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ABSTRACT
Point spread function (PSF) modelling is a central part of any astronomy data analysis relying
on measuring the shapes of objects. It is especially crucial for weak gravitational lensing,
in order to beat down systematics and allow one to reach the full potential of weak lensing
in measuring dark energy. A PSF modelling pipeline is made of two main steps: the first
one is to assess its shape on stars, and the second is to interpolate it at any desired position
(usually galaxies). We focus on the second part, and compare different interpolation schemes,
including polynomial interpolation, radial basis functions, Delaunay triangulation and Kriging.
For that purpose, we develop simulations of PSF fields, in which stars are built from a
set of basis functions defined from a principal components analysis of a real ground-based
image. We find that Kriging gives the most reliable interpolation, significantly better than the
traditionally used polynomial interpolation. We also note that although a Kriging interpolation
on individual images is enough to control systematics at the level necessary for current weak
lensing surveys, more elaborate techniques will have to be developed to reach future ambitious
surveys’ requirements.
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1 IN T RO D U C T I O N

An accurate model of the point spread function (PSF) is a crucial
step in astronomical analyses relying on the estimation of galaxy
shapes. For instance, an imperfect PSF model has been identified
as a prominent systematic effect in weak gravitational lensing mea-
surements (e.g. Heymans et al. 2006; Massey et al. 2007), and
much effort is underway to optimally model the PSF (e.g. Kitching
et al. 2010). Jarvis & Jain (2004) and Jee et al. (2007) have devel-
oped techniques based on principal components analysis (PCA) to
describe the PSF shape. Using an analytical approach and an em-
pirical one based on shapelets (Massey & Refregier 2005), Paulin-
Henriksson et al. (2008) have investigated the impact of imperfect
shape description of the PSF on dark energy constraints, and set
requirements on the number of stars needed to calibrate the PSF.
Paulin-Henriksson, Refregier & Amara (2009) explored how the
sparsity and the complexity of a PSF model affect the level of sys-
tematics in weak lensing surveys. Recognizing that any modelling
method – relying on the interpolation of the incomplete information
contained by individual stars, each one being an imperfect realiza-
tion of the PSF – can be reliable only on scales larger than the typi-
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cal distance between stars, Amara, Réfrégier & Paulin-Henriksson
(2010) investigated the hardware–software balance: although the
PSF can be corrected for on large scales through modelling, it
is hardware driven on small scale, requiring that the telescope’s
characteristics are set such that the PSF is known, stable and well
controlled at small scales. Rowe (2010) has discussed how to diag-
nose a given PSF model. In particular, he showed how measuring
the correlation function of the residuals’ ellipticity is an ultimate
test to the PSF interpolation.

A first step in PSF modelling is to characterize it where it is sam-
pled (i.e. on stars). Several quantities can be used to describe the PSF
properties, such as its moments (e.g. Kaiser, Squires & Broadhurst
1995; Rhodes, Refregier & Groth 2000), or its full shape through
shapelets coefficients (Bergé et al. 2008) or principal components
(PCs; Jee et al. 2007). Jee et al. (2007) have investigated how
wavelets, shapelets and PCs perform to measure the stars’ shapes.
They found that among those three techniques, PCs provide the
best description of the stars’ shapes. We thus follow their method
to extract the shape information from stars.

The next step is to interpolate the stars’ shape information to
the positions of interest, usually galaxies. The goal of this paper
is to assess which interpolation scheme performs best to model a
realistic PSF field, such as what can be dealt with in weak lensing
analyses. To this end, we develop simulations of PSF fields, where
stars are built from a set of basis functions defined as the PCs of real
stars in a Subaru image. We then run our PSF modelling pipeline,
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including a PCA and an interpolation of the stars’ PCs coefficients,
with different interpolation schemes.

We shall review the different interpolation schemes that we use
in Section 2. Section 3 presents the simulations that we create and
use to compare the behaviour of those interpolation schemes. Our
results are shown in Section 4. We discuss them, including the
dependence of the interpolation schemes on the stellar density, their
sensitivity to outliers and their impact on weak lensing systematics,
in Section 5. We conclude in Section 6.

2 IN T E R P O L AT I O N S C H E M E S

This section presents the basics of the interpolation schemes com-
pared in this paper. More details can be found in the Numerical
Recipes (Press et al. 1992). Platen et al. (2011) proceed with similar
comparisons, in the context of non-linear density field reconstruc-
tion; they give additional useful mathematical background to some
techniques used here.

2.1 Polynomial interpolation

It is common practice in weak lensing to assume that the PSF varies
smoothly across the field, and to interpolate it from stars with a
bivariate polynomial (e.g. Van Waerbeke, Mellier & Hoekstra 2005;
Miyazaki et al. 2007; Bergé et al. 2008; Fu et al. 2008). Different
variations have been investigated and used on real data: rational
fractions (Van Waerbeke et al. 2005), decomposition of the PSF
field into subfields corresponding to each chip of the camera to help
capture each chip’s intrinsic behaviour or superposition of bivariate
polynomials (Rowe, private communication).

At the core of polynomial interpolation lies the assumption that
the PSF spatial variation can be described by a smooth analytic
function (for instance, a polynomial). However, there is no strong
physical reason why the PSF field should vary as a polynomial
(e.g. the intrinsic camera’s PSF can be discontinuous from chip to
chip). Hence, a simple bivariate polynomial is frequently no more
than a rather good approximation of the PSF field, which may not
capture details well enough for precision cosmology. Moreover, one
usually does not need to know such an analytic form, but only needs
to interpolate the PSF characteristics at positions of interest (e.g.
galaxies). It is therefore completely legitimate to consider the PSF
field as a spatial random field, and to turn to less- or non-analytic
forms of interpolation, such as those presented below.

2.2 Radial basis function interpolation

The radial basis function (RBF) interpolation assumes that the spa-
tial variations of the field y(x) can be represented by the superpo-
sition of local functions φ(r), which depend only on the distance to
data points j, r = |x − xj |:

y(x) =
N−1∑
i=0

wiφ(|x − xi |), (1)

where N is the number of data points and wi are unknown weights,
estimated from the value of the fields on data points.

2.3 Shepard interpolation

The Shepard interpolation is a special case of a RBF interpola-
tion where φ(r) → ∞ as r → 0. It can be shown that in this

case

y(x) =
∑N−1

i=0 y(xi)φ(|x − xi |)∑N−1
i=0 φ(|x − xi |)

. (2)

In the following, we test a Shepard interpolation with φ(r) = r−p,
with p > 0.

2.4 Kriging interpolation

Kriging is a Gaussian process regression technique which has been
shown to provide the best linear unbiased estimator of a statistical
field (Cressie 1988, 1993).

We assume that we have N data points xi , where the field yi =
y(xi) is known, and that we want to estimate the field at a given
point xG. Kriging looks for the value of the field at this position
as a weighted linear combination of the nearby values at known
positions:

ŷG =
N−1∑
i=0

λiyi . (3)

The weights λi are estimated such that they minimize the error
with respect to the data according to the mean square variation.
Therefore, Kriging relies on the estimation of the variogram of the
data to interpolate, the variogram being the mean square variation
of the values of the field y(x) as a function of the offset distance r:

v(r) ∼ 1

2

〈
[y(x + r) − y(x)]2

〉
, (4)

where the average is over all x and r . In the following, under the
assumption of isotropy, we assume that the variogram only depends
on the distance r = |r|.

We note vij = v(|xi − xj |) and vGj = v(|xG − xj |). If we define
the vectors

Y = (y0, y1, . . . , yN−1, 0) and (5)

V G = (vG,0, vG,1, . . . , vG,N−1, 1) (6)

as well as the matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v00 v01 · · · v0,N−1 1

v10 v11 · · · v1,N−1 1

· · ·
vN−1,0 vN−1,1 · · · vN−1,N−1 1

1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

then the Kriging interpolation estimate ŷG ≈ y(xG) is

ŷG = V GV−1Y . (8)

The extra row and column in V as well as the extra elements in
Y and V G allow the estimator to be unbiased.

We find that an exponential variogram, defined as v(r) =
σ 2exp(−r/a), where σ 2 is the data points’ variance and a is a free
parameter, gives very competitive results. The free parameter a is
the range, which sets how far from the position of interests data
points should be used; at distances larger than a, the variogram
becomes constant. Another free parameter can be added, called the
nugget, which describes the degree of correlation of the field at very
small scales, v0 = limr→0 v(r); in this work, we find that setting
v0 = 0 (i.e. assuming the field does not decorrelate at very small
scales) gives the best results.
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2.5 Delaunay triangulation

Delaunay triangulation is a particular type of triangulation. Drawing
triangles whose vertices are the data points, the Delaunay triangu-
lation is that which maximizes the triangles’ angles and minimizes
their sides’ length. The function to be interpolated is known at the
triangles’ vertices, then interpolated in their interior, where it must
be estimated. In this paper, we use a linear interpolation between
the triangles’ vertices.

3 SI M U L ATI O N S

In order to test the different interpolation schemes presented in
Section 2, we developed versatile simulations. They create mock
PSF fields based on real images, whose spatial variation, star density
and star signal-to-noise ratio (S/N) can be set.

Our goal is to create mock PSF fields that are as realistic as
possible, and can be tailored to images from current surveys. We
thus base our simulations on real images that we call ‘reference
images’. To create a simulated image, we first extract the stars from
the reference image using SEXTRACTOR (Bertin & Arnouts 1996).
We define a set of basis functions, with which a mock star can be
created, by proceeding to a PCA of the stars from the real image;
the associated PCs eigenvectors define the set of basis functions.
During this process, we keep 90 per cent of the variance information
of the stars, so that the shape information is well extracted, while
the background is discarded.

We then make simulated stars by adding linearly the weighted
PCs eigenvectors. To obtain various shapes of stars, the weights
are chosen randomly, with the only constraint that the variance of
any given weight is similar to that of the coefficient associated with
the corresponding PC eigenvector of the real stars, to ensure that
mock stars are realistic. Finally, we require that the PSF varies
across the image. We set its spatial variation by defining the spa-
tial variation of each weight of the PCs reconstruction: the random
field from which we draw the weights is therefore given a real-
istic power spectrum, following the technique described by Rowe
(2010).

For the sampling of the PSF field, i.e. the position of nstars stars
across the image, we can either (1) use the position of stars of the
real image (in this case, nstars is the number of stars in the real image)
or (2) lay any number nstars of stars at random positions. The former
possibility is especially useful to diagnose the PSF model that we
can expect to obtain when analysing the real image; for instance,
any subpopulated area may suffer from a badly constrained model,
which will be revealed when analysing the mock. The latter is useful
for general modelling method development e.g. to test the behaviour
of a given method on the stellar density. We use this option in this
paper.

Besides stars, we simulate ngals extra PSFs at random positions
that we call ‘galaxy-PSFs’ in the remainder of this paper. They are
at the positions at which we want to interpolate the PSF from the
nstars above. Simulating those PSFs, instead of only storing their
characteristics, allows us to have a realistic image, on which we can
run our PSF measurement pipeline in the same way as we do on
real data (i.e. there is no need to tailor it to the simulations), as well
as to directly compare the PSF image and the model, and to use the
exact same techniques to measure the PSF’s characteristics on the
simulated image and on the modelled image.

A background with the same statistics as that of the reference
image is then added to the simulated image. The S/N distribution
of simulated stars is set by hand, either following that of the real

Figure 1. Example of PSFs in one simulation, with a logarithmic colour
scale. The pixel scale is 0.2 arcsec pixel−1.

image, or independent of it, to test the behaviour of the interpolation
technique on stars’ S/N.

In this paper, we base our analyses on 50 mock Subaru images,
with a reference image being a typical Subaru SuprimeCam image.
The simulations are 10 032 × 7769 pixels2 in area, corresponding
to 33 × 26 arcmin2. The PCs decomposition of the stars in the ref-
erence image provides us with a set of 13 basis functions, which
are used to make simulated stars. We set the spatial variation of
the simulated stars’ PCs weights with a power spectrum of slope
11/4, which is close to what is measured for ground-based PSFs
from the Kolmogorov spectrum for atmospheric turbulence (e.g.
Sasiela 1994). The resulting PSF’s ellipticity is of average 0.05,
and of standard deviation 0.02, consistent for all simulations. Each
simulation contains 1000 stars (where the PSF would be sampled
for a real image’s analysis) randomly distributed, all with the same
S/N = 100. This stellar density of 1.1 stars arcmin−2 is close to
what is usually measured in real surveys. ‘Galaxy-PSFs’, where the
PSF must be interpolated, are added in two versions of each sim-
ulation: one version features randomly positioned ‘galaxy-PSFs’,
while ‘galaxy-PSFs’ of the other version are on a regular grid. The
latter version allows us to use powerful 2D plots; the former is
closer to reality and is used to measure correlation functions. We
input 2000 ‘galaxy-PSFs’ in each version of each simulation. In
the following, only those ‘galaxy-PSFs’ are used to assess the cor-
rectness of any interpolation. Fig. 1 shows two PSFs in one of our
simulations. The left-hand panels of Fig. 2 show a PSF ellipticity
field on the ‘galaxy-PSFs’ grid (top) and on ‘stars’ (bottom).

3.1 Quantities of interest

We consider two quantities of interest to characterize the simulated
PSF and test the model: PCs coefficients and Gaussian-weighted
ellipticities:

e = e1 + ie2 = Q11 − Q22 + 2iQ12

Q11 + Q22
, (9)

where Qi,j (i, j = 1, 2) are the PSF’s quadrupoles.
To compare the modelled PCs coefficients with the input ones,

we force our PCA–PSF measurement pipeline to use the exact
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Figure 2. Unweighted ellipticity of the simulated PSF field. Top-left: ellipticity of the input PSF on a regular grid. Bottom-left: ellipticity of the input PSF
at the position of ‘stars’ used as samples of the PSF for the interpolation of its PCs. Middle column: recovered PSF ellipticity fields after interpolation of the
PSF PCs, for polynomial interpolation (top), Delaunay triangulation (centre) and Kriging interpolation (bottom). Right-hand column: residuals, amplified by
a factor of 3 for better visibility.

same set of PCs as those used for the simulation. This downgrades
the capacity of our pipeline, since it is not free to find the PCs
eigenvectors’ set that optimally describes the PSF. However, for
high enough S/N stars, this has a negligible effect. Moreover, when
defining mock stars from the reference image’s PCs eigenvectors,
we are careful to normalize the stars in the same way as we do
in our PCA–PSF measurement pipeline, to ensure that PCs keep
the same meaning during the entire process from simulation to

modelling of the PSF to test of the model. Therefore, it makes sense
to compare the interpolated PCs coefficients with those input in the
simulations.

4 R ESULTS

We run our PSF modelling pipeline on the simulations presented
in the previous section. As mentioned above, we force our PCA
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Figure 3. Same as Fig. 2, for the two components of the unweighted ellipticity of the PSF. Top: e1. Bottom: e2. Because of gridding aspects, it was not possible
to represent the ellipticity components for individual stars. Note that the colour scale for the residuals is narrower than that of the input and of the model (−0.03
to 0.03 instead of −0.1 to 0.1).
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Figure 4. Same as Fig. 2, for the first two PCs coefficients of the PSF. Note that the colour scale for the residuals is narrower than that of the input and of the
model (−0.006 to 0.006 instead of −0.03 to 0.03). Third and fourth PCs coefficients of the PSF.

analysis to use the same PCs eigenvectors as those used to create the
simulated stars. Doing so, our PCA decomposition of an infinite S/N
star would output the exact input star. Hence, two sources of error
are present when we compare the interpolated PSFs with those input

in the simulations: the error coming from the shape measurement
of finite S/N stars, and that of the interpolation. In this paper, we are
concerned with estimating the latter. Having high enough S/N stars,
we checked that the errors from the shape measurement are small
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Figure 4 – continued

enough that they can be neglected in our first tests (Figs 2–6). The
last test, using correlation functions (Section 4.2) is sensitive to the
errors from the shape measurement; we will use them to discuss the
errors coming from the interpolation.

Our results are presented below.
Polynomial interpolation. We interpolate the PSF’s PCs coeffi-

cients with (1) a bivariate polynomial on the entire field, the degree
of which is focused with a χ 2 minimization, but is constrained to
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Figure 5. 2D distributions of the ellipticity’s residuals in the three planes
defined by the one-to-one comparisons of the three interpolation schemes.
Upper panel: e1. Lower panel: e2. Contours show the distribution of the
residuals, normalized such that the maximum is 1. Contours start from 0.1
and increase by steps of 0.1.

remain small enough to avoid fast divergences; and (2) 2D Cheby-
shev polynomials interpolation.

We find Chebyshev polynomials, although they are bound and
should be expected to give better results, not to perform better than
regular bivariate polynomials. Therefore, in the remainder of this
paper, we will only report results from regular bivariate polynomi-
als. We find the best-fitting polynomial to be of fifth order.

RBF interpolation. We try Gaussian-RBF, multiquadratic-
RBF, inverse multiquadratic-RBF, and thin-plate-RBF. Although
Gaussian-RBF behave better than the others, we find all those kinds
of RBF to be too unstable, and need too fine a tuning to give reliable
models. Therefore, we do not spend more time on RBF interpola-
tions here. However, we find the Shepard interpolation to perform
as well as a polynomial interpolation, with almost no fine-tuning
needed, for p ≥ 3.

Kriging interpolation. We try exponential and spherical vari-
ograms, with varying range and nugget. We find the exponen-
tial variogram to be more stable and to perform better than the
spherical variogram. Therefore, in the remainder of this paper, we

will only consider an exponential variogram when using Kriging
interpolation.

We get better results when setting the nugget to 0. When normal-
izing the images’ coordinates so that 0 < x < 1 and 0 < y < 1,
we find that the interpolation gives better results when setting the
range of the variogram between 0.25 and 0.75. The range acts on
the stability of the model at small scales by taking more or less stars
into account to estimate the variogram.

In the following, we compare the results of the interpolation with
a polynomial, a Delaunay triangulation and a Kriging technique.

4.1 Recovery of PSF’s field information

We start by comparing the Gaussian-weighted ellipticity of the inter-
polated PSFs with that of the simulated PSF, for a given simulation.
Although the limited space prevents us from showing the results
for several simulations, we verified that our results are consistent
for all our simulations. The top left-hand panel of Fig. 2, as seen
in landscape, shows the simulation’s ellipticity field, sampled at the
position of ‘galaxy-PSFs’. The bottom left-hand panel show the
PSF’s ellipticity of the stars used for the interpolation. The middle
and right-hand columns of the figure show the models and residuals
we obtained with a fifth-order polynomial (top), Delaunay (mid-
dle) and Kriging (bottom) interpolations, on the grid formed by
‘galaxy-PSFs’.

Fig. 3 shows the same information as Fig. 2, decomposed into the
two components of the ellipticity, e1 (top) and e2 (bottom). For both
components, the top left-hand panel shows the input, and the right
two columns show the ellipticity of the interpolated PSF, as well
as the residuals, for the three interpolation techniques we compare
here.

Fig. 4, with the same layout as Fig. 3, goes one step further in
decomposing the information. It shows the interpolation of the first
four PCs (the most significant) of the PSF themselves. Hence, while
the previous figures showed the combined ‘physical’ information of
the ellipticity, this figure is at the core of our interpolation pipeline,
since it shows how each individual interpolation performs. Similar
figures, made from regularly gridded ‘galaxy-PSFs’ simulations,
cannot be done for real data, where one knows the PSF information
only on stars. On real data, one can only rely on testing the inter-
polation of the ellipticity on stars (i.e. one should transform Fig. 2
such that information appears at the position of stars only).

A bivariate polynomial interpolation fails to capture the quickly
varying features of the PSF pattern: significant residuals are seen
by eye around the most significant gradients of the PCs and ellip-
ticity fields, showing how this interpolation mostly smoothes the
information. Higher and higher order polynomials should manage
to capture increasingly small variations of the field; however, this
requires an uncomfortable tuning of the polynomial, which is hardly
compatible with the automatization that is necessary to deal with
big surveys. The Delaunay triangulation, although suffering non-
negligible residuals when the field varies quickly (see e.g. the third
PC), produces satisfactory interpolations. Finally, the Kriging tech-
nique recovers the information almost perfectly, with homogeneous,
near-zero residuals. Only when the gradients of the fields are very
strong does it leave an imprint in the residuals maps.

From these three figures, we can already conclude that the Krig-
ing interpolation performs best, slightly better than a Delaunay
triangulation interpolation and significantly better than a bivari-
ate polynomial interpolation. Moreover, the Delaunay triangulation
and Kriging interpolations need only minimal tuning, and hence are
more portable and adapted to diverse data sets.
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Figure 6. 2D distributions of the first four PCs coefficients’ residuals in the three planes defined by the one-to-one comparisons of the three interpolation
schemes. From left to right and top to bottom: first, second, third and fourth coefficient. Contours show the distribution of the residuals, normalized such that
the maximum is 1. Contours start from 0.1 and increase by steps of 0.1.

In Fig. 5, we compare the distribution of the ellipticity residu-
als, between the three considered interpolation techniques, for 50
simulations. Fig. 6 provides similar comparisons for the first four
PCs of the PSF shape. These figures, showing that the distribution
of residuals is clearly tightest for the Kriging interpolation, confirm
our claims above about how much better this technique performs.
Furthermore, no significant correlation is visible between the resid-
uals obtained with a polynomial interpolation and the other two
interpolation schemes; they perform well even where a polyno-
mial interpolation performs badly. On the other hand, the residuals
obtained with a Kriging and those obtained with a Delaunay tri-
angulation interpolation are correlated. This shows that since they
are both sensitive to small-scale information, their behaviours are
comparable. For instance, they suffer similar limitations when the
field varies quickly (as shown in Figs 2–4).

4.2 Ellipticity correlation functions

We now turn to the PSF ellipticity correlation functions. If the
interpolation is correct, the correlation function of the residuals

should be consistent with zero, or at least negligible compared with
that of the measured PSF ellipticity. In particular, Rowe (2010) has
shown that the correlation function of the residuals helps diagnose
an under- or an overfitting, and therefore is recognized a perfect test
to choose between different interpolations.

The ellipticity correlations functions are defined as χ (|θ |) =
〈e(r)e∗(r + θ )〉, where e is the complex ellipticity of either the in-
put simulation, the interpolated PSF or the residuals, and e∗ is the
ellipticity’s complex conjugate. In case of the residuals, the corre-
lation function is identical to the function D1(θ ) defined by Rowe
(2010) (D1(θ ) ≡ 〈δe(r)∗δe(r + θ )〉, where δe are the residuals).
Although on real data, the PSF ellipticity correlation functions can
only be estimated with stars, here we measure them using only the
‘galaxy-PSFs’ in our simulations, i.e. the measurement of the PSF
on points not used to perform the interpolation. Hence, we discard
the stars, which prevents our estimation of the residuals’ correlation
function from being underestimated due to a perfect interpolation
on stars. Our measurements of the correlation functions therefore
only probe the reconstruction of the PSF where it is not known a
priori (and used for the interpolation).
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Figure 7. PSF ellipticity correlation functions, averaged over 50 simulations. Left: polynomial interpolation. Centre: Delaunay triangulation interpolation.
Right: Kriging interpolation. In each panel, the black line represents the ellipticity correlation function of the input, the red line shows that of the model and
the green one shows that of the residuals. Dotted lines show the upper limits on the residuals that one must satisfy so that the weak lensing systematics σ 2

sys
from the PSF are less than 10−5, 10−6 and 10−7 from top to bottom.

Fig. 7 shows the PSF ellipticity correlation functions, averaged
over 50 simulations, for a bivariate polynomial, a Delaunay trian-
gulation and a Kriging interpolations from left to right. The black
solid lines represent the ellipticity correlation functions as measured
on the simulations. The red lines are those of the interpolated PSF.
The green lines are those of the residuals. The correlation func-
tion of the residuals in Fig. 7 confirms that a Kriging interpolation
yields significantly better results than a polynomial interpolation.
The difference is less striking with a Delaunay triangulation, al-
though clearly noticeable. We discuss the effects on systematics in
the context of weak gravitational lensing in Section 5.1.

5 D ISC U SSION

In this section, after discussing the level of systematics from the PSF
interpolation for weak lensing, we discuss the stability of the tech-
niques presented above. In particular, we focus on their dependence
on the stellar S/N and stellar density.

5.1 Weak gravitational lensing systematics

Although considered a premier cosmological probe, weak lensing
is such a small effect that all possible systematic effects must be
tackled very thoroughly. The PSF is the most significant systematic,
making the correction of shapes for the PSF effects of paramount
importance. Here, we quantify the systematics on the cosmic shear
power spectrum due to PSF interpolation errors using the three
schemes mentioned above.

We assume that the PSF deconvolution, which occurs after its
interpolation when measuring galaxy shapes, does not bring addi-
tional systematics, so that all systematics attributable to the PSF
come from its modelling only. We compute the impact on the shear
correlation function by following the definition by Rowe (2010) and
Paulin-Henriksson et al. (2009):

|δξγ
+|(θ ) ≤

∣∣∣∣∣D1(θ )

(P γ )2

〈(
RPSF

Rgal

)4
〉∣∣∣∣∣ , (10)

where D1 is the correlation function of the residuals (see above),
Pγ is the shear susceptibility and RPSF and Rgal are the sizes of
the PSF and of galaxies. We take the same values as those used
by Rowe (2010): Pγ = 1.84, 〈(RPSF/Rgal)4〉 ≈ (1/1.5)4. Note that in
equation (10), we ignore the second term of Paulin-Henriksson et al.

(2009)’s equation (15), which depends on the amplitude of the pre-
correction PSF ellipticity. Indeed, since it puts the emphasis on the
pre-correction PSF, this strong dependence makes it less relevant to
our discussion.

The impact on the shear correlation function δξ
γ
+ can be integrated

in Fourier space, to estimate the level of systematics, in the sense
of Amara & Réfrégier (2008), coming from the imperfect PSF
interpolation:

σ 2
sys = 1

2π

∫
|Csys

l |�(� + 1) d ln �. (11)

The dotted lines in Fig. 7 show the upper limits on the residuals
ellipticity correlation function (assumed to be a constant fraction of
the shear correlation function on all scales) such that the systematics
due to the imperfect PSF modelling are less than σ 2

sys = 10−5, 10−6

and 10−7 from top to bottom. We use a � cold dark matter (�CDM)
cosmology with σ 8 = 0.8 to estimate those limits. Because of
our neglecting the dependence of σ 2

sys on the pre-correction PSF
ellipticity, the limits plotted in Fig. 7 are optimistic compared to
those we could achieve in a real survey, but give a good general
sense of the required level of the PSF residuals.

Amara & Réfrégier (2008) investigated the allowed values of
σ 2

sys such that, for a given survey, errors in the estimation of cos-
mological parameters are dominated by statistical errors. Table 1
gives the maximum σ 2

sys allowed for some current and planned sur-
veys, computed using Amara & Réfrégier (2008)’s scaling relation
(21). By comparing this table with Fig. 7, while it appears that
a simple bivariate polynomial interpolation does not allow one to
reach the limit on the PSF systematics on current surveys such as
the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS)-
Wide, a Kriging approach lowers the residuals enough to meet the
requirements. However, the techniques explored in this paper would

Table 1. Maximum level of systematics on shear power spectrum
for weak lensing surveys.

Survey Area Galaxy density Median σ 2
sys

(deg2) (arcmin−2) redshift

CFHTLS 170 12 0.7 2 × 10−6

COSMOS 2 50 0.9 8 × 10−6

Stage IV 15 000 30 0.9 1.2 × 10−7
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not allow us to lower the systematics to the level needed for future
ambitious wide field surveys.

Nevertheless, our analysis is made from mock ground-based im-
ages, and our techniques are restricted to single-field interpolation.
More complex PSF interpolation schemes can be thought of. For
instance, a multifield interpolation scheme would allow one to look
for coherent pattern from image to image, and therefore improve
on the PSF model by taking into account more information than
available in a single image. Examples of such techniques are pro-
vided by Jarvis & Jain (2004) and Jee & Tyson (2011); a similar
approach has been undertaken in COSMOS by Schrabback et al.
(2010). To sum up, our conclusions stand for PSF modelling based
on single-field interpolation of the PSF from ground-based imaging
surveys. More elaborate, multifield interpolation techniques, either
on ground-based or on space-based data, should allow one to lower
the level of residuals, and reach the requirements for Stage IV weak
lensing surveys.

5.2 Impact of stars’ S/N – shape measurement errors versus
interpolation errors

Although so far we have only focused on the interpolation of the
PCA coefficients, our analysis includes the first step of a PSF mod-
elling process, namely the PSF’s shape measurement (PCA decom-
position in our pipeline).

The non-vanishing ellipticity correlation functions of the resid-
uals (Fig. 7) betray a dependence of the PSF model on the stellar
S/N, defined as the ratio of the mean of the star’s pixels to the rms
of the background. To test this effect of the S/N, we create a sim-
ilar set of simulations, with higher S/N stars (S/N = 700 for each
star). The blue line in Fig. 8 shows the correlation function of the
residuals for a Kriging interpolation with those higher S/N stars,
and compares it with the residuals obtained previously with stars of
S/N = 100 (green line). It is obvious that the residuals have been

Figure 8. Ellipticity correlation functions, with a Kriging interpolation,
for different S/N stars. The black and red lines are the input and model
correlation functions for S/N = 100 stars. The green line is the correlation
function of the residuals for S/N = 100 stars. The blue line is the correlation
function of the residuals for S/N = 700 stars. The shaded region in the
upper part is the region spanned by the correlation functions of theoretical
Gaussian random fields used to estimate the optimal correlation function of
residuals after Wiener filtering (lower shaded region).

shifted downwards, due to the better shape measurement in the first
step of our pipeline.

To discriminate the errors from the shape measurements against
those from the interpolation, we estimate the minimal errors on the
PSF modelling that we can expect in the ideal case of a Wiener-
filtered Gaussian random field (Amara et al. 2010). In this case,
the model is optimal (i.e. it gives the lowest achievable residuals),
and depends only on the number of stars and on their S/N. The
shaded region in the upper part of Fig. 8 shows the span in elliptic-
ity correlation functions of 12 Gaussian random fields with power
spectrum resembling that of our simulations. The shaded region in
the lower part of the figure is the span of the corresponding corre-
lation functions of the residuals, for stars with S/N = 100. At small
scales, the correlation function of the residuals reflects the errors
from the shape measurement. For increasing scales, the interpola-
tion cancels out those errors, and the residuals tend to zero at large
scales. Although these perfect theoretical expectations cannot be
rigorously compared with our simulations, since they are made in a
different regime (Gaussian versus non-Gaussian fields interpolated
with different techniques), they give a good indication about how
the errors from the interpolation compare with those from the shape
measurement in our analysis. At small scales, the order of magni-
tude of the correlation function of the residuals (green line) being
similar to that of the theoretical estimation, we can safely conclude
that our Kriging interpolation is likely close to optimal. Our theo-
retical estimates do not allow us to explain the presence of a plateau
in the correlation function of the residuals at large scale, since at
large scales, Kriging is underperforming compared with theoretical
expectations. However, the increase of the pre-correction ellipticity
correlation function at large scales in our simulations, which is not
taken into account in our theoretical estimations, may explain the
presence of these plateaus.

Finally, we tested the robustness of the interpolation techniques
against the stellar S/N (and hence, the reliability of the stars’ model)
by creating another set of simulations, with a realistic S/N distribu-
tion, ranging from S/N = 20 to 1000, and peaking around S/N =
100. The total number of stars is unchanged. Lowering the S/N
of some stars decreases the fidelity of the associated PCA model,
and potentially perturbs the interpolation, since the coefficients on
which it is based are more noisy. We find that ignoring low S/N
stars does not impact the interpolation, as long as high enough
S/N (≥100) stars are sufficiently numerous. This result was already
mentioned by Paulin-Henriksson et al. (2009) as part of their work
on PSF shape measurement. They claimed that ≈1 star per square
arcminute with S/N ≥ 100 was necessary to obtain a reliable model.

5.3 Global versus local stellar density

Here, we investigate the dependence of the interpolation techniques
on the number (identically, the density) of stars. We compare the
fidelity of the interpolation at a given position, as a function of the
local stellar density and as a function of the global stellar density in
the image. In the former case, we naively expect interpolations to
be better constrained in high-density regions than in lower density
regions. In the latter case, we expect interpolations to perform better
with more stars.

Fig. 9 shows box-plots of the distribution of the residuals of
the two ellipticity components, as a function of the local star den-
sity, computed in 1-arcmin-radius circular apertures around ‘galaxy-
PSFs’, for a polynomial interpolation (black), a Delaunay triangu-
lation (red) and a Kriging interpolation (green). Each distribution
is drawn from the set of 50 simulations used in Section 4. For each
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Figure 9. Ellipticity residuals box-plots as a function of local stellar den-
sity, for polynomial interpolation (black), Delaunay triangulation (red) and
Kriging (green). For each box-plot, the central line represents the median of
the distribution of residuals, the adjacent boxes are the central quartiles and
the symbols are the 5 per cent outer points. For each local stellar density,
box-plots are offsets for visibility.

Figure 10. Median and rms of ellipticity residuals distributions as a function
of stellar density. The colour code is the same as in Fig. 9.

box-plot, the central line represents the median of the distribution,
the boxes around it are the second and third quartiles and the exter-
nal symbols are the outer 5 per cent points. Fig. 10 shows the rms
of those distributions, as a function of local stellar density.

These figures concur with our claims above, that the Kriging in-
terpolation gives the smallest residuals. This is the case for all stellar
densities. They also show that the variance of the residuals, as well
as central quartiles of their distributions, does not exhibit a notable
dependence on the local stellar density. Therefore, high-density re-
gions do not constrain the interpolation more than lower density
regions. However, it is clear from Fig. 9 that the width of the full
distribution of residuals decreases in high-stellar-density regions:
outliers from interpolation failures are much less likely in high-

Figure 11. Same as Fig. 9, but for global star density.

stellar-density region than in low-density regions. This observation
can provide a way to weigh the PSF model in an image.

Fig. 11 shows a similar box-plot as Fig. 9, but for ellipticity
residuals as a function of the global stellar density (i.e. as a function
of the total number of stars available in the image to perform the
interpolation). The accuracy of a polynomial interpolation does
not show a strong dependence on the total number of star. This is
because, for a low enough order polynomial, the general pattern of
the polynomial is set by a small number of stars; adding stars do not
help constrain the polynomial better. On the opposite, a Delaunay
triangulation and Kriging use all information at small scales: their
dependence on the total number of stars is significant.

To sum up this section, the interpolation accuracy mostly depends
on the global star density rather than on the local star density,
especially for Delaunay triangulation and Kriging. While the global
star density acts on the general accuracy of the interpolation, the
local star density helps eliminate outliers from the interpolation.

5.4 Sensitivity to outliers

Each star in an image provides an imperfect realization of the PSF,
which is pixelated and noisy. Furthermore, the PSF shape measure-
ment does not give a perfect description of each star. From those
facts, outliers are possible, which could be seen e.g. as stars with
unphysical ellipticity. Such outliers can be source of error in the
interpolation. For instance, one can see a small outlier in the stars’
ellipticity in Fig. 2, at position (x, y) ≈ (1500, 5500). It is visible
that the Delaunay triangulation and the Kriging interpolation are
affected by this outlier, since their residuals are clearly bigger than
average around this position.

We find that, due to their being local interpolation schemes, the
Delaunay triangulation and the Kriging interpolation are more prone
to outliers than a polynomial interpolation, which tends to smooth
the spatial pattern out (however, a very high-order polynomial in-
terpolation would also become more prone to outliers).

This sensitivity to outliers is alleviated by a simple control of
outliers. We perform an interquartile range test on the distribution
of each PC. For each component, outliers are defined as having
values less than Q1 − αIQR or more than Q3 + αIQR, where Qi

is the ith quartile of the component’s distribution, IQR = Q3 − Q1

C© 2011 The Authors, MNRAS 419, 2356–2368
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2368 J. Bergé et al.

is the interquartile range, and α is a free parameter. As soon as at
least one component of a star is found to be an outlier, this star
is discarded. Using a loose criterion (α = 3.5) helps control the
sensitivity to outliers, while removing only a negligible proportion
of stars (typically 1 per cent).

6 C O N C L U S I O N

We investigated how to improve on the techniques usually used
to interpolate the PSF. An extremely reliable PSF model is neces-
sary, in particular for weak gravitational lensing analyses, to beat
systematics down. Any PSF model relies on a robust interpolation
of any quantity used to describe the PSF (e.g. its moments, or the
coefficients of a decomposition on a given set of basis functions).

To this end, we developed simulations of PSF fields. The simula-
tions are based on a typical Subaru SuprimeCam image, whose stars
are decomposed into PCs, which are then used as basis functions
to build mock stars. The background of the simulations is given the
same statistics as that of the real image used as a reference for our
simulations.

We used the simulations to compare several interpolations
schemes, including bivariate polynomial, RBFs, Delaunay triangu-
lation and Kriging. We assumed that the first step of PSF modelling
(its shape measurement – for instance, its decomposition into PCA
in our analysis) is well constrained and brings only negligible errors
on the model. Therefore, we focused on the interpolation part of the
pipeline, i.e. the interpolation of the PCs coefficients of the stars. We
found RBF to be unstable. We found a Kriging approach to bring
the best results, slightly better than a Delaunay triangulation and
significantly better than the traditionally used bivariate polynomial
interpolation.

We showed how the full PSF modelling depends upon the S/N
of stars, and how the Kriging interpolation is close to optimal.
We discussed how the different interpolation schemes depend on
the local and global star densities: models are better controlled in
high-stellar-density regions; Delaunay triangulation and Kriging are
more sensitive than a polynomial interpolation to the total number
of stars. We noticed that Kriging and Delaunay interpolations are
more prone to outliers than a polynomial interpolation; however,
a simple control on outliers helps cancel this difficulty. Finally,
although Kriging is numerically more expensive than a polynomial
interpolation, it is worth the improvement it provides.

The ellipticity correlation functions of the residuals between the
input PSF and the interpolated PSF allowed us to conclude that
although a Kriging interpolation is sufficiently accurate for cur-
rent weak lensing surveys, it will not allow us, as used in this
paper, to meet the requirement on the control of systematics for
upcoming ambitious surveys. Since Kriging is considered as the
best linear unbiased interpolator, it seems difficult to go beyond
it to make significant improvements. However, our analysis stands
for single-field interpolation, i.e. the PSF is interpolated on each
image separately, with a maximum density of useful stars about 1
per square arcminute. More elaborate techniques, relying on several
images to perform the interpolation, will improve on the results of
this paper. For example, when the PSF is know to be stable in time

(i.e. for space-based observations), stacking several images allows
one to artificially increase the density of stars, and therefore to better
constrain the interpolation. Another possibility is to look for coher-
ent patterns in different images, even for ground-based data, which
allows for a multifield interpolation to be performed. Those new
techniques will surely permit to meet the requirements for future
surveys.
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