

ZE={(0-,n):0-€Os,|n—ps(0-) <6}, seS. (4)

Note that the exact relation betwe&ande in this definition is not important for what follows.
What is important is that if, for sufficiently smail Z¢ contains an exact competitive equilib-
rium, thenZ*¢ should also be a robustequilibrium set. At this abstract level this is not entirely
clear. This should certainly be trued if close to the exact equilibrium the backward operator is
monotone but actually turns out to hold more generally. In Section 5, | illustrate this point in
detail.

Given the above analysis, in order to verify robustness, one now needs to verify that for all
se s,

Bs(RM, (25,..., 2%)) c 2.

However, this neglects the fact that one would like the recursieguilibrium to be close to

an exact equilibrium for ab_ € ©s, s € S. But since | assumed th&t is given exogenously
through constraints on trades, it is without loss of generality to impose that the inequalities
h(-) > 0 ensure that_s always realize i@s. Therefore, the definition of robust equilibrium is
now equivalent to the following, perhaps more intuitive concept. Define for e&ch, Vs =
{z=(6—,n) € RM: _ e Os} and require fo2* that for eacts € S,

Bs(Vs, (21, ..., 29) C Z§. (5)

In other words, if endogenous variables in next period lie within séwfe), all endogenous
variables in this period must also lie withérof 5. Of course, Theorem 1 now needs to be slightly
modified and one needs to verify that truncated equilibria exist for all initial conditiods The
rest of the argument then remains the same.

If Z¢ is robust, and the conditions of Theorem 1 are satisfied, it must contain an exact equi-
librium, i.e.the computed approximation must be witkinf an exact equilibrium for all values
of the state. Note that these are absolute errors. Alternatively, we could have defined

i
psi(0-)

to obtain relative errors. The exposition in this section uses absolute errors, while | will use
relative errors in some of the examples below.

The advantage of working in a recursive framework is that one can formulate Condi}ion (
as a constrained optimization problem. Given a figed0, | consider the following constrained
optimization problem for eache S:

ZE={(6-,n):6- € ®s, max

—1‘55}

max, o, In—AO)l st el <
h(s,0—, 5, (0-1, p1(6-1) +¢€1), ..., (O-s, ps(0-s) +¢s)) =0

g(s,0-,n) = 0.
(6)
It is easy to see that, if the optimal value of this problem lies belpthe setZ¢ as defined
in equation §) is a robusk-equilibrium set.
Since the optimization probleng) is not a convex programming problem, one can gener-
ally not find the global maximum. However, in the semi-algebraic case, it is a different matter.
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| assume thah, g, and/ are continuous semi-algebraic functions and thatre closed semi-
algebraic sets. It follows from Proposition 2.1.8 Bidchnak, Coste and Rq$998 that one can
solve the maximization problen®) by solving a series of polynomial optimization problems
and verifying additional polynomial inequalities. See al&dler and Schmeddef20104 for

a detailed description of this point in finite economies. To simplify notation, | will assume from
now on that, g, andp are already polynomial functions. In the applications below, the equilib-
rium conditions can be rewritten directly as polynomial functions Ansl polynomial to start
with.

4.2. Solving the maximization probler@)(

Under the assumption that the Kuhn—Tucker conditions are necessary and have finitely many iso-
lated solutions, algorithms designed to find all solutions to polynomial equationStiseefels
2002 for an overview) can be used to find all critical points and, by comparing them, one can find
the globally optimal solution to systerB)( However, this “brute force” approach is extremely
inefficient.

It turns out to be much more efficient to use semi-definite programming and so called sum-
of-squares relaxation to solve the polynomial optimization problem. In the following, | briefly
explain the basic idea of the method.

4.2.1. Sum-of-squares relaxations. In the last decade, big advances have been made in
polynomial optimization—sekaurent(2009 for an overview. The basic idea (which is nicely
explained in detail ire.g.Parrilg 2003 is as follows.

A polynomial p € R[x] is said to be a sum of squares (of polynomials) if it can be written as

m
p= > u for someu; e R[x].
=1

Clearly, if for a polynomialp, there exists a number, such thatp— y is a sum of squares, then
y is a lower bound fop(x) for anyx.

If the degree ofp is d, in order for it to be a sum of squares, there have to existhich are
of degreed /2. The main insight is now that one can use semi-definite programming to search
over all polynomials of degred/2 to establish thap is the sum of squares. The polynomjal
can be written as a quadratic form of all the monomials of degree less than or egljaleo
letz=1[1, X1, X2,...,Xn, xf, X1X2, ..., xrﬂ‘] be the vector of all such monomials. Then there must
exist a positive—definite matrig with

p(x)=2"Qz

This matrix can be found using semi-definite programming Paaeilo, 2003 for details).
Following the same idea, but slightly more complicated, now consider the constrained
optimization problem
min f (x) s.t

01(¥)=...=gm(x) =0, h1(x)>0,....hi(x) > 0.

If there exist a numbey, arbitrary polynomialgys, ..., gm € R[X] and sum-of-squares polyno-
mialsr,...,r € R[x] such that

m |
pi="f—y =2 06— hi (7
i=1 i=1
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is a sum-of-squares, then cleaflyx) > y for all x satisfyingg(x) = 0, h(x) > 0. So againy
is a lower bound for the minimization problem. As before, given a candigatemi-definite
programming can be used to efficiently checlpiis a sum-of-squares.

Itis quite complicated to derive conditions grandh that ensure that the converse holds,
if y solves the minimization problem, one can achieve the sum-of-squares representation. The
Positivstellensatzby Schmiidgen and by Putinar (desurent 2009 Theorem 3.16) provide an
answer—it is beyond the scope of this paper to discuss this further.

More important for this paper is the fact that it is not possible to find good bounds on the
degree ofg andr and therefore on the degree pfin equation {). While one can still use
semi-definite programming to determine for whichhe term in the equation can be written as
a sum of squares, one hasagriori bound on the degree and therefore has to experiment with
different values. Fixing the maximal degree of the polynorpisdemi-definite programming can
be used to determine efficiently if polynomialsandr of appropriate degree exidVaki et al.

(2006 provide a way to exploit sparseness in the polynomial problem so that the method is
applicable to interesting problems. They report solving (sparse) problems with several hundred
variables.

In Section 5 below, | use a matlab implementation by the authors c8jedsePOP
described inwWaki et al. (2008 to solve the relatively small problems that arise from the ap-
plications. The package produces a lower bound for the problerfrom the solution of the
semi-definite program, as well as an approximate solution (the minimizer) to the polynomial
problem. If these values coincide, a true minimum has been foupdslémaller than the value
of f at the approximate solution, is still a lower bound for the problem but neithemor the
value of f might be the true minimum.

It is important to understand that one cannot always guarantee that the algorithm finds the
global minimum. There are essentially two reasons for this. First, it turns out that solving the
resulting semi-definite program is a difficult numerical problem and the solver might fail to find
a solution (se&Vaki et al., 2006 for a extensive discussion of this problem and some possible
remedies). More importantly, to use SparsePOP, one needs to specify the degree of relaxation
(the parameter “param.relaxOrder” ), which is a bounddg@ whered is the degree of the
polynomial p in equation 7). As explained above, one cannot sagriori how large this should
be. In the examples, below I try the values 3, 4, 5, and 6. Large values generally lead to severe
numerical problems. Obviously, even if there exisand polynomials andu such thatp can
be written as the sum-of-squares, it is not guaranteed that it will be of degree 8 or less.

However, the output of the algorithm is always a lower bound on the true value of the min-
imization problem. For my purposes, it is irrelevant what the true value of the problem is. In
order to determine if the error sétis empty for a givery, one actually does not have to solve
the maximization problembj. It suffices that) provides an upper bound for the problem. So if
the software package findsya< ¢ for which the problem can be written as a sum-of-squares,
existence of a robust equilibrium withih of the candidate equilibrium is proven. If the soft-
ware package does not find such anothing can be said about the robustness of the candidate
solution.

Note that this is a numerical algorithiing. an approximate numerical solution is computed
using floating-point arithmetic and rounding errors could potentially lead to probkeys.and
Parrilo (2008 develop an algorithm that computes an exact algebraic solution if coefficients are
rational.

4.2.2. Practical considerations. As | will explain in the next section, it is important to
formulate the optimization problem so that the degree of the polynomials is relatively low and it
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is important to find good bounds on the variables. For many interesting economic applications,
this might not always be possible and it might not be feasible to use existing implementations
of these methods to solve the polynomial optimization problem. From a practical perspective,
the insights from this section are useful nevertheless. There are various efficient methods to find
local minima to the optimization problens)(and, while this obvious cannot lead to a guarantee
that the computed approximation is close to an exact equilibrium, it can be a useful neces-
sary check. In particular, independently of the economy being semi-algebraic, the maximization
problem can be viewed as a programming problem with equilibrium constraints. There is a large
literature on these problems (seqy.Luo, Pang and Ralpi996 and reliable software to solve
large-scale problems (semg.Su and Judd200§ for an application of these methods to eco-
nomics).

5. EXAMPLE: STOCHASTIC OLG

In this section, lillustrate the method using a simple stochastic OLG economy. This is the natural
extension of the model considered in Section 2 in an environment with uncertainty. Agents live
for three periods, there is a single good, a single agent per generation, and a Markov chain
determines endowments over the life cycle. | assume that there is no production and that financial
markets are incompleteand that there is a single bond available for trade. The main purpose
of this section is to illustrate the theoretical results above. Clearly, there is a trade-off between
the model and notation being extremely simple and the model being interestirspmewhat
realistic or similar to models used in other applications.

At each date-event, a single individual commences his economic life; he lives for three peri-
ods. An individual is identified by the date event of his bieth= (st). The age of an individual
isa= 1,2, 3; he consumes and has endowments at all ngdés2 - s', a=1,2, 3. An agent’s
individual endowments are a function of the shock and his age alenéor alla=1,2, 3,
e (s'1+2) = e5(s_14a) for some functiores: S — R.

The agent has an intertemporal time-separable expected utility function.

3
U @©=> >, 76" o)ualcs™ ), 5 11a)

a=lgt-1+ayq

The Bernoulli utilityu depends on the age and the current shock alone.

At eachs!, there is a single risk-free bond in zero net supply available for trade. Its price is
denoted byy(s!) € R, and agent’s bond-holding ig)? (s') € R. Agents might face a borrowing
constraint of the forn#” (st) > b, for someb < 0.

At the root nodesy, there are individuals of all ages® ands=2 with initial wealth 65"
(s™1). These determine the “initial condition” of the economy.

It will turn out to be useful to writeca(st) andfa(s') to denote consumption and portfolios
of the agent born at!~1+2,

A competitive equilibrium is a collection of prices and choices of individuals such that mar-
kets clear and agents optimides. a sequencéq(st), (Fa(s'), Ca(s'))a=1.2.3)stes Such that for
all nodess! e T the following holds:

3. In an earlier version of the paper, | considered the case of complete markets. This makes the analysis slightly
easier. Results are similar and available upon request.
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e Market clearing:
3
> fa(sh) =0.
a=1

e At eachs!, individuale = st maximizes utility:

(c?,07) e argmax? (c) s.t.
c>0,0

c(sh) —ew(s)+a(sHo(s) <0, O(s) = b,
o8 —ea(s41) +qEHHOETH ~0(s) <0, 0 = b,
o(s?) —es(st42) —0(s) < 0,

for all st™1 = & and allst™2 > st

Optimality conditions for initially alive agents;"! ands~2 are analogous.

As in the deterministic example in Section 2, the natural endogenous state space of this econ-
omy consists of beginning of period bond-holdings of the middle-aged. Defing;, c;, ¢3) to
be consumption across agents alive in the current petiedf1, 62) to be new portfolio choices
andx = (x1,x2) € Ri to be the multipliers associated with the borrowing constraint, as well as
6_ to be the beginning of period wealth of the middle-aged and the oldz etf_, g, c, 9, k)
denote the vector of endogenous variables in a given period.

It is well known that under the assumption tHaf is differentiable, strictly increasing,
strictly quasi-concave and satisfies an Inada-condition, the first-order conditions are necessary
and sufficient for agent optimality. As in Section 2, the equilibrium equations consist of the
first-order conditions, budget equations, market clearing, and the equations that determine cash-
at-hand in the next period, given choices today.

In this example, the state space does not depend on the shock. Notelikat->o and
there are no constraints on trades, the&és completely endogenous. Therefore, the previous
analysis has to be slightly modified. One can view a recursieguilibrium of an economy
without constraints that is given bjs: ® — RM~D as ane-equilibrium of an economy where
the young agent faces the constraknt ©, but the constraint is simply never binding. Through
the error set, one then needs to verify that thisquilibrium is close to an exact equilibrium
with the same constraints in which these constraints are also never binding. In practice, | there-
fore check if aj strip around the computegequilibrium is a robust-equilibrium set for the
economy with constraints and then show that in the exact equilibrium these constraints are never
binding.

In order to apply the main result of the paper, Theorem 1, one first needs to establish existence
of truncated equilibria with terminal conditions. To prove existence of competitive equilibria
in these models, one typically first proves that an equilibrium exists for all finitely truncated
economies and then takes the limit. The result needed here is very similar.

5.1. Existence of truncated equilibrium

In this section, | prove that in the OLG model truncated equilibria with initial conditiéns
always exist if the se¥ contains the graph of a continuous approximate policy functionpg et
denote the approximate pricing function ghdthe approximate policy function of the middle-
aged. Let > 0 denote a lower bound of an agents’ consumption in any equilibrium. This is some
positive number determined by the fact that endowments are strictly positive and that agents are
finitely lived and their utility satisfies an Inada condition.
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As mentioned above, the existence of a truncated equilibrium is shown for a slightly modified
economy where all agents face additional trading constraints of the dornb. By market
clearing, this implie® < 6; < —b and one obtains a compact state sp@ce [b, —b].

In this set-up, one obtains the following lemma.

Lemma 2 Suppose is continuous and that for any s S and anyd_ e 0, ex(s) +6_ —
pqO—,9) - po(0—,s) > c. Then for all initial conditions ¢ 6_(sp) € ® and for any T, there
exists a T -truncated competitive equilibrium with terminal condijion

Although the proof of the lemma is a standard application of Kakutani’'s theoremegge,
Kubler and Polemarchaki2004), | present a detailed outline. The only difficulties lie in making
assumptions that ensure that agents’ budget sets are non-empty and in modifying the problems
of agents alive al — 1 andT; | discuss these in detalil.

Fix initial conditionssy, 6—(sp) € ®. Each agent in th& horizon economy who is not active
at T takes prices as given and a standard argument shows that his best response is continuous
for strictly positive prices. At each nodg), andt < T, there is a price player that takes choices
at the node as given and solves

max , p(en(s) +a(s!) + ca(s) — ex(s) — ea(s) — es(0) +(Pa(s) +62(s).

whereA% ={(p,q): p+q=1, p> 75,9 > 5} denotes the two-dimensional truncated simplex.
His choices are upper hemi-continuous and convex valued in choices of all agents.

Given choices of all agents, 1gts™) = 54 (01(s"~1)) and letd(sT) = pp (01 (s ~1)). Clearly,
this is continuous and non-empty for all admissible choices of agents.

Finally, all agents born at periH— 1 at nodes” —1, take as giverj(s") andd(s"), as well
as prices a$" ~1. Define their consumption &t as a function of savings &t — 1 as

c() = max((1+ Zib)%,ez(sﬂ +6 —q(sT)-e(sT)) )
This definition ensures that, independently(afs’),d(s")), positive consumption is always
feasible. It is then standard to show that best responses are continuous and non-empty since
the budget sets are continuous and non-empty in prices andirkakutani’s theorem ensures
the existence of a fixed point of the Cartesian product of the best responses—it is standard to
show that for sufficiently smaly > 0, this is aT-truncated equilibrium according to the above
definition. In particular, at the fixed point, it is guaranteed t¥at' (s™) = ex(st) +0(sT 1) —
q(s")-8(s") by the definition ofc and the assumptions gn

The main insight of the proof is that, if for a givan-horizon economy, one can show that
agents’ choices are continuous in prices, if one imposes a continuous policy funcliavhath
allows for positive consumption at some values of the specified state space, and if one imposes
constraints on trades that ensure that agents’ actions will never result in a state outside of the
specified spac®, then the only modification of the standard existence proof consists of the
assumption that agents take choice$ ais given. The method of proof can be applied to a large
variety of models where competitive equilibrium exists.

5.2. Examples

As explained in the introduction, this paper is not about how to compute approximate equi-
librium. For the simple model in this section, there are several reliable methods to do so. |
use the time-iteration algorithm which is explained in detaiKirueger and Kuble(2004)



KUBLER VERIFYING COMPETITIVE EQUILIBRIA 1395

for a model with OLG and production. | first revisit the deterministic example from Section
2 and then consider an example with uncertainty. Throughout, | assume that foa aadts,
ua(c,s) = —p2cl=7, g > 0,i.e. preferences exhibit constant relative risk aversion with a coeffi-
cient of relative risk aversion af > 1.

5.2.1. Example 1: A deterministic economy. To fix ideas, | first reconsider the example
from Section 2. Inspecting the equilibrium equatiof 6ne notices that, in order to solve the
constrained maximization probler8)( one does not need to know the entire policy function
but in fact only the consumption policies. It is therefore useful to approximate these separately,
i.e. instead of plugging the portfolio- and pricing functions into the budget constraints, and so
obtaining an approximating polynomial for consumption, it makes more sense to approximate
consumption directly, solve the constrained maximization problem using only this function and
then ask what it implies for portfolios and prices. Concretely, for the two specifications, it turns
out that consumption policies are actually better behaved then portfolios and can be well ap-
proximated by polynomials of degree 3.

In order to verify that a candidate solution is close to an exact equilibrium one now has to
go through several steps: (1) Given a policy function of the middle-agéd, the constrained
maximization problem to determine if this can be part of a robteguilibrium is as follows:

max +(ex+60-+q-0—pc(0-)) s.t.
£,0-€0,9,0

=3 +4c0) + 31~ 6%0) =0,
—GY3(e3—0) + pY3(e2+G%0+6_) =0,
0e®, q=0, —d<e<9,

8)

where= indicates that, firstly, the positive objective function is maximized and, secondly, the
negative objective function is maximized.

Note that it is useful to substitute in budget constraints and to write the system using
d = q¥°. In its original formulation, the system of constraints would contain the &fm
pc(0))3—with j¢ being a polynomial of degree 3 that would result in a polynomial of degree 7
and potentially cause numerical problems. Note also that, although in its original formulation,
the example did not include constraints on trades, | add the congfrai®. Since the poly-
nomial functionj is defined on all of, but only makes sense d@, this cannot be avoided.
For candidate solution (1) andl= 10~4, SparsePOP returns an upper bound &>410~°
for the problem. As a next step, (2), one has to check what a deviationdfihCthe con-
sumption policy implies for prices and portfolios. For this, one can use SparsePOP to solve
max. , co.q.0 +(0 — pp(6-)) and maX ) co.q.0 +(q — pq(f-)) subject to the same constraints

&

as above. For Solution (1), SparsePOP returns an upper bourbo1G~*. Finally, in Step (3),

one now has to verify that, if portfolios stay in this region, the additional superficial constraint
6 e © never bindsi.e. in this case, for Solution (1), one needs to check that fatakt [—6, 0],
p(O-)—32x10*> —6andp(_)+3-2x 10~* < 0—which is the case.

In comparison, for Solution (2), Steps (1) and (2) above also yield good results. In this case,
one obtains that the portfolio policy is within 18 of 5(6_). However, with this, Step (3) fails
sincep(A_) + 1072 lies outside o atd_ = —5.4. The method fails to verify that this approxi-
mate solution is close to an exact equilibrium—as | show in Appendix it is not.

5.2.2. Example 2: Endowment uncertainty. The introduction of uncertainty poten-
tially causes numerical problems. If one continues to use the consumption policy function for
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constant-relative-risk-aversion utility and an economy V@ittxogenous shocks, one has to solve
s=1,..., Sproblems of the form

max ) +(e2(s)+6-+90 — pc(0-)) st

S 1
+2 EI9p ——— s =0,
=1

RGO (65 + p(0,5))°

1 1
- + 7Z'S/S —:0,
Temraroy 2"V g gy
>0, 0e®@and—6<eg <o, forallses,

S

In this formulation, the equilibrium constraints are not polynomial but, of courseisitational,

one can obtain polynomial expressions by multiplying out. Even for very simple examples with
o = 3 and two shocks, if the approximate consumption function is cubic this leads to polyno-
mials of degree 13. This is not feasible for SparsePOP. Instead, for a given currenssihisck
useful to consider the functions

R S , 1 2
pm(0-) = (Z m(s |5)ﬁm) :

s'=1

s 1 -7
P @) = > 2 19p———) .
" z (es(s) —0-)°
In the example below, it turns out that these functions can be extremely well approximated
by low-degree polynomials. Now one has to work with relative errors since maximal rel-
ative consumption errors translate one-to-one to maximal relative errgrs inWVith this, the
equilibrium constraints of the maximization problem can be trivially written as

—G(1+2)pm(0) + (er(s) —470) =0,
—0(1+2)p2(0) + (e2(5) +G70 +0-) = 0.

Since the objective function now involves the ratio of actual consumption and approximate
consumption policy, one has to verify, in addition to Steps 1-3 above, that the polynomial ap-
proximationp, is sufficiently good, given the polynomial approximation for consumption.

To illustrate this, | consider a very simple numerical example. Supfcse, shocks are
i.i.d. with = = 1/2, endowments are given by

and supposg = 1 andos = 3.

In the computed approximate equilibrium, it turns out that the endogenous state can be cho-
sen to be® = [—0-2, —0-05] and the approximate consumption functions can be chosen to be
the quadratic functionf. (6—, 1) = 1.6369+ 0-2350_ — 0-005%?2 andpa(0-,2) =1.2187+
0-322W_ — 0-036292. With these specifications, a cubic polynomial leads to an excellent
approximation forp, and it turns out that foa = 1, 2

prre(6-) -1 <1078,

0 [rggXOOS]
_e[-0-2,-0- S 1 v
(Z507 198 ey )
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With this in place, one can now repeat the steps from above and verify that there is an exact
equilibrium for which the approximation exhibits a relative error of less thart 1Bord = 104,
the optimal value of the maximization problem in Step 1 is arourfix410~°, so even an
additional error resulting from the approximationf does not destroy robustness.

The simple example illustrates the method—the technique can easily handle examples with
six or more states and risk aversion of four or five.

6. CONCLUSION

This paper develops a computationally feasible test to verify that a computed candidate equilib-
rium is close to a competitive equilibrium of a dynamic stochastic economy. The result has both
practical and theoretical relevance.

In practice, researchers often want to argue that their computations of dynamic equilibria
are accurate. Reporting relative errors in Euler equations can certainly be useful for this but
only provides a necessary condition. The method in this paper can be used to give a bound
on the exact deviation between computed function and actual equilibrium. The computation is
relatively efficient and can be used for interesting small problems. | also argue that the method
suggests an error analysis that is feasible for large-scale models.

Theoretically, it is known that the assumption of semi-algebraic preferences and technology
allows for an arbitrarily good approximation of all equilibria of a finite economy (segubler
and Schmedder£010g. The papers in the recent book edited Byown and Kubler(2008
explore other implications of semi-algebraic fundamentals in finite economies. In this paper, |
show how to extend the ideas from real algebraic geometry to infinite economies.

APPENDIX

I show that for the example in Section 2, there is no equilibrium close to the candidate Solution (2). The method from
Kubler and Schmeddef2010b proves that there is a unique steady state which is associated with candidate Solution
(1). To understand better, the dynamics of the model close to the approximate solution, it is useful to identify the pairs
of beginning of period bond-holding and consumption of the middle-a@edc), which lead to constant portfolios and
those that lead to constant consumption. If portfolios are constant at@este= 6_, the budget constraint and the
first- order condition of the middle-aged imply as a necessary condition that there is & gtich thaigd = c—ey —

0, qc =(e3—6)" -3 . Rewriting these equations as polynomials and using Grobner bases to eliminate l§ulakem
and Schmedder®0108), one finds that constant portfolios arisédt, c) satisfy the following polynomial equation:

32004 4 (—320c+ 290403 + (480 — 483602 + (—320c° — 2400 + 24986 + (40c — 423 = 0. (A1)

If consumption remains constant, there must Besad aq such that the budget constraint of the middle-aged and
both first-order conditions holdle.

g0 =c—e—0-, qci=(e3-0), qler+e+e—c—(g—0-) >=c>.
Rewriting as polynomials and using Groébner bases to elimiftgt®), one obtains

25600@* + (—384000_ — 4252800c3 + (12800®2 +2771200_ + 14927120c? +
(1920002 + 4444800_ + 25724280c +

(—6400(B§ — 22224002 — 25724280_ — 99252847 =0. (A.2)

These two polynomial equationé.(l) and A.2) define curves id—, c) space and one can easily determine the
dynamics above and below these curves. Figure 2 shows the two curveg, vaththex-axis andc on they-axis in the
region close to consumption of the second candidate solution.

The arrows indicate the dynamics@&ndd. There are four relevant regions labelled 1-4. While it is not apparent
from the figure, one can easily verify that the two curves do not intersect in this region. Therefore, there can be no
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FIGURE 2

equilibrium with consumption close to the one in candidate Solution 2. Any §lichc) pair leads to a dynamical
system that must leave Region 1 for either Regions 2 or 3 and eventually must end up in Region 4 where consumption
of the middle-aged goes to infinity and therefore consumption of the old or of the young must become negative. This
cannot be part of any competitive equilibrium.
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