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ABSTRACT
All commonly considered dark matter scenarios are based on hypothetical particles with small
but non-zero thermal velocities and tiny interaction cross-sections. A generic consequence
of these attributes is the suppression of small-scale matter perturbations either due to free-
streaming or due to interactions with the primordial plasma. The suppression scale can vary
over many orders of magnitude depending on particle candidate and production mechanism
in the early Universe. While non-linear structure formation has been explored in great detail
well above the suppression scale, the range around suppressed perturbations is still poorly
understood. In this paper, we study structure formation in the regime of suppressed pertur-
bations using both analytical techniques and numerical simulations. We develop simple and
theoretically motivated recipes for the halo mass function, the expected number of satellites,
and the halo concentrations, which are designed to work for power spectra with suppression
at arbitrary scale and of arbitrary shape. As case studies, we explore warm and mixed dark
matter scenarios where effects are most distinctive. Additionally, we examine the standard dark
matter scenario based on weakly interacting massive particles (WIMP) and compare it to pure
cold dark matter with zero primordial temperature. We find that our analytically motivated
recipes are in good agreement with simulations for all investigated dark matter scenarios,
and we therefore conclude that they can be used for generic cases with arbitrarily suppressed
small-scale perturbations.
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1 IN T RO D U C T I O N

Within the last decade, numerical simulations have substantially
increased in performance and accuracy contributing to what has
been denominated the new era of precision cosmology. Statistical
measures such as the matter power spectrum can now be calculated
to subper cent level precision, making it possible to obtain com-
petitive constraints of fundamental cosmological parameters with
galaxy surveys. This precision is, however, only obtained in a regime
where structure formation behaves in a regular, strictly hierarchical
way, owing to a well-behaved linear power spectrum with a close
to power-law scaling. As soon as this basic assumption is relaxed,
standard numerical methods are not guaranteed to work anymore. In
the case of a suppressed power spectrum, as it appears prominently
in hot and warm dark matter models, standard numerical methods
produce artefacts near the suppression scale by enhancing small
non-physical modes present in the initial conditions (ICs; Götz &
Sommer-Larson 2003; Wang & White 2007).
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Along with the development of numerical schemes, analytical
techniques such as the extended Press–Schechter (EPS) approach
(Press & Schechter 1974; Bond et al. 1991) and the halo model
(Cooray & Sheth 2002) have been put forward to describe non-linear
structure formation. They do not achieve the same precision than
numerical simulations, but they provide qualitative understanding
of the physical processes involved and they have the advantage
of not requiring big computer facilities. However, these analytical
techniques again only work in the case of a reasonably behaved
initial power spectrum with nearly power-law scaling. As soon as
the initial power spectrum is significantly suppressed, standard EPS
approaches and subsequently the halo model fail to predict the right
clustering (Schneider, Smith & Reed 2013).

Understanding structure formation of cosmologies with sup-
pressed perturbations is not merely an academical exercise but a
necessity in order to capture the full range of scales of cosmic
clustering. As a matter of fact, all reasonable dark matter (DM)
scenarios exhibit a suppression of perturbations below a certain
scale either due to particle free-streaming or due to interactions
in the early Universe. For the prime DM candidate, the weakly
interacting massive particle (WIMP), the mass scale of suppres-
sion lies somewhere between roughly 10−12 and 10−4 h−1 M�
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Figure 1. Linear dimensionless power spectrum �(k) = k3Pχ (k)/2π2 of the DM scenarios (χ ) investigated in this paper. Left: CDM (black), WDM (red)
and various MDM models (blue, magenta, green) at redshift 50. Middle: CDM (black) and different WDM models (cyan, purple, pink) at redshift 100. Right:
pure CDM (black) and two WIMP-DM scenarios (brown, orange) at redshift 300.

depending on the specific model parameters (Green, Hofmann &
Schwarz 2005; Profumo, Sigurdson & Kamionkowski 2005), which
is orders of magnitude smaller than the smallest galaxies we
observe.1 Other promising DM candidates such as the sterile neu-
trino or the gravitino have higher primordial velocities, pushing the
regime of power suppression to larger scales where it becomes rel-
evant for galaxy surveys such as in the case of warm or mixed DM.
More exotic scenarios like interacting DM (Boehm & Schaeffer
2005), self-interacting DM (Spergel & Steinhardt 2000), asymmet-
ric DM (Petraki & Volkas 2013), or ultralight axion DM (Marsh &
Silk 2014) can also lead to suppressed power at rather large scales
either because they interact with the cosmic plasma, with dark radi-
ation or because they undergo scalar field oscillations on astrophys-
ical scales. Since the power suppression of different DM scenarios
happens at different scales and is of varying shape, it is crucial to
properly quantify the non-linear clustering in this regime in order to
distinguish between different DM species and to contribute towards
a solution of one of the outstanding puzzles in modern physics.

In this paper, we study non-linear structure formation starting
from initial power spectra with arbitrary small-scale suppressions.
As working examples, we investigate the cases of warm DM, MDM,
WIMP DM, and pure cold DM. We run a suite of N-body simulations
for these models and carefully remove artificial structures which
tend to populate simulations of suppressed initial power. At the same
time, we develop an EPS method able to cope with arbitrary linear
power spectra. We then calculate important quantities, such as the
halo mass function, the number of satellites, and the concentration–
mass relation of halo profiles.

The paper is structured as follows. In Section 2, we give a short
overview of different DM scenarios and discuss how they suppress
perturbations. Section 3 contains a summary of the simulations and
analysis techniques including a discussion about subtracting arte-
facts. In Sections 4 and 5, we present our modified Press–Schechter
approach and use it to predict mass function, number of Milky Way
(MW) satellites and concentrations. Finally, we conclude in Sec-
tion 6 and give further details about the removal of artefacts in the
appendix.

1 The only chance of observing such small structures is probably by directly
measuring the flux from DM annihilation.

2 D M MO D E L S A N D T H E SU P P R E S S I O N O F
P E RT U R BAT I O N S

The physical mechanisms leading to the power suppression below a
certain scale depend on the DM candidate but is usually either par-
ticle free-streaming, tiny interactions with the primordial plasma,
or more exotic phenomena in the early Universe. Both the scale
and the detailed shape of the suppression strongly vary depending
on the characteristics of the DM particle, i.e. its mass, momen-
tum, and interaction cross-sections. In the following, we discuss the
most common DM scenarios and outline their effects on non-linear
structure formation.

2.1 Warm dark matter (WDM)

DM models with a steep cutoff-suppression at dwarf galaxy scales,
similar in shape to the one obtained from particles with a Fermi–
Dirac momentum distribution, are usually referred to as WDM.
Typical power spectra of WDM models are illustrated in Fig. 1
(red, cyan, purple, and pink lines). Implicitly, the WDM regime
is defined to lie in the rather narrow band where the suppression
of perturbation has a significant effect on dwarf galaxy formation
but is still in agreement with observations. Furthermore, WDM is
generally assumed to reduce potential small-scale inconsistencies,
such as the missing satellite or the too-big-to-fail problem, occurring
in a � cold dark matter (CDM) universe (see Weinberg et al. 2013,
for a review on these topics).

Recent studies point out that both requirements – passing ob-
servational constraints and alleviating small-scale inconsistencies –
seem impossible to combine because constraints from Lyman-α are
prohibitively strong in the case of WDM (Viel et al. 2013; Schnei-
der et al. 2014). While some question the accuracy of the Lyman-α
measurements, more and more people believe that the small-scale
inconsistencies are a consequence of poorly understood baryonic
processes of galaxy formation (Brooks & Zolotov 2014).

However, it is possible and worthwhile to use structure formation
in order to find upper limits on the scale of DM suppression. The
strongest constraints currently come from flux observations of the
Lyman-α forest ruling out particle masses below mTH = 3.3 keV
at the 2σ confidence level (Viel et al. 2013). Other limits are ob-
tained from dwarf galaxy counts disfavouring particle masses below
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mTH = 2.3 keV (Polisensky & Ricotti 2011; Kennedy et al. 2014).
Here, mTH refers to the equivalent thermal mass, assuming a Fermi–
Dirac momentum distribution.

The prime candidate for WDM is the hypothetical sterile (or
right-handed) neutrino, which can be readily added to the standard
model. Sterile neutrinos are well motivated because they provide an
explanation for the measured mixing angles of active neutrinos, and
because all other fermions exist with both left and right chirality
(Drewes 2013). The particle mass of sterile neutrino DM is expected
to lie in the keV-range, what makes it an ideal candidate for WDM
or lukewarm DM depending on the suppression scale which is
governed by particle mass and momentum distribution.

The recent tentative discovery of an X-ray line at 3.5 keV from
galaxy clusters and M31 by two independent research groups (Bo-
yarsky et al. 2014; Bulbul et al. 2014) might provide additional
motivation for sterile neutrino DM. Since sterile neutrinos decay
radiatively, the confirmation of such a signal would be a smok-
ing gun for an msn = 7.1 keV particle, which would translate into a
thermal mass of m � 2.5–5 keV depending on the production mech-
anism in the early Universe (Abazajian 2014; Merle & Schneider
2014). The measured X-ray line is, however, disputed, since there
are some conflicting bounds from galaxies where the signal is not
measured (see Iakubovskyi 2014, for a review). Better astronomical
data is needed to check if the signal is real and if the flux coincides
with the expectations from decaying DM.

2.2 Mixed dark matter (MDM)

In principle, DM can be made of two or more particle species with
different properties. Particularly interesting in terms of structure
formation is a mixture of cold with warm or hot DM. This leads to
qualitatively different initial power spectra with gradual suppression
over many orders of magnitude in scale in contrary to the steep
cutoff known from WDM. The effect is illustrated in the left-hand
panel of Fig. 1, where we plot the dimensionless power spectra of
different MDM scenarios (consisting of a CDM part and a thermal
WDM part with m = 0.25 keV) with increasing mixing fraction f =
�WDM/(�CDM + �WDM).

The concept of MDM is neither new nor particularly exotic. In
fact, it is clear that there must be more than one DM component since
neutrinos are known to have non-zero mass and cannot by them-
selves account for all of the DM. Current observations constrain the
sum of neutrino masses to the range of 0.05–0, 23 eV (Fogli et al.
2012; Planck Collaboration XVI 2014), yielding a mixing fraction
f ∼ 0.004–0.02. However, the very small neutrino masses result in
an overall suppression of the power spectrum at all relevant scales
for halo formation, very similar to the case of pure CDM with low
σ 8-normalization (Viel, Haehnelt & Springel 2010).

Instead of two (or more) distinct particles acting as DM compo-
nents, MDM-like compositions can also arise due to multichannel
DM production in the early Universe, yielding momentum dis-
tributions that mimic the case of several DM components. Prime
example is again the sterile neutrino which can be produced via
resonant oscillations with active neutrinos (Shi & Fuller 1999),
where some subdominant part is always produced out of reso-
nance leading to particle momenta from two overlapping distri-
butions (Boyarsky et al. 2009). The effect can be even stronger if
the sterile neutrinos with non-zero mixing angle are produced via
the decay of heavy scalars yielding a momentum distribution with
two distinct peaks (Merle & Schneider 2014; Merle & Totzauer
2014).

2.3 WIMP DM

The most popular group of DM candidates are WIMP with the
neutralino as prime candidate. The popularity of WIMP DM comes
from the fact that such particles naturally appear in supersymmetric
extensions of the standard model, and that they are produced via
thermal freeze-out at roughly the right amount to account for the
observed DM abundance (this is usually referred to as the WIMP
miracle; see Bertone, Hooper & Silk 2005, for a summary).

As WIMPs are heavy (with particle masses in the GeV or
TeV scales) and weakly interacting, they become non-relativistic
very early leading to extremely small suppression scales. Depend-
ing on the parameters of the model, the mass scale of WIMP
DM suppression is expected to lie between roughly 10−12 and
10−4 h−1 M� (Profumo et al. 2005).

In the right-hand panel of Fig. 1, we plot the power spectra
of neutralino DM with a mass of m = 100 (brown line) and m =
215 GeV (orange line) and corresponding decoupling temperatures
of Tdk = 28 MeV and Tdk = 33 MeV. These spectra are compared
to the hypothetical case of pure CDM (black line). The suppression
of power in WIMP scenarios happens at very high wave-numbers
roughly following an exponential cutoff (Green et al. 2005). We will
show later on that such WIMP models suppress structure formation
at a halo mass of about 10−6 h−1 M�.

2.4 Other models with suppressed power

There are many more DM candidates with variable suppression
scales depending on their interaction and free streaming proper-
ties. For example, DM can be self-interacting, as in the case of
atomic or mirror DM (Cyr-Racine & Sigurdson 2013), or it can in-
teract with photons (Boehm et al. 2014; Wilkinson, Lesgourgues &
Boehm 2014a) and neutrinos (Wilkinson, Boehm & Lesgourgues
2014b) all yielding strong suppression of small-scale modes. Other
possibilities with similar effects on small scales are decaying DM
(Kaplinghat 2005; Wang et al. 2014), later forming DM (Agarwal
et al. 2014), or ultralight axion DM (Marsh & Silk 2014).

It is also possible to obtain suppressed small-scale perturbations
from effects not related to DM. Inflation could lead to a running
of the spectral index, gradually reducing power on small scales
(Kosowsky & Turner 1995), or it could induce a strong cutoff sim-
ilarly to the case of WDM (Kamionkowski & Liddle 2000).

3 N U M E R I C A L S I M U L AT I O N S

We run and analyse numerical simulations of different resolution
with linear power spectra representing cold, warm, mixed, and
WIMP DM scenarios. The ICs are generated from the linear power
spectra illustrated in Fig. 1, which are selected to cover different
scales of power suppression as well as a variety of shapes from
steep cutoffs to shallow decreases towards large wave-numbers.

The linear power spectra have been calculated with the
Boltzmann solver CLASS (Blas, Lesgourgues & Tram 2011), which
comes with an option for multiple DM species of arbitrary mass and
momentum distribution (Lesgourgues & Tram 2011). We use cos-
mological parameters obtained by Planck, i.e. �m = 0.304, �b =
0.048, �� = 0.696, H0 = 68.14, ns = 0.963, and σ 8 = 0.827
(Planck Collaboration XVI 2014). The simulations are set up with
the ICs generator MUSIC (Hahn & Abel 2011) using second-order
Lagrangian perturbation theory and initial redshifts of [50, 100, 200,
200, 300] for runs with box-size [256, 64, 8, 4, 0.0001] h−1 Mpc.
The simulations are performed with PKDGRAV2 (Stadel 2001),
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Table 1. List of simulations performed in this paper. The parameters
m, f, Tkd refer to (thermal) particle mass, mixing ratio, and decoupling
temperature. L [h−1 Mpc] designates the box-size and zf the final
redshift. All simulations have been run at both LR and HR (with
5123 and 10243 particles, respectively).

Scenario: L (h−1 Mpc) zf

CDM: Pure 24, 64, 256 0
WDM: m = 0.25 keV 64, 256 0
MDM: m = 0.25 keV, f = 0.8 64 0
MDM: m = 0.25 keV, f = 0.5 64 0
MDM: m = 0.25 keV, f = 0.2 64 0
WDM: m = 2.0 keV 24 0
WDM: m = 3.0 keV 24 0
CDM: Pure 8 5
WDM: m = 2.0 keV 8 5
WDM: m = 3.0 keV 8 5
WDM: m = 4.0 keV 4 5
CDM: Pure 10−4 23
WIMP: m = 100 GeV, Tkd = 28 MeV 10−4 23
WIMP: m = 215 GeV, Tkd = 33 MeV 10−4 23

applying a standard force softening of 1/50 times the mean particle
separation. For the halo finding, we use AHF with particle unbind-
ing and an overdensity criterion corresponding to spherical top-hat
collapse (Gill, Knebe & Gibson 2004; Knollmann & Knebe 2009).
A list summarizing the main characteristics of the simulations is
given in Table 1.

Most of the runs suffer from artificial clumping at the scale of
suppressed perturbations. This is not only the case for WDM, where
the effect has been observed many times before, but also for WIMP-
DM and even for the MDM scenarios with initial power spectra that
never drop to zero. In the next sections, we discuss the issue of
artificial halo formation in more detail, and we discuss how artefact
can be filtered out of halo catalogues from numerical simulations.

3.1 The problem of artificial clumping

Artificial clumping is a serious problem in simulations where the
initial power is suppressed below a characteristic scale, usually
referred to as the free-streaming or damping scale. Standard N-
body techniques cannot cope with this setup and produce many
small-scale haloes that are resolution-dependent and therefore non-
physical (Götz & Sommer-Larson 2003; Wang & White 2007).
In this paper, we show that the artificial clumping does not only
happen in setups with a steep cutoff and zero physical power below
a certain scale, but also in MDM scenarios, where the suppression
of perturbations is much smoother and the power spectrum never
drops to zero.

Recently, there has been attempts to overcome the problem of
artefacts with a novel N-body technique tracking the DM sheet in
phase-space (Abel, Hahn & Kaehler 2012). With this method, the
amount of artificial haloes in WDM simulations is drastically re-
duced (Angulo, Hahn & Abel 2013). The method is, however, not
fully operational yet, since it has difficulties to cope with high-
density regions, where the six-dimensional phase-space sheet un-
dergoes multiple foldings. Further studies seem needed in order
evaluate whether this promising method can be improved to si-
multaneously deal with artificial clumping and accurately calculate
regions of high density.

In this paper, we use a standard N-body technique combined with
a post-processing method to identify and remove artificial haloes

from the halo catalogue. The method is explained in the following
section.

3.2 Removing artefacts

Several methods of different complexity to identify artificial haloes
have been proposed in the past. Diemand, Moore & Stadel (2005)
removed haloes on the basis of visual inspection. Schneider et al.
(2013) suggested to subtract a power-law component in the halo
mass function. Agarwal & Corasaniti (2015) identified artefacts
by measuring the spin of haloes found with the friends-of-friends
technique. The most complex and arguably most complete method
to remove artefacts has been proposed by Lovell et al. (2014), using
both the shape of protohaloes in the ICs (i.e. the volume spanned
by all particles ending up in a halo) as well as their overlap between
realizations with different resolution. In a first step, Lovell et al.
(2014) measured the sphericity of protohaloes, removing all objects
that are unusually elongated. This selection criterion is based on
the observation that artefacts originate from the collapse of larger
modes to walls and filaments, pushing already aligned particles
together until they cluster into non-physical clumps. In the second
step, they analysed the resolution dependence of haloes, removing
all objects that do not appear in two simulations of the same initial
field but different resolution.

In this paper, we use a similar method than the one proposed by
Lovell et al. (2014) and apply it to cosmological simulations. This
is more challenging than the original application which was limited
to substructures within an MW-sized host haloes. In our case, we
use a less stringent limit of 1000 particles for the minimal halo size
(as opposed to 10 000 particles in Lovell et al. 2014), which means
that we have up to a quarter of a million haloes per simulation
with masses spanning more than four orders of magnitude. These
haloes are in varying large-scale surroundings and at different stages
of their evolution, making it hard to reliably separate real haloes
from artefacts. In the following, we show that although a perfect
separation is not possible, most artefacts can be reliably identified
while only a small fraction of real haloes is erroneously removed.
We use the simulations with the fewest and the most artefacts –
the CDM and the WDM (m = 0.25 keV) run – to illustrate the
method and estimate the efficiency of filtering out artefacts without
erroneously removing physical haloes. Further information on how
halo catalogues of the remaining DM models are affected by the
method is provided in the appendix.

The first step of the algorithm consist of measuring the ellipticity
of protohaloes in the ICs using the inertia tensor

Iij = m
∑

particles

(
δij x2 − xixj

)
, (1)

where the sum goes over all the protohalo particles and δij is the
Kroenecker delta. The vector x corresponds to the particle position
with respect to the centre of mass of the protohalo. The eigenvalues
of Iij are directly related to the axis a ≥ b ≥ c of an ellipsoid with
the same inertia tensor. This means it is possible to define the axis
ratios s = c/a and q = c/b providing a measure of the protohalo
sphericity.2

In Fig. 2, we show histograms of haloes with ellipticity param-
eters s (blue) and q (red). The top row corresponds to the cases of

2 In Lovell et al. (2014), only s is used to distinguish between artefacts and
real hales. We find it advantageous to use both s and q for the filtering
procedure.
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Figure 2. Histograms of haloes with respect to the ellipticity parameters s = c/a (blue) and q = c/b (red), where a ≥ b ≥ c are the semimajor axes of an
ellipsoid with the same inertia tensor than the protohalo. The top row illustrates the cases of CDM (left) and WDM with m = 0.25 keV (right), the bottom row
the cases of MDM with f = 0.8 (left) f = 0.5 (middle) and f = 0.2 (right). Vertical dashed lines at 0.24 and 0.34 designate the sphericity cut applied to separate
real haloes from artefacts.

CDM (left) and WDM with m = 0.25 keV (right). While for CDM
both parameters follow approximately Gaussian distributions, the
WDM case exhibits secondary peaks at low values of s and q. This
is a clear indication for the presence of an artificial population of
haloes with very elongated protohaloes. The bottom row of Fig. 2
illustrates the same statistics for the MDM models with mixing
factor f = 0.8 (left), f = 0.5 (middle), and f = 0.2 (right). The dis-
tributions do not show secondary peaks, but they are considerably
broader and shifted towards lower values of s and q than in the case
of CDM, indicating the presence of a subpopulation of artefacts in
these models as well.

Based on the information of Fig. 2, we set cuts of sc = 0.24 and
qc = 0.34 on the halo samples, removing all objects with smaller el-
lipticity parameters in all DM models. We will call this the sphericity
cut in the following. In the WDM model, the values sc and qc lie at
the minimum between the two peaks of real and artificial haloes, fil-
tering out 60 per cent of all haloes. In the case of CDM, on the other
hand, the same values remove less than 5 per cent of all haloes. This
is a small loss considering the fact that changing the halo-finder
can translate into 10 per cent differences in the abundance of haloes
(Knebe et al. 2011).

The second step of the algorithm consists of additionally filtering
out haloes with a poor match between simulations of the same initial
field but different resolution. We again follow Lovell et al. (2014)
and define the merit function

M = Vshared√
VLRVHR

(2)

for every protohalo, where VLR and VHR are the protohalo volumes
in the low-resolution (LR) and high-resolution (HR) simulations,
and where Vshared is the overlap of the two (i.e. the shared volume).
The merit function can be computed with any standard merger-tree
algorithm based on particle IDs (see Srisawat et al. 2013), as they
can be used to link haloes between different simulations. Since stan-
dard merger-tree codes require the same particle numbers between
analysed snapshots, we formally increase the particle number of
the LR output by splitting every LR particle into n particles corre-
sponding to the HR particles of the same phase-space volume. This
simple trick allows us to use the publicly available code MERGERTREE

(out of the AHF-package, Knollmann & Knebe 2009) to calculate
the number of shared particles between all haloes in the LR and
HR simulations. This then trivially leads to the merit function of
equation (2) since every particle can be related to a small volume
element in the ICs.

In Fig. 3, we illustrate the histograms of haloes with respect to the
merit function M for CDM (black), WDM (red), and MDM (blue,
green, and magenta). The top panel shows all haloes with more
than 1000 particles, i.e. before applying the sphericity cut. While
the CDM distribution only exhibits one distinct peak at M ∼ 0.8,
the WDM distribution has a peak at M ∼ 0.9 plus a secondary,
much broader feature at M < 0.7 which can be attributed to arte-
facts. The bottom panel of Fig. 3 shows the same statistics for the
haloes which are not filtered out by the sphericity cut. While the
CDM distribution does hardly change, the broad feature at low M in
WDM is substantially smaller, indicating that most of the artefacts
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Figure 3. Normalized halo histograms of the merit function (which mea-
sures the overlap of protohaloes between simulations of different resolu-
tion). The top and bottom panels refer to the halo sample before and after
the sphericity cut. The vertical dashed line illustrates the resolution cut.

have already been filtered out. However, some artefacts survive the
sphericity cut and still contribute to the histograms of the bottom
panel. This is emphasized by the relative excess of WDM and MDM
haloes at low values of M.

In order to filter out the remaining artefacts visible in the lower
panel of Fig. 3, we use the statistics of the merit function to apply a
second selection cut of Mc = 0.6 (illustrated by the grey dashed line)
which we will call the resolution cut. This further removal should
capture most of remaining artefacts, while keeping the majority of
the real haloes in the sample. For the cases of CDM and WDM,
the resolution cut filters out an additional 15 and 40 per cent of the
remaining haloes.

In summary, we note that applying solely the sphericity cut leads
to rather conservative results in the sense that CDM haloes are
hardly affected, but it does not filter out all of the WDM (and
MDM) artefacts. Applying both the sphericity and the resolution
cut filters out more artefacts, but it also removes some of the real
objects.

The halo mass function of Fig. 4 illustrates how the method of re-
moving artefacts affects the total halo abundance at different masses.
Empty and filled symbols illustrate the mass function before and
after the removal of haloes. Filled symbols appear twice illustrating
the effect of only applying the sphericity cut (upper symbols) and
both the sphericity and resolution cut (lower symbols). The coloured
area in between therefore illustrates the inherent uncertainty of the
method.

4 EPS MO D EL

Many aspects of non-linear structure formation can be analytically
described by the EPS approach, which assumes linear growth of
perturbations followed by immediate halo formation above a cer-
tain threshold (see Zentner 2007, for a review). The threshold is
derived from an idealized spherical or ellipsoidal collapse calcula-
tion. Despite of these oversimplified assumption, the EPS model is
able to reproduce fundamental statistics of structure formation, such
as halo mass function, accretion history or bias (Press & Schechter
1974; Bond et al. 1991; Sheth & Tormen 1999). This is, however,
only true for a pure CDM scenario where the initial power spectrum
behaves as a quasi-power-law which is never steeper than k−3. As
soon as the initial power spectrum is suppressed further (i.e. be-
comes steeper than k−3), the standard EPS model completely fails
to predict the right clustering. In this section, we show how the
formalism needs to be adapted in order to give adequate predictions
for cosmologies with arbitrary initial power spectra including steep
cutoffs or gradual suppressions. We thereby follow and extend the
method developed in Schneider et al. (2013).

4.1 Halo mass function: the standard approach

The most used application and the starting point of the EPS model
is the halo mass function. In the standard scenario it can be written
as

dn

d ln M
= 1

2

ρ̄

M
f (ν)

d ln ν

d ln M
, (3)

where n is the number density of haloes, M the halo mass, ν the peak-
height of perturbations, and ρ̄ the average density of the Universe
(Press & Schechter 1974). The first crossing distribution f(ν) is
obtained with the excursion-set approach, which follows random
walk trajectories counting events of first up-crossing of the collapse

Figure 4. Halo mass functions for various DM models. Left: CDM (black), WDM (red), and MDM (blue, magenta, green) at redshift zero. Middle: CDM
(black) and WDM (cyan, purple, pink) at redshift 5. Right: pure CDM (black) and WIMP DM (brown, orange) at redshift 23. The colour-shaded regions account
for the uncertainty due to the removal procedure of artefacts (see the text). Solid lines represent the sharp-k model, dotted lines the standard Sheth–Tormen
mass function.
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threshold (Bond et al. 1991). The spherical collapse model predicts
a constant threshold, leading to

f (ν) =
√

2ν

π
e−ν/2. (4)

The more realistic case of ellipsoidal collapse, on the other hand,
leads to a mass-dependent threshold and a first-crossing distribution
of the form

f (ν) = A

√
2qν

π

[
1 + (qν)−p

]
e−qν/2 (5)

with A = 0.3222, p = 0.3, and q = 1 (Sheth & Tormen 1999). The
peak height ν is defined as

ν = δ2
c,0

Sχ (R)D2(a)
, (6)

where δc, 0 = 1.686 and where

D(a) = 5�m

2
H (a)

∫
da

a3H (a)3
(7)

is the universal growth factor of perturbations. Here, we have intro-
duced the Hubble parameter H = ȧ/a. Finally, the variance Sχ is
defined as

Sχ (R) =
∫

d3k
(2π)3

Pχ (k)W 2(k|R), (8)

where χ stands for the DM scenario imposed by the linear power
spectrum Pχ (k). There is a filter function in Fourier-space W(k|R)
appearing in equation (8), which is a priori unconstrained. One ob-
vious choice used in the standard EPS approach is a top-hat function
in real space with enclosed mass M = 4πρ̄R3/3, transforming into

W (k|R) = 3

(kR)3
[sin(kR) − 3 cos(kR)] (9)

in Fourier space. Other common choices for W(k|R) are a sharp-k
filter (a top-hat function in Fourier space) or a Gaussian filter (Bond
et al. 1991).

The usual recipe to construct the EPS halo mass function consists
of combining equations (3–9) leading to very good agreement with
CDM simulations for halo masses below M = 1013 h−1 M�. Sig-
nificantly larger haloes, on the other hand, are underpredicted by the
model. Motivated by this discrepancy at the largest scales, Sheth &
Tormen (1999) heuristically modified the first-crossing distribution
by setting q = 0.707, what leads to very good agreement with sim-
ulations over all mass scales, but it technically consists of allowing
for one free parameter. This modified model is commonly referred
to as the Sheth–Tormen mass function.

In Fig. 4, we show the expected good agreement between the
Sheth–Tormen mass function (dotted lines) and simulations of a
CDM cosmology (black squares), which holds over a wide range of
halo masses and redshifts. However, Fig. 4 also shows the complete
failure of the Sheth–Tormen mass function to reproduce the halo
abundance of WDM, MDM or WIMP DM simulations (coloured
symbols) around the scale of suppression (the coloured area between
the two sets of filled symbols designate the uncertainty in the method
to filter out artificial haloes, the empty symbols illustrate the raw
data, including real haloes and artefacts; see Section 3.2 for more
details).

4.2 Halo mass function: the sharp-k model

The inability of the standard EPS approach to model cosmologies
with suppressed power spectra has been reported by several papers

in the past (Barkana, Haiman & Ostriker 2001; Benson et al. 2013;
Schneider et al. 2013; Hahn & Paranjape 2014), and different meth-
ods to solve this problem have been proposed. A simple and elegant
way of modifying the model is to change the filter from a top-hat
function in real space to a top-hat function in Fourier space, called
sharp-k filter, i.e.

W (k|R) = 
(1 − kR), (10)

where 
 is the Heaviside step function. This possibility was initially
discussed in a paper by Bertschinger (2006) and has been adapted
to WDM by Benson et al. (2013) and Schneider et al. (2013). The
reason why the sharp-k filter does a better job than the standard top-
hat filter lies in the asymptotic behaviour of equation (8) towards
small radii. With a sharp-k filter, this integral naturally depends on
the shape of the power spectrum for any radius. With a top-hat filter,
on the other hand, the integral becomes completely insensitive to
the shape of the power spectrum as soon as the latter decreases
faster than k−3. Instead, the mass function becomes solely driven
by the shape of the filter function and strongly deviates from the
halo abundance in simulations (see Schneider et al. 2013, for a more
detailed discussion).

For the case of a sharp-k filter, the functional form of the halo
mass function (i.e. equation 3) can be further simplified. A straight-
forward calculation leads to the expression

dnSK

d ln M
= 1

12π2

ρ̄

M
νf (ν)

P (1/R)

δ2
c R

3
. (11)

For the sake of simplicity, we have dropped the χ -index standing
for the DM model. Together with equations (5), (8), and (10) as
well as with an appropriate relation between filter scale and mass,
we get a closed set of equations yielding the halo number density
per mass scale.

The sharp-k filter has an important drawback we have not dis-
cussed so far, namely that it has no well-defined mass M associated
with its filter scale R. This means that, apart from the proportionality
M ∝ R3 due to the spherical symmetry of the filter, the halo mass is
unconstrained. Introducing a free parameter c, the relation between
filter scale and mass can be written as

M = 4π

3
ρ̄(cR)3, (12)

where c = 2.5 gives the best match to simulations.3 The calibration
of the parameter c is done once and does not change for different
DM scenarios.

The sharp-k model has two main advantages compared to the
standard EPS approach: first, it consistently uses the same filter
(the sharp-k function) for the entire excursion-set calculation, while
the EPS approach usually relies on the sharp-k filter to calculate the
first crossing distribution and on the top-hat filter to connect it to
the number density of haloes. Secondly, the sharp-k method is based
on the original first-crossing distribution from ellipsoidal collapse,
while the Sheth–Tormen model introduces a heuristic parameter
adjustment. The second advantage is counterbalanced by the fact
that the sharp-k filter does not have a well-defined mass. At the
end, both the sharp-k and the Sheth–Tormen model have one free
parameter, which needs to be adjusted to simulations.

The halo mass function from the simulations (symbols), the
Sheth–Tormen model (dashed lines), and the sharp-k model (solid

3 The best value for c depends somewhat on the halo-definition and the
halo-finding routine. In Schneider et al. (2013), we used a slightly higher
value c = 2.7.
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lines) are all plotted in Fig. 4. For the case of CDM (black), the
sharp-k mass function closely follows both the simulation measure-
ments and the Sheth–Tormen model. For the case of WDM (red,
cyan, purple, pink), MDM (green, magenta, blue), and WIMP DM
(brown, orange), the sharp-k mass function gives a reasonably good
match to simulations, while the Sheth–Tormen approach fails to
match the flattening or the turnaround visible in simulations.

In Schneider et al. (2013), the sharp-k model has been reported to
underestimate the halo abundance when the suppression scale lies in
the exponential tail of the halo mass function (i.e. for ν 	 1), which
generally happens at very high redshift. It turns out, however, that
this discrepancy between the sharp-k model and the data is greatly
reduced for haloes defined by a spherical overdensity instead of
a friends-of-friends linking criterion (see Watson et al. 2013, for
a comparison of the two). We therefore do not use the correction
model proposed by Schneider et al. (2013).

4.3 Conditional mass function

Another important application of the EPS model is the conditional
mass function, which gives the abundance of haloes per mass and
look-back redshift z1, eventually ending up in a single host halo at
redshift z0. As the conditional mass function provides a connection
between haloes at different redshifts, it acts as the starting point
of more evolved quantities such as the halo collapse redshift, the
number of satellites, and halo merger trees. The conditional mass
function is given by

dN (M|M0)

d ln M
= −M0

M
Sf (δc, S|δc,0, S0)

d ln S

d ln M
(13)

(Lacey & Cole 1993). For the sharp-k model this can be simplified
to

dNSK(M|M0)

d ln M
= 1

6π2

M0

M
f (δc, S|δc,0, S0)

P (1/R)

R3
, (14)

where the filter scale R and the mass M are related by equation (12).
The conditional first-crossing distribution again depends on the

assumed model for non-linear collapse. The case of spherical col-
lapse is given by

f (δc, S|δc,0, S0) =
(
δc − δc,0

)
√

2π(S − S0)
exp

[
− (δc − δc,0)2

2(S − S0)

]
, (15)

which is a simple recalibration of equation (4), obtained by shifting
the starting point of trajectories from (0, 0) to (δc, 0, S0) in the (δc −
S) plane. In the case of ellipsoidal collapse, the threshold depends
on the variance S and no simple recalibration is possible. As a con-
sequence, every point in the (δc − S) plane requires an independent
excursion-set calculation, and no general analytical expression ex-
ists for the conditional first-crossing distribution (Sheth & Tormen
1999). To keep it simple, we therefore use the spherical collapse
model (i.e. equation 15) whenever we compute the conditional mass
function in this paper.

In Fig. 5, the conditional mass function is plotted for the case of a
1013 h−1 M� host and a look-back redshift of z = 1.1. The symbols
correspond to the average number of progenitor haloes out of 84 host
systems with masses close to 1013 h−1 M� (upper symbols stand for
the conservative and lower symbols for the more radical method to
filter out artefacts, see Section 3.2 for further information). The solid
and dotted lines are predictions from the sharp-k and the standard
EPS approach, respectively. While the sharp-k model gives a good
match to simulations of all DM scenarios, the standard EPS model
works for CDM but fails for all scenarios with suppressed small-
scale perturbations.

Figure 5. Conditional mass functions for a M0 = 1013 h−1 M� host and a
look-back redshift of z = 1.1. Coloured symbols refer to simulation outputs
(with circumjacent shaded regions representing the uncertainty due to arte-
fact subtraction), while the solid and dotted lines represent the sharp-k model
and the standard Press–Schechter model, respectively. The colour-coding is
the same as in the previous plots.

4.4 Estimating the number of dwarf satellites

Each DM scenario has to produce a sufficient amount of substruc-
tures to account for the observed MW satellites. While some (or
most) of the substructures could be dark due to inefficient star for-
mation, fewer substructures than observed means the failure of the
DM scenario. In the case of WDM, comparing numbers of simulated
substructures with observed satellites has led to tight constraints on
the thermal particle mass ruling out masses below 2 keV (Polisen-
sky & Ricotti 2011; Kennedy et al. 2014).

The EPS approach can be used to estimate the average number
of dwarf galaxies orbiting a galaxy like the MW. This means it is
possible to check whether a certain DM scenario is likely to be in
agreement with observations without running expensive numerical
zoom-simulations of an MW halo. In principle, finding the number
of progenitors from an EPS approach consists of constructing the
full merger-tree of the host-halo and counting all branches directly
connected to the trunk. This is a rather cumbersome calculation
which lies beyond the scope of this paper. Instead, we follow a
simplified procedure presented in Giocoli, Pieri & Tormen (2008)
and adapt it to the sharp-k model.

The total number of progenitors over all redshifts NSat(δc > δc, 0)
can be computed by integrating the conditional mass function over
δc, i.e.

dNSat

d ln M
= 1

Nnorm

∫ ∞

δc,0

dNSK

d ln M
dδc (16)

with Nnorm = 1 for now. This integral overcounts the actual number
of progenitors (and therefore the expected number of substructures)
because it includes multiple counts of structures simultaneously
existing at different redshifts. This issue can be accounted for by
normalizing the integral so that equation (16) matches the outcome
of �CDM simulations. We use data based on the Aquarius project
of a simulated MW halo with mass M0 = 1.77 × 1012 h−1 M�,
which has 157 satellites of M > 108 h−1 M� (Lovell et al. 2014).
Integrating equation (16) over the mass range between 108 h−1 M�
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Table 2. Number of predicted MW satellites with mass
above 108 h−1 M� from the model (equation 17) and from
simulations by Lovell et al. (2014). For the case of CDM
the perfect agreement is by construction, since the model
is calibrated to this number.

Scenario NSat NSat

(EPS model) (Simulation)

WDM: m = 1.5 keV 9 12
WDM: m = 2.0 keV 25 27
WDM: m = 2.3 keV 32 30
CDM: Pure 158 158

and M0 and equating it to the number of simulated satellites, leads
to the normalization constant Nnorm = 44.5. For the case of a sharp-k
filter, equation (16) then becomes

dNSat

d ln M
= 1

44.5

1

6π2

(
M0

M

)
P (1/R)

R3
√

2π(S − S0)
. (17)

This relation provides an estimate for the number of satellites per
mass M of a host halo with mass M0, where S and S0 are the
corresponding variances and P(1/R) is the linear power spectrum
at the inverse of the filter scale R. A further integration over M
finally leads to the total amount of satellites for a DM scenario with
arbitrary power spectrum.

The model is clearly an oversimplification and cannot capture
the full complexity of hierarchical structure formation. First, it does
not give the final subhalo mass prior to the merger with the host,
but rather some average mass of the subhalo formation history.
Secondly, it completely ignores tidal striping which reduces the
mass of substructures and becomes significant as soon as a satellite
passes close to the centre of the host.

In Table 2, we give the number of satellites with M > 108 h−1 M�
predicted by the EPS model for different WDM scenarios. The num-
bers agree surprisingly well with satellite counts from WDM sim-
ulations of Lovell et al. (2014). The predicted number of satellites
lies close to the outcome of simulations well within the expected
statistical fluctuation between different host haloes. These results
strongly suggests that despite its oversimplifications, the model (i.e
equation 17) can be used to estimate the amount of dwarf satellites
for scenarios with suppressed power spectra. It consists of a very
simple and useful test to check if a DM scenario is likely to be ruled
out by dwarf galaxy counts, or if it has the potential to account for
potential small-scale problems of �CDM.

As an example, we can use the model developed above to con-
strain the MDM parameter space. There are 11 classical satellites
plus additional 15 satellites recently observed by the Sloan Digital
Sky Survey (SDSS) within the viral radius of the MW (Wolf et al.
2010). As SDSS covers only 28 per cent of the sky, the latter num-
ber needs to be multiplied by 3.5 to account for full sky coverage
(assuming spherically distributed dwarfs). Altogether this leads to
an estimate of 11 + 50 = 61 dwarf satellites from observations (see
Polisensky & Ricotti 2011, for more details about how to estimate
the number of MW satellites).

The total mass of these objects are very difficult to infer, since the
only information about the DM halo comes from stellar kinematics
at around the half-light radius. Fitting different possible profiles
and extrapolating to the viral radius, Brooks & Zolotov (2014) find
that the masses of all classical and SDSS dwarfs should lie above
108 h−1 M�. We therefore use Mmin = 108 h−1 M� as a lower limit
for our analysis.

Figure 6. Exclusion plot of MDM based on satellite counts, assuming an
MW mass of 1.2 × 1012 and 3.2 × 1012 h−1 M� (average and maximum
estimates for the MW mass from Guo et al. 2010).

The predicted number of satellites is very sensitive to the host
mass, which is uncertain by a factor of a few in the case of the MW.
In our analysis, we take the bounds 5.5 × 1011 < M0 < 3.2 × 1012

h−1 M� on the MW mass obtained by Guo et al. (2010).
Fig. 6 provides constraints on the mixed DM scenario obtained

by combining the estimated satellite count with predictions from
equation (17). The constraints depend on both the thermal mass (m)
of the warm/hot DM part and the mixing fraction (f ). As smaller
host-haloes have fewer satellites, lower estimates of the MW mass
translate into stronger constraints. We account for this by investi-
gating exclusion limits for two MW masses, one corresponding to
the mean value (M0 ≤ 1.2 × 1012 h−1 M�, pink shaded region) and
one to the maximum value (M0 ≤ 3.2 × 1012 h−1 M�, red shaded
region) given by Guo et al. (2010).

For the extreme case of f = 1 (corresponding to WDM), the
constraints lie at 2–3 keV, which is roughly in agreement with
estimates from Polisensky & Ricotti (2011) and Kennedy et al.
(2014). On the other hand, MDM with fractions smaller than f ∼ 0.2–
0.3 cannot be constrained by satellite counts. A similar lower limit
on f was found by Anderhalden et al. (2013) based on satellite
counts in MDM simulations and by Boyarsky et al. (2009) based
on data from the Lyman-α forest.

5 C O N C E N T R AT I O N – M A S S R E L AT I O N

The concentration of a halo is defined as the ratio between virial ra-
dius and scale radius, assuming a broken power-law profile, where
the virial radius delimitates the system and the scale radius defines
the break between the two power-law regimes. Usually an NFW pro-
file (Navarro et al. 1997) is assumed, which has an inner slope of r−1

and an outer slope of r−3. In a pure CDM scenario, halo concentra-
tions are slightly mass-dependent, decreasing on average towards
larger halo masses with an important scatter between individual
haloes. In WDM scenarios, halo concentrations have been reported
to increase, turnover, and decrease on average towards large masses
(Avila-Reese et al. 2001; Bode, Ostriker & Turok 2001; Schneider
et al. 2012).

The concentration–mass relation is a direct consequence of
the connection between concentrations and the halo accretion
history, as shown explicitly in numerical studies of pure CDM
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cosmologies (Wechsler et al. 2002; Ludlow et al. 2014). In a uni-
verse governed by hierarchical clustering, small haloes collapse first
while the average density is high what translates into an increased
value for the concentration. This connection has been utilized in
various analytically motivated models for the concentration–mass
relation (Navarro et al. 1997; Bullock et al. 2001; Eke, Navarro &
Steinmetz 2001).

Arguably, the most widely used model for the concentration–
mass relation has been developed by Bullock et al. (2001) and
assumes a concentration of

c(z) = K
(1 + z)

(1 + zc)
, 〈D(zc)〉χ = δ2

c,0

Sχ (FM)
, (18)

with the free parameters K and F. The collapse redshift zc is de-
rived from the second relation, where 〈D(zc)〉χ stands for the growth
factor of collapse of an average perturbation, assuming a DM sce-
nario χ . The Bullock-model approximately works for pure CDM,
but it breaks down for the case of WDM where it predicts the
concentration–mass relation to become constant instead of the ob-
served downturn towards small masses (Eke et al. 2001; Schneider
et al. 2012).

The reason for this failure comes from an inaccuracy in the esti-
mation of the redshift of collapse. While the Bullock model uses the
average collapse redshift of perturbations with mass M (i.e. the sec-
ond relation of equation 18), what is actually required is the average
collapse redshift of a halo that has collapsed beforehand and still ex-
ists today. This subtle difference of perspective becomes important
for large masses (FM > M∗, with M∗ being defined by the relation
S(M∗) = δ2

c,0) where the Bullock model assigns negative collapse
redshifts which is inherently contradictory. The inaccuracy of the
Bullock model becomes more important for WDM, where haloes
around the suppression scale collapse out of very shallow perturba-
tions (that have been nearly entirely destroyed by free-streaming)
and, therefore, only exist for a short time before they get accreted
by a larger halo. As a result, small haloes which survive until today
tend to have very low collapse redshifts. In the following, we derive
a new relation for the average halo collapse redshift which takes
this effect into account.

5.1 Halo collapse redshift

Halo collapse is not an instantaneous event but a lengthy processes
of accretion and merging, and defining a formation time is there-
fore intrinsically ambiguous. The usual definition for the collapse
redshift zc is the moment when a halo has accreted a fraction F of
its final mass M. Every halo has an individual accretion history and
a different collapse redshift.

The distribution of collapse redshifts (gχ ) for all progenitors of
one halo with mass M is simply given by the conditional first-
crossing distribution

gχ (δc) = f
[
δc, Sχ (FM)|δc,0, Sχ (M)

]
, (19)

where δc = δc, 0/D(zc) is the redshift-dependent collapse threshold
of a given progenitor (with δc, 0 = 1.686 in the spherical collapse
model). Equation (19) is a well-behaved probability function with
an average value

〈δc〉 =
∫

dδcδcgχ (δc)∫
dδcgχ (δc)

. (20)

Figure 7. Redshift of collapse of haloes with mass M at redshift zero. The
curves are drawn from equation (21) with F = 0.05. The grey stars are
extracted from measured halo accretion rates in CDM simulations (Zhao
et al. 2009). Filled stars correspond to the absolute values, empty stars are
normalized to the black curve.

Solving this equation explicitly with the help of equation (20) yields
a relation for the average growth-factor

〈D(zc)〉χ =
[

1 +
√

π

2

1

δc,0

√
Sχ (FM) − Sχ (M)

]−1

(21)

(for a given DM scenario χ ) from which it is straight forward
to derive the corresponding redshift of collapse. Equation (21) is a
clear improvement compared to equation (18) of the Bullock model,
since it provides a reasonable value for the collapse redshift even in
the case FM > M∗. Additionally, it allows the zc–M relation (and
therefore the concentration–mass relation as we will see in the next
section) to turnover towards small masses, provided the function
Sχ (M) becomes flat enough which is the case for WDM and some
MDM scenarios.

The problem with the derivation above is that does not yield the
collapse redshift of the main halo but rather an average collapse
redshift of all its progenitors. In general, the true halo collapse
redshift can only be determined by constructing the full EPS halo
merger-tree, which lies beyond the scope of this work.4

In Fig. 7, the average collapse redshift from equation (21) is
plotted against halo mass at redshift zero. Here, we used the frac-
tion F = 0.05 and the sharp-k filter to calculate Sχ , but similar
results are obtained with a top-hat filter if the fraction is changed
to F = 0.01. For CDM (black line), zc increases monotonically to-
wards smaller masses, while for WDM (red line) and MDM (blue,
magenta, and green line) it increases, turns over, and decreases
again. Very small and very large WDM and MDM haloes are thus
rather young, while medium-sized haloes are considerably older.
It is important to note that this peculiar behaviour is no sign for

4 Assuming the special case of F ≥ 0.5, it is possible to compute the collapse
distribution (and therefore the average collapse redshift) by integrating the
conditional mass function (13) over the mass range [FM, M] followed by a
derivative with respect to δ. This is, however, not a valuable option for the
purpose of fitting concentrations, since F needs to act as a free parameter in
order to reproduce the measurements from simulations.
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the failure, but rather a natural prediction of hierarchical structure
formation: suppressed perturbations can only collapse if they sit on
top of larger perturbations, but this means that they only live for
a short time before they get cannibalized by the collapsing larger
perturbation.

As mentioned earlier, equation (21) provides the average collapse
redshift of all progenitors and is therefore expected to underpredict
the actual collapse redshift of the halo. In Fig. 7, we show that
this is indeed the case: the average collapse redshift measured in
CDM simulations (solid grey stars, obtained from Jiang & van
den Bosch 2014, based on simulations from Zhao et al. 2009) is
about a factor of 1.5 larger than the one predicted by our simplified
model. It is, however, interesting to realize that the slope of the
CDM zc–mass relation described by equation (21) agrees well with
the one from simulations. This is illustrated by the empty grey
stars which are the same data normalized to the black line. In the
next section, we will see that this relative agreement is sufficient
to derive a physically motivated recipe for the concentration–mass
relation.

5.2 Concentrations

Theory-based arguments can be used to understand the qualitative
behaviour of the concentration–mass relation, but there is no con-
sistent theoretical model that provides a prediction. It is therefore
common practice to measure concentrations in simulations and to
use fits for further investigations. Here, we present a simple method
which is based on prior knowledge of pure CDM concentrations
and predicts the concentration–mass relation for any scenario with
suppressed small-scale perturbations.

Let us suppose, we know a function describing the concentration–
mass relation for the CDM case. In this paper, we use two different
fitting functions: the first corresponds to a simple power-law pro-
posed by Macciò, Dutton & van den Bosch (2008),

cCDM(M) = α

(
1012h−1 M�

M

)γ

, (22)

the second includes an additional parameter M accounting for an
increase at large masses

cCDM(M) = α

(
1012h−1 M�

M

)γ
[

1 +
(

M

M
)0.4

]
, (23)

as described by Klypin et al. (2014). Based on one of these fits,
it is possible to obtain a concentration–mass relation for any DM
scenario χ by simply assuming that haloes with the same collapse
redshifts end up having the same concentrations. In other words,
we can use equation (21) to equate

〈D〉CDM(MCDM) ≡ 〈D〉χ (Mχ ), (24)

and determine a function MCDM(Mχ ) relating the halo mass of any
DM scenario χ to the corresponding halo mass of CDM. This
function can then be used in either equation (22) or equation (23)
to obtain the concentration–mass relation of scenario χ , i.e.

cχ (Mχ ) = cCDM[MCDM(Mχ )]. (25)

The procedure explained here is physically motivated, as it simply
assigns the same value for the concentration to haloes with the same
collapse redshift, independently of the DM scenario.

In Fig. 8, we compare the concentrations from simulations (filled
and empty symbols) to the model described by equation (25) uti-
lizing the fitting functions from equation (22, dotted lines) and

equation (23, solid lines). The left-hand panel shows the concen-
trations of CDM (black) and WDM (cyan, purple) at redshift 0.
While the concentration–mass relation of the CDM model exhibits
the expected monotonic increase towards small masses, there is a
clear turnover visible in the WDM scenarios. The model given by
equation (25) is able to reproduce this behaviour for either of the
underlying fitting functions (using the parameters α = 10.84, γ =
0.085, and M = 5.5 × 1017 h−1 M�).

The middle panel of Fig. 8 shows concentrations of CDM (black),
WDM (red), and MDM (blue, magenta, green) at redshift 0. As ex-
pected, the CDM concentrations increase monotonically towards
small masses, while the WDM concentrations exhibit a turnover.
For the case of MDM, the concentration–mass relation is either
flattened compared to CDM (green dots) or it turns over as in the
WDM scenario (magenta and blue dots) depending on the mixing
fraction. Additionally to this general trend, the red and blue dots
(representing the most extreme cases in terms of suppression) ex-
hibit a second upturn at small masses below 1012 h−1 M�. This
feature can be understood by comparing the collapse redshifts:
haloes with masses around this secondary upturn have very low
collapse redshifts comparable to the ones from the largest haloes
with masses above 1015 h−1 M�. As a result, their concentrations
should coincide, and an increase of the concentration–mass relation
towards very large masses directly translates into an upturn towards
small masses around the suppression-scale. This is the reason why
the model based on the fit with large-scale upturn (equation 23) is
in good agreement with the simulations, while the model based on
the simple power-law fit (equation 22) fails at the smallest mass
scales.5 For the fitting parameters we used α = 10.96, γ = 0.12,
and M = 5.5 × 1017 h−1 M� in the former and α = 10.96 and γ =
0.11 in the latter case. These values are very close to results from
Klypin et al. (2014) and Dutton & Macciò (2014), respectively, ex-
cept for a small change of normalization due to different halo mass
definitions.

In the right-hand panel of Fig. 8, the same models are plotted at
redshift 1.1. As a general trend, the concentration–mass relations are
flatter than at redshift 0 which is in agreement with former studies
(Prada et al. 2012; Dutton & Macciò 2014). The secondary upturn
towards small masses is, however, more prominent than at redshift
0. This is a direct consequence of the fact that the large-scale upturn
of pure CDM concentrations shifts towards smaller masses if higher
redshifts are considered (Klypin et al. 2014). In this panel, we used
the parameters α = 5.9, γ = 0.1, and M = 4.4 × 1016 h−1 M� for
the fit with large-scale upturn and α = 6.1, γ = 0.085 for the simple
power-law fit.

In summary, the model based on equation (25) is able to re-
produce the concentration–mass relation of scenarios with various
small-scale power suppressions provided the concentrations of pure
CDM are well known. In agreement with previous papers, we ob-
serve that concentrations seem to be tightly connected to the halo
collapse redshifts. In the presence of a strong suppression of per-
turbations (such as in WDM or some MDM scenarios), this may
lead to a wave-like feature in the concentration–mass relation, re-
flecting the low collapse redshifts of haloes around the suppression
scale.

5 The origin of the upturn of concentrations towards very high halo masses
is disputed: while Ludlow et al. (2014) argue that the largest haloes are not
fully virialized, Klypin et al. (2014) claim that many large haloes grow out of
unusually spherical perturbations, leading to a boost of the concentrations.
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Figure 8. Concentration–mass relation for CDM (black), different WDM (red, cyan, purple) and different MDM models (blue, magenta, green) with
circumjacent shaded regions representing the uncertainty due to artefact subtraction. Symbols illustrate the measurements from simulations, solid, and dotted
lines correspond to the models presented in the text (based on CDM fitting functions with and without upturn on cluster scales).

6 C O N C L U S I O N S

The standard model of cosmology predicts a suppression of pertur-
bations below a characteristic scale depending on the DM candidate.
For the case of DM consisting of WIMP, the suppression scale is
orders of magnitudes below the range of current astronomical ob-
servations, and only a potential detection of the WIMP annihilation
signal could eventually change this. For alternative DM candidates,
such as the sterile neutrino, the suppression scale is expected to
be large enough to have an effect on current galaxy observations.
In order to distinguish between different DM scenarios, it is there-
fore crucial to understand non-linear structure formation around the
scale of suppressed perturbations.

In this paper, we study structure formation of various suppressed
initial power spectra using both numerical simulations and analyt-
ical techniques. The simulations are deliberately chosen to cover
a variety of different scenarios from steep cutoffs to shallow sup-
pressions occurring on a wide range of scales. We study warm and
WIMP DM both exhibiting steep cutoffs as well as mixed DM with
much shallower suppressions depending on the mixing fraction.

Many of the simulations performed here suffer from artificial
clumping, a well-known problem in WDM simulations (Götz &
Sommer-Larson 2003; Wang & White 2007; Elahi et al. 2014;
Reed et al. 2014). We therefore apply a post-processing scheme
similar to the one presented by Lovell et al. (2014), which filters out
artefacts based on both protohalo sphericity and overlap between
two simulations with the same density field but different resolution.

Along with the simulations, we develop analytically motivated
models for the halo and subhalo mass functions, the halo collapse
redshift, and the concentration–mass relation which are designed to
work for arbitrary small-scale suppressions. The main findings of
the paper are summarized in the following list.

(i) We further investigate the EPS model based on the sharp-
k filter function introduced by Schneider et al. (2013). We show
that it provides a simple prescription of the halo mass function,
matching the simulation outcomes for all models studied here. This
includes various warm DM, mixed DM, WIMP-DM, and pure cold
DM scenarios, covering suppression scales at very different scales
and with a variety of different shapes. It is therefore fair to assume
that the sharp-k model can be used to predict the halo abundance
for cosmologies with arbitrary small-scale suppressions.

(ii) We present a method to estimate the number of substructures
in a host halo, and show that it agrees very well with warm DM
simulations from Lovell et al. (2014). Based on this, we provide
approximative constraints on mixed DM models by comparing the
expected number of substructures to the observed number of MW
satellites.

(iii) Using the conditional mass function, we determine the av-
erage collapse redshift of progenitors. Normalizing this relation to
measurements from CDM simulations yields a simple estimation
for the collapse redshifts of a halo in any DM scenario. Well above
the suppression scale, smaller haloes tend to be older than larger
ones. This is not the case around the suppression scale where haloes
are very young on average. We argue that, despite this turnaround
in the zc–mass relation for models with suppressed perturbations,
structure formation remains a hierarchical process in the sense that
there is now sign of halo-formation via fragmentation.

(iv) Based on the collapse redshifts of haloes, we develop a recipe
for the concentration–mass relation in the presence of arbitrary sup-
pressed small-scale perturbations and show that it agrees surpris-
ingly well with simulations. For the case of warm DM and some
mixed DM scenarios, the concentration–mass relation decreases to-
wards smaller masses when approaching the suppression scale. At
even smaller scales, however, the relation grows again, an effect
tightly connected to the recently observed increase of concentra-
tions at the largest scales in pure CDM simulations (Prada et al.
2012; Klypin et al. 2014).

The findings presented in this paper are potentially useful for
analytical and semi-analytical modelling of the non-linear Universe.
In the presence of suppressed small-scale perturbations, analytical
methods are particularly justified because numerical simulations
notoriously suffer from artefacts and need to be analysed with great
care.
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Götz M., Sommer-Larsen J., 2003, Ap&SS, 284, 341
Green A. M., Hofmann S., Schwarz D. J., 2005, J. Cosmol. Astropart. Phys.,

08, 003
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Hahn O., Abel T., 2011, MNRAS, 415, 2101
Hahn O., Paranjape A., 2014, MNRAS, 438, 878
Iakubovskyi D., 2014, Adv. Astron. Space Phys., 4, 9
Jiang F., van den Bosch F. C., 2014, MNRAS, 440, 193
Kamionkowski M., Liddle A. R., 2000, Phys. Rev. Lett., 84, 4525
Kaplinghat M., 2005, Phys. Rev. D, 72, 063510
Kennedy R., Frenk C., Cole S., Benson A., 2014, MNRAS 442, 2487
Klypin A., Yepes G., Gottlober S., Prada F., Hess S., 2014, preprint

(arXiv:1411.4001)
Knebve A. et al., 2011, MNRAS, 415, 2293
Knollmann S. R., Knebe A., 2009, ApJ, 182, 608
Kosowsky A. Turner M. S., 1995, Phys. Rev. D, 52, 1739
Lacey C., Cole S., 1993, MNRAS, 262, 627L
Lesgourgues J., Tram T., 2011, J. Cosmol. Astropart. Phys., 09, 032
Lovell M., Frenk C., Eke V., Gao L., Jenkins A., Theuns T., 2014, MNRAS,

439, 300
Ludlow A. D., Navarro J. F., Angulo R. E., Boylan-Kolchin M., Springel V.,

Frenk C., White S. D. M., 2014, MNRAS, 441, 378L
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A P P E N D I X A : SO M E MO R E A B O U T
R E M OV I N G A RT E FAC T S

In the main text, we have discussed how the removal of artefacts
affects the halo samples of the CDM, WDM (m = 0.25 keV) and
MDM simulations at redshift zero. Here, we focus on the remaining
DM models studied in this paper, providing the details of the CDM
and WDM (m = 2, 3, 4 keV) simulations at redshift 5 as well as the
pure CDM and WIMP DM models at redshift 23.

The distinction between real haloes and artefacts is somewhat
easier towards high redshifts, since most of the haloes are in a
less evolved state. This allows us to choose higher values for the
sphericity parameters plus a less restrictive minimal number of 500
particles per halo.

For the CDM and WDM models (with m = 2, 3, 4 keV) at redshift
5, we use sc = 0.3 and qc = 0.4 for the sphericity cut, which are
values that filter out a maximum of WDM artefacts while removing
less than 5 per cent of all CDM haloes. The distributions of spheric-
ity parameters s (blue) and q (red) are shown in the top panels of
Fig. A1. The distributions of the WDM model with m = 2 keV is

MNRAS 451, 3117–3130 (2015)

http://arxiv.org/abs/1503.03503
http://arxiv.org/abs/1412.1103
http://arxiv.org/abs/1411.4001
http://arxiv.org/abs/1409.6311
http://arxiv.org/abs/1502.01011
http://arxiv.org/abs/1410.1541
http://arxiv.org/abs/1306.0913


3130 A. Schneider

Figure A1. Histograms of the halo ellipticity parameters s (blue) and q (red) not shown in the main text. Top: CDM and WDM with m = 2, 3, 4 keV (from
left to right) at redshift 5. Bottom: pure CDM and WIMP DM with neutrino masses of m = 100, 215 GeV (from left to right) at redshift 23. Vertical dashed
lines illustrate the sphericity cut.

Figure A2. Histograms of the merit function M (i.e. equation 2) of all haloes before (top) and after (bottom) the sphericity cut. Left: CDM (black) and WDM
with m = 2, 3, 4 keV (cyan, magenta, pink) at redshift 5. Right: pure CDM (black) and WIMP-DM with neutrino masses of m = 100, 215 GeV (brown, orange)
at redshift 23. Vertical dashed lines correspond to the resolution cut.

characterized by two peaks, while the other WDM models show
broadened distributions compared to CDM, indicating the presence
of artificial haloes.6 The distribution of the merit function (quanti-
fying the overlap of haloes from different resolution) is illustrated
in the left-hand side of Fig. A2. The top panel includes all haloes
(before the sphericity cut), clearly showing the excess of artefacts
in the WDM simulations at M < 0.6. This excess is greatly reduced
after the sphericity cut, as illustrated in the bottom panel of Fig. A2.
Further artefacts are removed with the resolution cut Mc = 0.6,
illustrated as vertical dashed line in the lower panel of Fig. A2.

For the models of pure CDM and WIMP DM (with neutralino
mass of m = 100 and m = 215 GeV) at redshift 23, we apply a

6 The WDM model with m = 4 keV is run with a smaller box size than the
other WDM models of the series, a fact that leads to a further broadening of
the histogram.

sphericity cut of sc = 0.28 and qc = 0.38, which again removes
a maximum of artefacts while affecting pure CDM by less than
5 per cent. The sphericity distributions of these DM models are
presented in the bottom panels of Fig. A1, showing the usual pic-
ture of a Gaussian distribution for pure CDM and much broader,
occasionally double-peaked distributions for WIMP DM. The dis-
tributions of the merit function are illustrated on the right-hand side
of Fig. A2, the top and bottom panel showing the cases before and
after the sphericity cut. We again observe an excess of haloes in the
WIMP DM models at low M with respect to pure CDM which is
greatly reduced once the sphericity cut is applied. The resolution
cut Mc = 0.6 is illustrated as vertical dashed line in the bottom panel
of Fig. A2.
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