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Abstract: A detailed discussion of the potential energy surface of bis(cyclopenta -
dienyl)cobalt(II), cobaltocene, is given. Vibronic coupling coefficients are calculated using
density functional theory (DFT). Results are in good agreement with experimental findings.
On the basis of our calculation, there is no second-order Jahn–Teller (JT) effect as predicted
by group theory. The JT distortion can be expressed as a linear combination of all totally
symmetric normal modes of the low-symmetry, minimum-energy conformation. The out-of-
plane ring deformation is the most important mode. The JT distortion is analyzed by seeking
the path of minimal energy of the adiabatic potential energy surface.

Keywords: Jahn–Teller effect; DFT; cobaltocene; vibronic coupling; intrinsic reaction coor-
dinate.

INTRODUCTION

The Jahn–Teller (JT) effect [1] is the subject of extensive research, both experimental and theoretical.
The JT theorem states that a molecule with a degenerate electronic ground state will spontaneously dis-
tort along non-totally symmetric vibrational coordinates. This removes the degeneracy and lowers the
energy. The theory underlying the JT and related effects is known and documented in detail [2–4]. The
description of JT phenomena is based on a perturbation expression of the potential energy surface at
and near the point of electronic degeneracy. Group theory allows identifying the symmetry of the dis-
tortion.

This effect is frequently observed in transition-metal chemistry [5,6], where degenerate ground
states (e.g., in coordination compounds) are common. Density functional theory (DFT) is the modern
alternative to the wavefunction-based ab initio methods. Although it is the most common theoretical
method in quantum chemistry, up to now DFT is rarely used to discuss JT problems because of erro-
neous beliefs that it is not able to handle degenerate states [7]. Contrary to this, DFT can be applied to
both degenerate and excited states, as formally proved by reformulation of the original
Hohenberg–Kohn theorems—constrained search method and finite-temperature DFT [8]. Additionally,
conventional single-determinant DFT has been extended to handle multiplet problem [9,10].
Application of multideterminental DFT to the JT systems has been developed in our group [11] and
used with success [11–13].

*Paper based on a presentation at the 8th Conference on Solid State Chemistry, 6–11 July 2008, Bratislava, Slovakia. Other
presentations are published in this issue, pp. 1345–1534.
‡Corresponding author



In this paper, we show the power of our method for the analysis of the JT effect. As a particular
example, we use bis(cyclopentadienyl)cobalt(II) (cobaltocene), a metallocene with a d7 electronic con-
figuration, which has been a matter of extensive research for years [14–21]. The distortion of cobalt -
ocene is discussed qualitatively using group theory arguments, and the potential energy surface is cal-
culated by a simple computational recipe [11], using vibronic coupling. The intrinsic reaction
coordinate (IRC) method [22–25] is used to analyze the distortion vector which describes the direction
and magnitude of the JT coordinate. The former is analyzed in terms of normal vibrations of the stable
low-symmetry conformation. Thereupon, we propose the new approach to deal with the multimode
problem [2], and to analyze it along the minimal energy path, from JT cusp to the geometry minima.

RELEVANT THEORY OF THE JAHN–TELLER EFFECT

Consider a N-atomic molecule in a high-symmetry nuclear configuration, R
�

H, in the point-group G0.
The Hamiltonian Ĥ0 defines the electronic structure. Suppose that the ground state with energy E0 is
f-fold degenerate (Ψ1

0, Ψ2
0, …, Ψf

0). The molecule has 3N – 6 normal coordinates Qk (3N – 5 if it is lin-
ear), which describes all possible distortions. In order to discuss the potential energy surface, the elec-
tronic Hamiltonian, Ĥ, is expanded as a Taylor series around the high-symmetry point R

�
H along the

ortho normal Qks: 

(1)

Ŵ represents the vibronic operator (JT Hamiltonian) and is treated as a perturbation to Ĥ0. The subscript
0 indicates that analysis is performed in high symmetry. In order to calculate the potential energy sur-
face, the following secular equation has to be solved:

(2)

Hij are the matrix elements of the Hamiltonian Ĥ in the basis of Ψ1
0, Ψ2

0, …, Ψf
0. Using conven-

tional second-order perturbation theory, they are given by eq. 3:

(3)

This formulation allows a discussion of the JT effect [1], the pseudo-Jahn–Teller (PJT) effect
[2,3], the Renner–Teller (RT) effect [2,26], as well as the chemical reactivity [3,27–29], with the same
formalism [2].
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Considering the terms up to second order in Qk leads to the following expression:

(4)

The matrix elements in eq. 4 are called vibronic coupling constants, and some of them have a

clear physical meaning [2]:                     are the linear vibronic coupling constants;

are the quadratic vibronic coupling constants;

are the harmonic force  constants;

is the electronic relaxation. 
The slope of the potential energy along the direction Qk, (∂E/∂Qk)0 is given by the diagonal lin-

ear vibronic constant, Fk
ii. These terms are zero at any extremal point. If the ground state is nondegen-

erate, the integral will vanish unless Qk is totally symmetric. Therefore, in a system with a nondegen-
erate ground state, the potential energy surface shows only a gradient along totally symmetric
distortions. As a consequence, for any nonstationary point, the point group is conserved on the way to
the minimum [3]. If the ground state is degenerate, however, Qk might be a basis for a non-totally sym-
metric representation. For this it must belong to the same representation as the direct product of the
components of the degenerate ground state. The spontaneous distortion along these non-totally sym-
metric normal coordinates, Qks, leads to a descent in symmetry and removes the degeneracy. Jahn and
Teller [1] examined all degenerate terms of the symmetry point groups of nonlinear molecules and
showed that there is always at least one non-totally symmetric vibration for which Fk

ij ≠ 0. This is the
physical basis of the (first-order) JT effect. The JT problems are classified according to the symmetry
types of the electronic states and the vibrations that are coupled [2]. For example, the E ⊗ e JT prob-
lem denotes coupling of the degenerate electronic state of irrep E, by a degenerate vibration of irrep e.
Since the slope of the potential surface at the high-symmetry configuration, R

�
H, is nonzero, this point

is not a stationary point. It represents a cusp of the potential energy surface obtained in conventional
DFT. 

Curvature of the potential energy surface in the direction Qk is measured with the force constant,
Kk = 1/2(∂2E/∂Qk

2) = K0 + Kv [2]. The diagonal matrix elements of the second derivative of the  potential
energy operator, Gk

ii
k, are primary or nonvibronic force constants, K0 [2]. They are always different from

zero and positive, representing a restoring force that tends to bring the system back to the more sym-
metrical situation. 

Electronic relaxation, Rim, depicts the coupling of the ground state Ψ0
i with excited states Ψm.

This term is always negative. Generally, it is different from zero, as there will always be some excited
states of proper symmetry that match those with a direct product of the representations of the ground
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state and the normal coordinate Qk. It becomes increasingly important when the ground and the excited
states are close in energy. The negative curvature of the potential energy surface at a transition state is
a result of this term [3]. Therefore, it is referred to as the vibronic force constant, Kv. It is responsible
for the pseudo-JT effect, configurational instability of polyatomic species with nondegenerate elec-
tronic states, for the avoided crossing between states of the same symmetry, and for the softening of the
ground-state curvature at the minimum point, and it contributes to the anharmonicity of the vibrations
[2,3,27–29]. In practice, in the analysis of JT systems, this term is usually neglected, or added to the
total, observed force constant Kk.

The quadratic constants, Gk
ij

l, in nonlinear molecules are usually not responsible for lowering the
symmetry, but influence the shape of the potential energy surfaces, e.g., warping of the “Mexican hat”
in the E ⊗ e JT problem [2]. For linear molecules, the linear vibronic constants are always zero because
the non-totally symmetric vibrations are odd and degenerate states are even, but the quadratic terms are
nonzero, and this may lead to instability of the linear configurations in case of sufficiently strong cou-
pling. This is the physical basis of the RT effect [2,26].

As we see, the complexity of eq. 4 is reduced by symmetry rules, which allow us to identify the
nonzero vibronic coupling constants. One should note that matrix elements in eq. 4 contain all the com-
ponents of the degenerate electronic state (i, j, …, f) and their combinations. The Wiegner–Eckart the-
orem [30,31] states, that for any operator χΓ"k

which transforms according to irreducible representation
Γ"k (k is a component of the degenerate representation) the matrix elements of the form 〈Γi|χΓ"k

|Γ 'j〉 are
given by the product of a reduced matrix element and coupling coefficients Cijk

Γ"ΓΓ '
of the point group

G0:

(5)

〈Γ||χΓ"||Γ '〉, the reduced matrix element does not depend on the i, j, k. Thus, if the values of the
coupling coefficients are known, only one reduced matrix element has to be calculated or determined
experimentally. This simplifies the problem considerably. In the case of a E ⊗ e JT problem, the po-
tential energy surface is determined by only three reduced matrix elements, corresponding to the para -
meters F, G, K [2].

The point group G1 of the extremal points on the potential energy surface, which is of lower sym-
metry than the point group G0 of the degenerate configuration, can be predicted by the group theory
using the epikernal principle [2,32,33]. The symmetry of stationary points is the highest possible one
with lifted degeneracy, i.e., where the distortion coordinate becomes totally symmetric [3].

As a conclusion of this part, we observe that for molecules in high-symmetry configurations or
for transition states of chemical reactions, JT vibronic coupling (JT, RT, and PJT effects) is the only
possible source of spontaneous distortion, which leads to the breaking of symmetry in nature [2].

JAHN–TELLER PROBLEM IN D5 SYMMETRY

The high-symmetry conformation of metallocenes can be either D5h when the two rings are eclipsed or
D5d when the two rings are staggered. In both cases, the symmetry arguments are the same as for an
inte rmediate structure of D5 symmetry. 

The ground electronic state of cobaltocene in D5h symmetry is 2E1", 2E1g in D5d, with a single
electron in the doubly degenerate orbital. Thus, the system is subject to a first-order JT effect. Using
group theory, it is easy to show that the distortion coordinate is e2' in the eclipsed and e2g in the stag-
gered conformation, and the descent in symmetry goes to C2v and C2h, respectively. The electronic
states will split: E1" into A2 and B1; E1g into Ag and Bg; the JT active distortion e2' splits into a1 and
b2; e2g into ag and bg. For the sake of simplicity in the discussion, the symbols of D5 → C2 are used
throughout. They are E1 for the ground state and e2 for the JT active distortion. In C2, the former splits
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into A, B, and later into a, b. This is schematically shown in Fig. 1. The results of the calculation are
given for both conformations, D5h and D5d.

To get the potential energy surface, the 2 × 2 secular equation (eq. 2), expressed in the basis of
the two degenerate components of the E1 ground state, ΨA, which belongs to the A in C2 and ΨB which
belongs to B must be solved. The symmetry properties of the wavefunctions are the same as those of
real 3dyz and 3dxz orbitals. The problem is analyzed in the space of the two components Qa and Qb of
e2. Qa is of a symmetry in C2, i.e., like the 3dx2–y2 orbital, Qb, is of b symmetry in C2, as is 3dxy. The
potential along the direction of the JT inactive vibrations is parabolic with a minimum for the high-sym-
metry conformation. The JT active distortion is the totally symmetric reaction coordinate, a, in C2. The
modes of b symmetry allow mixing of the two electronic states emerging from the degenerate ground
state.

Due to the properties of the D5 group, the JT problem is simplified because e2 ⊗ e2 ⊂ a1 +
[a2] + e1 and there are no terms of e2 symmetry to interact with the E1 electronic wavefunctions.
Therefore, the second-order vibronic coupling constant Gab

AB is zero.

(6)

The totally symmetric component of e2 ⊗ e2 representation yields the harmonic force field con-
stant, K

(7)

Using the Wiegner–Eckart theorem [30,31] and the coupling coefficients for the D5 point group
(Table 1), it is easy to see that the following integrals of eq. 4 vanish: 

(8)
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Fig. 1 Summary of the JT effect in cobaltocene. Symmetries of the corresponding geometries, electronic states and
normal coordinates (Qa), as well as the numbering of C atoms in the cyclopentadienyl rings is given.
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and the remaining integrals are 

(9)

Table 1 Coupling coefficients for the D5 group (MATLAB scripts for the
calculation of the coupling coefficients can be obtained from the authors).

El. state E1 × E1
Vibration component AA AB BA BB

e2 b 0 –0.7071 –0.7071 0
a 0.7071 0 0 –0.7071

The potential energy surfaces are thus

(10)

From expression 10, it is easy to see that the energy along Qa, or Qb or along any linear combi-
nation is the same. In this expression (eq. 10), only quadratic forms of Qa and Qb are present, thus the
energy of a distortion along –Qa is the same energy as along Qa, thus only the other component of the
degenerate state will be stabilized. The potential energy surface has a “Mexican hat” shape, without any
warping. Energy is the same in all directions of the 2D space spanned by these two coordinates.

As a result, the vibronic model employed in this study is defined with two parameters only, i.e.,
the linear vibronic coupling constant, F, and the force constant K.

DFT CALCULATION OF THE JAHN–TELLER GROUND-STATE PROPERTIES

Vibronic coupling constants mentioned in previous sections define the JT potential energy surface. A
qualitative cross-section through the potential energy surface, along JT active vibration Qa is given in
Fig. 2. The figure indicates also how the parameters EJT (the JT stabilization energy), Δ (the warping
barrier), RJT (the JT radius), and EFC (the Frank–Condon transition) define the potential energy sur-
face.
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Using first principles [11,34], it is possible to calculate EJT, Δ, the geometries at the high-sym-
metry point and the global minimum, as well as the distance between them (RJT). These alternative
para meters are connected to the set of parameters discussed in previous sections using the following re-
lations [2]:

(11)

(12)

(13)

In this paper, we use DFT, today the method of choice in theoretical coordination chemistry. DFT
is a single-determinant method. Therefore, it is not possible to derive correct energies in the case of or-
bital degeneracy [11]. In a non-empirical approach to ligand field theory [11], it was proposed to place
0.5 electrons into each of the e orbitals leading to a homogeneous distribution of electrons with partial
occupations. This yields the geometry of the high-symmetry species. The JT stabilization energy is not
simply the energy difference between the former high-symmetry and the low-symmetry species. To ob-
tain EJT, we need two types of DFT calculations: (i) a single-point calculation imposing the high sym-
metry on the nuclear geometry and the low symmetry on the electron density. This gives the energy of
a Slater determinant with a one-electron orbital occupancy. (ii) A geometry optimization in the lower
symmetry. The EJT is the difference in these two energies. 

In order to discuss the JT potential surface, we define a distortion vector, d
�

as the vector given by
the displacements of the atoms in mass-weighted coordinates from the high-symmetry point defined by
the R

�
H. The difference between the high-symmetry geometry and the minimum geometry in mass-

weighted coordinates allows us a definition of the JT radius, RJT, as a length of the corresponding vec-
tor (d

�
u
JT being an unit vector), c.f. eq. 14:
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Jahn–Teller effect in cobaltocene 1403

Fig. 2 Qualitative cross-section through the potential energy surface along the JT active coordinate Qa; definition
of the JT parameters—the JT stabilization energy EJT, the warping barrier Δ, the JT radius RJT, the energy of the
vertical Franck–Condon transition EFC.
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(14)

Computational details

The DFT calculations reported in this work have been carried out using the ADF2006.01 program pack-
age [35–37]. The local density approximation (LDA) characterized by the Vosko–Willk–Nusair (VWN)
[38] parameterization have been used for geometry optimizations. Triple-zeta (TZP) Slater-type orbital
(STO) basis set have been used for all atoms. All calculations were spin-unrestricted with strict criteria
for convergence: energy 10–4 Hartrees; gradients 10–4 Hartree/Å; changes in Cartesian coordinates
10–4 Å; and for numerical integration, 10 significant digits are used. For the energies, LDA and the gen-
eralized gradient approximation (GGA) in the form given by Perdew–Wang (PW91) [39,40] have been
compared. Analytical harmonic frequencies were calculated [41–43] and analyzed with the aid of
PyVib2 1.1 [44,45]. For the detailed discussion of potential energy surface, the IRC method [22,23] as
implemented in the Amsterdam density functional (ADF) [24,25] has been used. The initial direction
of the path is chosen by computing the gradient at the high-symmetry configuration.

RESULTS AND DISCUSSION

As indicated above, DFT produces a totally symmetric electron distribution (ρ0) if each e1 orbital car-
ries 0.5 electrons. There are two distinct ways to accommodate the single electron in C2 symmetry, i.e.,
a1b0 (2A electronic state) yielding a density ρ(A) and a geometry of the energy minimum C2(A) or b1a0

(2B electronic state) yielding another density ρ(B) with a geometry of the energy minimum C2(B). The
two electronic states are stabilized in opposite directions of Qa. Thus, a series of DFT calculations cor-
responding to both of these occupations, as well as to the G0 = D5 and G1 = C2 geometries, are carried
out, leading to the values of JT stabilization energies, EJT(A) and EJT(B). The energy of vertical
Franck–Condon transition, EFC, is easily obtained in promoting the unpaired electron from the ground
state to the first excited state for the ground-state geometry. For the definition of the parameters, see
Fig. 2. Calculations were done for both eclipsed and staggered conformations.

Results of these calculations are tabulated in Table 2. 

Table 2 Results of the DFT calculations performed to analyze the JT effect of cobaltocene in D5h and D5d
symmetry; geometries are obtain with LDA; energies (LDA and GGA) are given in eV; symmetry symbols are
for D5 as explained in text.

Eclipsed Staggered
Occupation State Geometry E(LDA) E(GGA) E(LDA) E(GGA)

e1
0.5 e1

0.5 2E1 D5 –142.28971 –132.95708 –142.26204 –132.93751
a1b0 2A D5 –142.26105 –132.97115 –142.23739 –132.95772
a1b0 2A C2(A) –142.36200 –133.06415 –142.33129 –133.04308
a1b0 2B C2(A) –141.95712 –132.65895 –141.93846 –132.65035
b1a0 2B D5 –142.26113 –132.97103 –142.23740 –132.95769
b1a0 2B C2(B) –142.36199 –133.06395 –142.33127 –133.04316
b0a1 2A C2(B) –141.95678 –132.65842 –141.93882 –132.65076

Cobaltocene in D5h symmetry is approximately 0.02–0.03 eV more stable than in D5d. The en-
ergy difference between the low-symmetry conformations C2v and C2h obtained by descent in symme-
try from D5h and D5d is similar. This is in agreement with results of previous DFT calculations on met-
allocenes [46,47]. The energy barrier for the internal rotation of the rings, from eclipsed to staggered
conformation, is estimated to be around 0.03 eV in both high and low symmetries, similar to the rota-
tion of the rings in ferrocene [48]. 
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The JT parameters are easily obtained from these results, cf. Table 3. 

Table 3 The JT parameters; energies are given in cm–1; RJT in
(amu)1/2Å; F, in 103 cm–1 (amu) –1/2 Å–1; K, in 103 cm–1

(amu)Å.

D5h D5d
LDA GGA LDA GGA

EJT(A) 814.2 750.1 757.4 688.5
EJT(B) 813.5 749.5 757.1 689.4
Δ 0.7 0.6 0.3 0.9
EFC(A) 3265.6 3268.2 3168.4 3167.6
EFC(B) 3268.3 3270.8 3165.3 3164.9
RJT(A) 0.35 0.34
RJT(B) 0.35 0.34
F 4.6 4.3 4.4 4.0
K 13.3 12.2 13.1 11.9

JT stabilization energies are in range 688.5–814.2 cm–1, depending on the structure and on the
functional used for the energy calculation. These values are in good agreement with the value of
1050 cm–1 estimated from the experiment [15]. The JT stabilization energy is somewhat larger in the
case of eclipsed rings. The ratio EFC/EJT is almost exactly 4 as predicted by the model with LDA (4.01)
and a little larger for GGA energies (4.35). The JT energies for the different electronic states are almost
exactly the same—the differences are between 0.3 and 0.9 cm–1, smaller then the precision of the cal-
culations. As expected, based on group theoretical considerations, there is no warping of the potential
energy surface, and the vibronic model employed in this study is described with two parameters—only
the linear vibronic coupling constant, F, and the force constant K, as previously explained, Table 3.

The geometrical parameters for all the structures studied in this work are summarized in Table 4.
The cyclopentadienyl rings are not planar, and the aromaticity of the ring is perturbed. There are no sig-
nificant structural changes of the rings in the low symmetry eclipsed (C2v) as well as for the staggered
(C2h) conformations. This strongly suggests that the energy barrier for the rotation of the rings is as
small as in ferrocene. This was verified by calculating the energy profile for the ring rotation. The JT
distortion does not influence the internal rotation of the two rings. A detailed analysis of the geometri-
cal deformation from the higher symmetry follows.

Table 4 Geometrical parameters for different structures calculated in this work, optimized
with LDA; distances in Å and torsional angles in °; for the numbering of C atoms, see
Fig. 1.

D5h D5d C2v(A2) C2v(B1) C2h(Ag) C2h(Bg)

Co–C1 2.068 2.071 2.028 2.104 2.107 2.033
Co–C2 (C5) 2.097 2.035 2.039 2.098
Co–C3 (C4) 2.054 2.077 2.078 2.056
C1–C2 (C1–C5) 1.421 1.420 1.427 1.416 1.416 1.427
C2–C3 (C4–C5) 1.407 1.436 1.435 1.406
C3–C4 1.439 1.403 1.403 1.439
ΘC1–C2 (–ΘC4–C5) 0.0 0.0 6.4 6.4 6.2 6.2
ΘC2–C3 (–ΘC3–C4) 3.9 3.9 3.9 3.8
ΘC5–C1 0.0 0.0 0.0 0.0
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Analysis of JT distortion

As shown in the previous sections, the JT theorem predicts a distortion from the high-symmetry con-
figuration. By group theory, we find the irreducible representation of the JT active vibrations, and by
using the epikernal principle [2,32,33] we obtain the symmetry descent. The geometry of minimal en-
ergy defines the direction of the JT distortion. The JT radius is given by the length of the distortion vec-
tor between the high-symmetry and minimum-energy configuration. 

The distortions of simple complexes are usually determined by one single normal coordinate that
satisfies the symmetry requirements [2]. In complex molecules, the JT distortion is a superposition of
different normal coordinates. A detailed analysis of the different contributions is of interest in this case.

The qualitative treatment shows that the JT distortion is defined in the subspace of the two com-
ponents of the e2 direction. The real situation, however, is more complicated. There are more than one
e2 vibrations, and because they are of the same symmetry they can all contribute to the JT distortion.
Since E1 ⊗ E1 ⊂ a1 + [a2] + [e2] also a1 modes may be effective in addition to the e2 vibrations. Totally
symmetric displacements do not change the symmetry, they change only the interatomic distances.
Hence, all of the e2 vibrations and all totally symmetric vibrations can contribute to the JT distortion.
In the JT semantics, this is called the multimode problem [2]. Further complications can arise after the
actual symmetry is lowered. Then, all vibrations which are totally symmetric in the lower symmetry can
contribute to the JT distortion. Thus, in C2v symmetry we have 16 totally symmetric vibrations and in
C2h 15. Hence, the question arises what is their contribution to the JT distortion of a molecule. This is
easily answered if we express JT active distortion as a linear combination of all totally symmetric nor-
mal modes in the low-symmetry (C2) minimum-energy conformation. This is the essence of our propo-
sition how to treat the multimode problem. More details about this approach will be published shortly
[49].

(15)

The set of normal modes q = (q
�
1, q

�
2, …, q

�
n), n being the number of the totally symmetric vibra-

tions in low symmetry, are orthonormal, that is, q
�

i � q
�

j = δij: 

(16)

(17)

In order to be consistent with the usual treatments [2] and the previous qualitative arguments, we
correlate the vibrations in the minimum-energy conformation of low symmetry to the ones in high sym-
metry by the method developed by Hug et al. [44,45], using overlap and similarities of the mass-
weighted Cartesian displacements of the two different configurations.

Normal coordinate analysis at the minima yields the energies of the normal modes and the corre-
sponding Cartesian displacements. The cis, which are normalized to 1, thus represent the percentage of
any particular normal mode to the total JT distortion and are obtained using eq. 17. With this informa-
tion, it is possible to estimate the energy contribution of each of the n vibrations to EJT. The results cor-
responding to the 2A2 ground state in C2v geometry are given in Table 5. Similar results are obtained
for the companion state 2B1, as well as for the corresponding states in C2h symmetry. These results are
given in the Supplementary Information. Assignment of the vibrations is given according to the normal
coordinate analysis of the ferrocene and ruthenocene [48,50–52]. 
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Table 5 Linear coefficients, ci, in the expansion of the distortion vector, normalized to 1, at the minimum of 2A2
electronic state in C2v geometry; correlation of the low- to the high-symmetry vibrations is given; contribution of
the normal coordinate to the calculated EJT in cm–1. The most important vibrations are given in bold; energy of
vibrations in cm–1 and their assignment is given [44–49].

Energy of the vib. Assigment of the vib. Symmetry of the ci(R = RJT) EJT
i(cm–1)

in C2v (cm–1) vib. in D5h

1 153.2 skeletal bending e1' 0.0004 0.0121
2 291.9 ring-metal stretch a1' 0.0026 1.0562
3 405.5 ring tilt e1' 0.0021 0.6525
4 586.9 out-of-plane ring deformation e2' 0.6490 348.1601
5 762.0 C–H wagging a1' 0.0041 5.2601
6 825.4 C–H wagging e1' 0.0138 9.4111
7 830.3 in-plane ring distortion e2' 0.1004 112.0479
8 869.1 C–H wagging e2' 0.1216 137.0990
9 976.0 C–H bending e1' 0.0009 2.7961

10 1030.8 in-plane C–H bending e2' 0.0833 133.7086
11 1126.4 ring breathing mode (C–C stretch) a1' 0.0004 0.0012
12 1367.6 C–C stretch e2' 0.0098 34.2503
13 1397.6 C–C stretch e1' 0.0118 28.1925
14 3135.9 C–H stretch e2' 0.0004 1.1785
15 3148.3 C–H stretch e1' 0.0000 0.3532
16 3166.2 C–H stretch a1' 0.0000 0.0205

The mixing of the totally symmetric vibrations in lower symmetry is expected to increase with
increasing deviation from the high-symmetry geometry. It is interesting to see how the composition of
distortion vector (coefficients in the linear expansion, eq. 15) changes along the minimal energy path.
The later is defined as the steepest descent path [22,23], down from the JT cusp to the local energy min-
imum. This is easily achieved using the IRC algorithm as implemented by Deng and Ziegler [24,25] in
the ADF program package [35–37]. The high-symmetry point has a nonzero gradient, thus, the first step
is computed in the direction of the steepest descent (not in the direction of the first Hessian eigen vector
as usually in IRC calculations starting from the transition states). The path is computed by taking steps
of adequate size and by optimizing all atomic coordinates orthogonal to it. During the calculation, C2v
symmetry has been conserved, and it is taken into account that one electronic state corresponds to the
forward path, and the other to the backward path. Each point along the minimal energy path can be char-
acterized by the distortion vector d

�
. As already demonstrated, it represents the difference between the

high-symmetry and current point, and it can be represented as the linear combination of the totally sym-
metric normal modes of the low-symmetry minimum conformation 

(18)

(19)

IRC calculations for the eclipsed conformation of the rings are summarized in Fig. 3 together with
the direct path. It can be seen that these two ways are not significantly different. 
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Changes of ci for the four dominant vibrations along the IRC path are represented in Fig. 4.

The main contribution to the JT distortion arises from the four e2 type vibrations (labeled as 4, 7,
8, and 10 in Table 5). They contribute to about 95 % of the total JT distortion vector and to 90 % of the
JT energy. The four vibrations are: the out-of-plane ring distortion, 4, the in-plane ring distortion, 7, the
C–H wagging (the out-of-plane C–H bending), 8, and the in-plane C–H bending, 10. 
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Fig. 3 IRC calculations (filled squares) and direct path (open circles) from the high-symmetry cusp in C2v
symmetry (eclipsed conformation of the rings); forward direction is 2B1 electronic state; backward direction is 2A2
electronic state; energies are given in cm–1 relative to the high-symmetry one.

Fig. 4 Changes in the composition of the distortion vector d
�

= D
�

5 – C
�

2 (linear coefficients, ci in eq. 15) along the
minimal energy (IRC) path for the four most important vibrations. Linear coefficients are normalized to 1.



These vibrations are illustrated in Fig. 5 using the vibrational energy distribution representation
[40]. The different colors indicate the direction of the displacement vector, while the volumes of the
spheres are proportional to the contribution made by the individual nuclei to the energy of the vibra-
tional mode. Their significance is not the same at the beginning step and at the minimum. Figure 4
shows that the composition of the distortion vector changes along the minimal energy path. For infini-
tesimal small distortion from the high symmetry, we expect only contribution of e2 vibrations. The
analysis shows that the contribution of low-energy skeletal vibrations (1–3) and the high-energy vibra-
tions (C–C stretch 11–13, and C–H stretch 14–16) is almost negligible. The JT important e2 vibrations,
and hence the JT distortion, are predominantly located in the five-membered rings. The main contribu-
tion is the out-of-plane deformation of cyclopentadienyl ring (vibration 4). This is expected because this
normal coordinate minimizes antibonding interactions between the cyclopentadienil ring orbitals and
the single occupied metal d orbital. In the beginning, the contribution of in-plane C–H bending, 10, is
also important, but as distortion deviates from the high-symmetry point its contribution decreases. The
opposite is true for the lowest energy e2 vibration (vibration 4) which is indeed the most important one.
Contribution of C–H wagging is also becoming more important. On the first sight, it might be surpris-
ing that the softest of the four modes makes the largest contribution to EJT. This indicates that the dis-
tortion along the corresponding normal coordinate is larger than for any other one.
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Fig. 5 Vibrational energy distribution representation of the four most important a vibrations in C2v symmetry
corresponding to the four e2' vibrations in D5h symmetry (Table 5); upper row: vibration 4 (out-of-plane ring
deformation) and vibration 7 (in-plane ring distortion); down: vibration 8 (C–H wagging) and vibration 10 (in-
plane C–H bending). The different colors indicate the direction of the displacement vector; the volume of the
spheres is proportional to the contribution made by the individual nuclei to the energy of the vibrational mode.



CONCLUSIONS

In this work, we have shown that methods based on DFT are useful tools for the qualitative and quan-
titative analysis of the adiabatic potential energy surfaces of JT active coordination compounds. The
composition of the distortion vector that describes the displacements of all atoms allows the discussion
of the direction and of the magnitude (through the JT radius) of the JT effect. The JT distortion is a to-
tally symmetric reaction coordinate in low symmetry and can be expressed as a linear combination of
all normal modes of a1 irreps. in the low-symmetry energy minimum. These vibrations can be corre-
lated to the vibrations in the high-symmetry configuration, thus making the bridge between this ap-
proach and the standard one based on the perturbation of the high-symmetry conformation. Using
points along the minimal energy path, it is possible to follow the changes of composition of the distor-
tion vector from the high-symmetry structure to the energy minimum.

In the particular example of the cobaltocene molecule, the three vibronic coupling constants have
been calculated. The quadratic one, Gab

AB, is found to be zero as predicted by group theory. Four e2 type
deformation modes in high symmetry, the a component after descent in symmetry, are identified as the
most important contribution to the JT deformation, with the out-of-plane ring deformation being dom-
inant. 

SUPPLEMENTARY INFORMATION

Tables S1–S4 are available online (doi:10.1351/PAC-CON-08-06-04).
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