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Abstract

In dynamic networks, the presence of ties are subject both to endogenous network dependen-

cies and spatial dependencies. Current statistical models for change over time are typically

defined relative to some initial condition, thus skirting the issue of where the first network came

from. Additionally, while these longitudinal network models may explain the dynamics of

change in the network over time, they do not explain the change in those dynamics. We propose

an extension to the longitudinal exponential random graph model that allows for simultaneous

inference of the changes over time and the initial conditions, as well as relaxing assumptions

of time-homogeneity. Estimation draws on recent Bayesian approaches for cross-sectional

exponential random graph models and Bayesian hierarchical models. This is developed in the

context of foreign direct investment relations in the global electricity industry in 1995–2003.

International investment relations are known to be affected by factors related to: (i) the initial

conditions determined by the geographical locations; (ii) time-dependent fluctuations in the

global intensity of investment flows; and (iii) endogenous network dependencies. We rely on

the well-known gravity model used in research on international trade to represent how spatial

embedding and endogenous network dependencies jointly shape the dynamics of investment

relations.

Keywords: dynamic networks, longitudinal exponential random graph model, foreign direct invest-

ment network, gravity model, spatial processes, exchange sampler, world trade network topology,

Bayesian data augmentation, continuous-time Markov chains

1 Introduction

We consider longitudinal models for network ties with a focus on a class of generative

models defined for continuous time. We are not concerned with discrete-time models

such as that proposed by Robins & Pattison (2001). By couching the process of tie-

change in terms of an embedded chain, where the decisions of actors incrementally

changes the entire network, Snijders’ stochastic actor-oriented model (SAOM)

(Snijders, 2001) relaxed the independence assumptions of the earlier continuous-

time models (Holland & Leinhardt, 1977; Wasserman, 1980). The exponential

random graph model (ERGM) was developed explicitly with the aim of modeling

dependencies among tie-variables and the model has also been extended to modeling

tie-change in (continuous) time (for a description see e.g., Snijders, 2006; Snijders
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Variable LERGM for FDI 59

& Koskinen, 2013; Koskinen & Lomi, 2013). When the continuous-time model

is only observed in discrete time t0, t1, . . . , tM−1, tm ∈ �+, it is difficult to draw

inference without assuming that the process is homogenous in time. Because these

are models for change, conditioning on the first observation at t0 greatly facilitates

inference. We propose an approach for making use of the information contained

in the first observation, rather than merely using it to assess the change from one

observation to the next. We couple this with proposing an approach for addressing

time-heterogeneity in a parametric framework.

We illustrate the proposed approach by elaborating on the analysis of foreign

direct investment (FDI) in the international electricity industry of Koskinen & Lomi

(2013). FDI are international capital flows determined by investment decisions taken

by a company in one country (parent company) to acquire control over a company

in a different country (target company). FDI decisions at the company level establish

a specific kind of network between countries whereby capital resource flows into

the country of the target company in exchange for ownership and voting rights

that flow in the opposite direction toward the country of the parent company. The

dyadic exchanges underlying FDI cumulate into a network of dependence relations

between countries in the world economy.

The motivations and strategies behind FDI decisions are typically contingent on

a variety of highly heterogeneous firm and industry-specific factors (Redding, 2011).

By concentrating on FDI in the international electricity industry (a single-industry

design) we reduce the large set of possible sources of unobserved heterogeneity.

Koskinen & Lomi (2013), furthermore, selected the electricity industry for study

because FDI played a major role in the globalization of the electricity industry.

During the observation period (1994–2004) the electricity industry underwent rapid

globalization and a rapid transition from a set of disconnected national monopolies

to a truly global industry. Because we are interested in relations between countries

emerging from an investment relation linking existing companies, we do not deal

with greenfield investments—a form of FDI where a parent company starts a new

venture in a foreign country.

To capture the spatial embedding of ties in an ERGM, Daraganova et al. (2012)

specified a distance interaction function that Koskinen & Lomi (2013) then used to

specify a model for FDI relations that was in turn an adaption of the well-known

gravity model of trade (Anderson, 1979; Bergstrand, 1985). Well established in the

study of international trade (Anderson, 2011; Anderson & van Wincoop, 2003),

during the last decade the gravity model has been successfully applied also to FDI

relations between countries (Bevan & Estrin, 2004; Chakrabarti, 2003). FDI originate

from individual investment decisions that are typically non-repeatable events. Hence,

it would seem that a model derived for explaining trade flows cannot be directly

applied to FDI decisions. We are not modeling individual investment decisions

(taken at the company level), but aggregate relations that these decisions involve

(at the country level). In other words, we assume that ties between countries are

states rather than events. As such, relations between countries involve some degree

of inertia and are not modified immediately by additional investment events—or

their lack thereof.

The gravity model is useful for our purposes because it involves an explicitly

dyadic formulation. In its basic specification, the gravity model relates bilateral
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60 J. Koskinen et al.

flows between two countries (Yij) to their size (Vi and Vj—as measured, for example

by gross domestic product (GDP)) and their distance (Dij). In its simplest form,

the gravity equation specified and estimated in empirical models is therefore:

Yij = ViVj/Dij where the effect of size is expected to be positive to signal trade

opportunities and the effect of distance is expected to be negative to signal fixed

trade costs.

When the focus is on the change in the underlying topography of the FDI network

(Dueñas & Fagiolo, 2013; Squartini et al., 2011a) the network ties underlying ob-

served capital flows are of interest, not the capital flows themselves. The topography

of the FDI network is represented in terms of binary, directed ties between countries.

We let the tie-variable Xij be one or zero depending on whether there is an FDI

tie from country i to country j or not, respectively for i, j ∈ {1, . . . , n}. The space of

all adjacency matrices is denoted X = {0, 1}V (2) . Considering the topography of the

FDIs allows us to investigate the effect of distance while allowing us to draw on the

elaborate results for dependence offered by ERGMs.

An exclusive focus on network structure may be motivated, in part, by recent

results suggesting that the structure of ITN may be fully characterized in terms

of their local topological properties (Squartini et al., 2011a). More specifically, we

focus on the binary architecture of the FDI networks because we are interested in

documenting the emergence and the effect of local (dyadic and triadic) network sub-

structures. As Fagiolo et al. (2009) clearly show in the context of international trade,

weighted networks display a weaker clustering due to the presence of many low-

intensity trade flows. Networks of FDI flows are likely to display similar properties

that would be undesirable given the objectives of our study, namely to investigate

how the nature of dependencies change over time.

2 The model

We define an ERGM process as the process on X for which the limiting distribution

is an ERGM (Holland & Leinhardt, 1981; Frank & Strauss, 1986; Wasserman &

Pattison, 1996; Snijders et al., 2006) of the form

Prθ(X = x) = exp{g(x; θ) − ζ(θ)} (1)

where g(·; θ) is some function of the adjacency matrix x and the vector of parameters

θ ∈ Θ ⊂ �p, and ζ(θ) = log
∑

x∈X eg(x;θ) is a normalizing constant that ensures that

the distribution sums to unity on X which is typically computationally intractable.

As described in for example Snijders (2006), the ERGM process may be defined as

a process X(t), for a time-parameter t ∈ T ⊂ �+, that is a continuous-time Markov

chain with intensity matrix Q, but that evolves through incremental changes to the

network. This is the same basic principle as in Holland & Leinhardt (1977) and

in the SAOM (Snijders, 2001) where the incremental changes are defined in terms

of toggles of tie-variables. The tie-based ERGM process, or longitudinal ERGM

(LERGM), does however differ from SAOM in some central assumptions as well

as in some of the details of the modeling and estimation (Koskinen & Lomi, 2013;

Snijders 2006; Snijders & Koskinen, 2013).

In order to define a toggle, for x ∈ X, let x−ij be the incomplete adjacency matrix

{xuv : (u, v) ∈ V (2)/{(i, j)}}, which is equal to x from which the information about
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the value of the tie variable xij is deleted. Define the operator Δsign
ij , such that for x,

y = Δsign
ij x has y−ij = x−ij and yij = 1, yij = 0, or yij = 1 − xij according to whether

sign is equal to +, −, or ∗, respectively.

Thus Δ∗
ijx toggles the entry (i, j) of x and we define the neighborhood of a graph

x, as N(x) = {y ∈ X : y = Δ∗
ijx, for some (i, j) ∈ V (2)}, and define the Markov chain

in terms of a process that stays in the current state x for some time and then jumps

to a state in the neighborhood of x or itself. In terms of Q this implies the strictly

positive rates q(x, y) = qij(x) for y = Δ∗
ijx in the neighborhood of x but q(x, y) = 0

for y that are not in N(x) ∪ {x}. This Markov chain is an ERGM process if we

define the rates as qij(x) = ρPrθ(Xij = 1 − xij |X−ij = x−ij), where

Prθ(Xij = 1|X−ij = x−ij) = [1 + exp{g(Δ−
ij x; θ) − g(Δ+

ij x; θ)}]−1 (2)

is the conditional tie-probability of the ERGM. The interpretation is that if randomly

chosen tie-variables are updated using the Gibbs sampler with probabilities (2), then

the limiting distribution is Equation (1). In the context of FDI, the model explains

why ties are present at different points in time as a function of the spatial embedding

and resources of states while accounting for the fact that ties are not independent

and that there were ties at a previous time-point. A tie-variable is thus both spatially

embedded, embedded in a “social neighborhood” (Pattison & Robins, 2002), and

embedded in time, being subject to the temporal dynamics emanating from past

history.

3 Estimation and extension

While the ERGM is an exponential family distribution, the ERGM process is not

and the standard estimation procedures for the ERGM cannot be used. However,

conditional on the initial state x(t0) the model parameters may be estimated using

similar estimation techniques to the ones used for the SAOM such as stochastic

approximation (Snijders, 2001) or Bayesian data augmentation (Koskinen & Snijders,

2007). Extending these estimation schemes to the case of joint estimation for all

of data is not trivial other than for trivial auxiliary models for x(t0). Before we

introduce the modeling extensions we briefly describe conditional estimation for the

process given x(t0). The reason being that the definition of a model for x(t0) and

the time-varying parameters affect the extent to which estimation is tractable. Thus

modeling and estimation considerations are developed in tandem.

3.1 Conditional estimation for the LERGM

The Bayesian data-augmentation scheme for the LERGM conditional on the

initial state involves setting up a Markov chain Monte Carlo (MCMC) scheme

that alternates between drawing from the conditional posterior distribution of the

parameters and sampling paths that link the data that are observed in discrete time.

The augmentation of data is necessary as the likelihood based only on observed

data is given by elements of a transition matrix P (t) = etQ that is intractable.

For data x(t0), . . . , x(tM−1) observed at observation moments t0 < t1 < · · · < tM−1,

a sample path is a sequence of graphs v ∈ ∏M−1
m=1 X(x(tm−1), x(tm)), for X(x, y) =

{(v0, v1, . . . , vR) ∈ XR : v0 = x, vR = y, vr ∈ N(vr−1) ∪ {vr−1}}. The variate v ∈
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X(x(tm−1), x(tm)) is a sample path that is constrained to start in x(tm−1) and end

in x(tm), here the observed states we know the path must connect. Thus, while the

data likelihood is intractable, the augmented data likelihood given a sample path v

is given by the expression

L(θ, ρ; v, x(t0), . . . , x(tM−1)) ∝ ϑρ(R)
∏
r

Tθ(vr; vr−1), (3)

where R is the length of the sequence v = (v0, . . . , vR), the transition probabilities

Tθ(vr; vr−1) are given by Equation (2), and ϑρ(R) = e−ρ/[n(n−1)](tM−1−t0)/R![ρ(tM−1 −
t0)]

R relates the rate parameter to the number of steps in the path. We may sample

the posterior variates, v, θ, and ρ by recognizing that the full conditional posteriors

are proportional to Equation (3), multiplied by their priors in the case of θ and ρ.

The posterior variates are updated in three blocks: (a) updating of sample paths

v, (b) updating of the LERGM parameters of Equation (2), and (c) updating

of the rate parameters. Step (a) is a Metropolis updating step, where a move is

proposed to v∗, drawn from the proposal distribution D(v∗|v) conditional on the

current state v. Following Koskinen & Snijders (2007) and Snijders et al. (2010), the

proposed move is either constructed by lengthening v by two self-canceling moves

Δ∗
ij , setting v∗ = (v0, v1, . . . , vs,Δ

∗
ijvs,Δ

∗
ijvs+1, . . . ,Δ

∗
ijvr,Δ

∗
ijΔ

∗
ijvr = vr, . . . , vR); removing

two canceling moves; or inserting or deleting an extra step that does not toggle the

previous graph (a so called diagonal move). The update is accepted and v := v∗ with

probability min{1, H}, where the Hastings ratio

H =
ϑρ(R

∗)
∏R∗

r=1 Tθ(v
∗
r ; v

∗
r−1)

ϑρ(R)
∏R

r=1 Tθ(vr; vr−1)

D(v|v∗)
D(v∗|v) .

Updating step (b) is similarly carried out with a simple Metropolis updating step,

by proposing a move θ∗ � F(θ∗|θ), from the current state θ, and then accepting the

move using the Hastings ratio

H =

∏
r Tθ∗(vr; vr−1)∏
r Tθ(vr; vr−1)

π(θ∗)
π(θ)

F(θ|θ∗)
F(θ∗|θ) .

As the transition probabilities for the augmented path are based on Equation (2)

the acceptance probability is fully tractable. The rate parameter, given everything

else, is drawn using a Gibbs updating step from the full conditional posterior

gamma(ρ;R + α0, [n(n − 1)](tM−1 − t0) + β0). This differs from the implementation

in Koskinen & Lomi (2013) where the parameterization of ρ is similar to that of

Snijders & Koskinen (2012).

3.2 Estimating initial conditions

If we want to relax the conditioning on x0 = x(t0), assuming that we want to

leverage the fact that x0 may contribute structural information, we need to define a

model for x0. This will allow us to base inference on the joint model

p(x0, x(t1), . . . , x(tM−1)|θ, ρ, ψ) = p(x(t1), . . . , x(tM−1)|θ, ρ, x0)p(x0|ψ)

for all of data. We could chose as our model for x0 a simple, analytically tractable

model, in which case the inferential task would reduce to estimating an auxiliary

model. However, it seems arbitrary to specify one model for the initial observation
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and another completely unrelated model for the subsequent observations. We

propose instead to assume that x0 follows an ERGM defined by the same effects as

in the LERGM with the corresponding parameters denoted by ψ. The fact that x0

and the consecutive observations contribute the same type of structural information

through g(·; ·) facilitates interpretation. We may address the question of to what

extent structure is already present at t0 and to what extent the structural “biases”

are limited to the following network evolution and we may phrase this question in

terms of the network configurations of the models. In particular, as the ERGM is

the limiting distribution of the LERGM we may interpret x0 as the outcome of

a LERGM starting in x(−s) for s large (note that this is not the same as setting

x(−s) = 0 for arbitrary and fixed s > 0). Formally, with ψ = θ, the formulation

implies a process in equilibrium.

While we may update ρ as before, updating both θ and ψ in step (b) involves

drawing from the full conditional posterior of (θ, ψ) given (x0, v, ρ). This distribution

is proportional to

π(θ, ψ)pψ(x0)
∏
r

Tθ(vr; vr−1)

which in addition to the part stemming from Equation (3) is a function of the

ERGM likelihood pψ(x0) = exp(g(x0;ψ) − ζ(ψ)) involving the intractable ζ(ψ). In

the following, for the purposes of a convenient notation we consider the path v as

fully observed, treating Tθ(vr; vr−1) as the observed data likelihood and neglecting

the updating step (a). We demonstrate how estimation is a straightforward extension

for the case where the parameters are distinct. As discussed above this implies that

the initial state distribution and rest are estimated separately. If parameters ψ and

θ are constrained to be the same, estimation for the ERGM borrows power from

the LERGM but, as we shall see, this complicates estimation. A solution is to

stochastically couple the parameters through an additional layer of parameters.

3.2.1 Modified updating step for model parameters

If ψ and θ are distinct parameters, step (b) can be done in two blocks: update θ

as before, and then update ψ. Given a completely augmented sample path, we can

update ψ using the principle of the “exchange sampler” (Murray et al., 2006). This

involves drawing replicate data y and parameters ξ according to

i. draw ξ � h(ξ|ψ),

ii. generate one network y from an augmented ERGM likelihood pξ(y)

where pξ(y) = exp{g(x; ξ) − ζ(ξ)}, and then set ψ = ξ with probability min{1, H},
for

H =
pξ(x0)

∏R
r=1 Tθ(vr; vr−1)

pψ(x0)
∏R

r=1 Tθ(vr; vr−1)

h(ψ|ξ)pψ(y)

h(ξ|ψ)pξ(y)
=
pξ(x0)

pψ(x0)

h(ψ|ξ)pψ(y)

h(ξ|ψ)pξ(y)
.

The update of ψ in (b) thus reduces to an approximate exchange sampler update

(Caimo & Friel, 2011), and (b) may be understood as sampling from the following

augmented distribution:

π(ξ, y, θ, ψ|x0, vL, . . . , v1, ρ) ∝ pψ(x0)p(vt, . . . , vt−1|θ, x0, ρ)π(θ, ψ, ρ)h(ξ|ψ)pξ(y)

whose marginal distribution for θ and ψ is the posterior distribution of interest.
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3.2.2 Joint exchange algorithm for LERGM and initial state

To constrain ψ to be equal to θ, so that they are no longer distinct, introduces

additional computational complexity in (b). In order to put the inferential issue in

a form as close as possible to Murray et al. (2006), denote the following augmented

LERGM likelihood by:

pθ(x0, v) = f(x0, v|θ)/eζ(θ)
where f(x0, v|θ) = exp{g(x0; θ)}ϑρ(R)

∏R
r=1 Tθ(vr; vr−1). The update of θ would then

entail (i) drawing ξ � h(ξ|θ) and (ii) generating (y, u) � pξ(y, u). Step (ii) now involves

generating one initial state y and conditional on this generating a sample path u

(no longer constrained to
∏M−1

m=1 X(x(tm−1), x(tm))). While (u|y, ξ) may be sampled

using forward simulation, parameters will only be updated when the entire sample

path is “exchanged”. Other algorithms are conceivable but the constraint ψ = θ

means that updating θ involves dealing with the intractability of both pθ(x0) and

p(x(t1), . . . , x(tM−1)|θ, ρ, x0) at the same time. While we want the two distributions

to be related through the parameters, we can avoid the complications of the strict

requirement that ψ = θ by introducing a weaker dependency between parameters,

compromising between 3.2.1 and 3.2.2. In particular we impose a hierarchal structure,

assuming that the parameters ψ and θ follow some distribution, the parameters of

which we aim to infer.

3.3 Time heterogeneity

In a previous application of the LERGM to FDI (Koskinen & Lomi, 2013) consider-

able time-heterogeneity was demonstrated through posterior predictive distributions.

By allowing for the model to change piecewise, assuming different parameters θ(t)

for different intervals, goodness-of-fit was considerably improved. In the SAOM

framework, Lospinoso et al. (2011) have developed a suit of procedures for testing

homogeneity of subsets for parameters over time. The approach of Lospinoso et al.

(2011), in a fully Bayesian framework, would translate to a model selection problem

that would involve comparing the marginal likelihoods of many different projections

of Θ × [m]. In principle this could be addressed within a reversible-jump MCMC

scheme (Green, 1995) where the moves are constructed to set θA(t) = θA(t
′) for

subsets A ⊂ {1, . . . , p}. This does not depend on the models compared being piece-

wise constant but when models are no longer indexed by countable index sets this

introduces additional complexities. As this is computationally expensive we do not

pursue this further here.

Conditional on x0, we propose to treat θ(t) as an unobserved time-dependent layer

that a priori follows some process with density φ(·) and assuming that the generator

qij(x|θ(t), t) is conditioned on θ(t) and that x(t) follow an LERGM conditionally.

This affords a very general inference for the time evolution, for example with

θ(t) defined as a multivariate stochastic differential equation. For models φ that

incorporate elaborate time-dependencies for θ(t), drawing from the full conditional

posterior of θ(t) given the rest may be cumbersome (and we may not draw on the

conditioning out of dependencies that may be used in hidden Markov models).

A convenient alternative may be to let θ change in discrete time and a priori

assuming an autoregressive form θ(t) = Aθ(t− 1) + μ+ εt, εt � N(0,Σ), making the
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update of (θ(t)) straightforward. This would again mean that the model is piecewise

constant but parameters are linked through the model.

3.3.1 Hierarchical model

In the following we will write θ(t0) = ψ, incorporating the parameters of the ERGM

for x0 in the collection θ of parameters. This symbolically captures the intuition

that θ(t0) is the parameter vector of the LERGM that started in some state x(−s)
for some s ∈ �+. We consider here the case when θ = (θ(0), . . . , θ(M−1)), θ(m) = θ(tm),

defines a piece-wise constant process and where θ(t0) = ψ is distinct from θ(t > t0)

but stochastically coupled through φ(θ|η). In the model for θ, η represents the

parameters of interest with prior distribution π(η|γ), for hyper-parameters γ. In

particular, we define a hierarchical model similar to Snijders & Koskinen (2012):

π(η|γ)
×φ(θ(0), . . . , θ(M−1)|η)
× pθ(0) (x0)

∏M−1
m=1 pθ(m) (x(tm−1), x(tm))

Given a realization θ, updating v is identical to how updating step (a) is carried

out with homogenous parameters over time with the only difference being that

transition probabilities Tθ(t)(·|·) now are time-specific.

Given a realization v, we may update θ(t) according to 3.2.1 as all dependence

between θ(t) for different t is captured a priori by φ(θ|η). Updating of θ(0) = ψ is done

as if θ(0) were distinct from θ(t > t0) with φ(θ(0)|θ(t > t0), η) ∝ φ(θ(0), . . . , θ(M−1)|η)
assuming the role of prior.

3.3.2 ABC MCMC

As the sample paths v(m) have to be generated using Metropolis, updating steps and

mixing may be slow, a considerable amount of time in the algorithm is taken up gen-

erating proposals v∗(m) and evaluating the complete data likelihood in Equation (3).

Approximate Bayesian computation (ABC) relies on the notion that we can draw

from p(D|θ)π(θ) by rejection sampling by proposing values θj � π(θ), conditionally

on these draw replicate data from the model Dj � p(D|θj), and accepting in our

sample {θj : Dj = D}. By relaxing the strict requirement Dj = D and using the

criterion δ(Dj, D) � ε, we get an approximate Bayesian inference for some distance

measure δ and tolerance ε. If the prior is “far” from the posterior, acceptance rates

may be slow, in which case the proposals can be reweighed using some proposal

distribution q(·). Here we propose to replace the acceptance probabilities in updating

step (b) by the ABC-MCMC equivalent (Bortot et al., 2007; Marjoram et al., 2003):

i. propose θ∗(m) � q(·|θ(m))

ii. generate x∗(m) from the LERGM defined by p(·|x(m−1), θ∗(m))

iii. if δ(x∗(m), x(m)) � εm, accept θ∗(m) with probability:

min

(
1,
φ(θ(0), . . . , θ∗(m), . . . , θ(M−1)|η)
φ(θ(0), . . . , θ(m), . . . , θ(M−1)|η)

)
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Note that this scheme is now conditional on θ(0), the latter being updated using

the approximate exchange algorithm (Caimo & Friel, 2011) with φ(·|η) as a prior.

A natural choice for δ is to use the sufficient statistics for the ERGM and the

Hamming distance ||x(tm) − x(tm−1)|| (the corresponding vector of statistics for the

curved ERGM (Hunter & Handcock, 2006) would have greater dimension than θ).

The rationale for using these statistics is that, while the LERGM is no longer an

exponential family model, the ERGM is the limiting distribution of the LERGM.

Similarly, using the rationale of the predictive distribution of the statistics under an

ERGM (Snijders, 2002) the metric is set to |wTz(x∗(m))|, where z(x∗(m)) is the vector

of target statistics and w = var(z(x∗(m)))−1 is a vector of weights taking into account

the variability in statistics. In a pre-tuning phase w is approximated using a Monte

Carlo sample of z(x∗(m)) under some preliminary parameters.

More complicated models for θ(t) are straightforward to deal with within the ABC

framework as long as sampling from these models is easy. For example, the scheme

does not rely on the model being piece-wise constant and a continuous-time model

for θ(t) could be accommodated provided the density were analytically tractable up

to a normalizing constant.

4 Application to FDI

Building on recent results produced by physicists and economists studying inter-

national trade networks (ITN), we analyze the binary architecture of the global

FDI network, rather than network flows represented by the magnitude of non-zero

cells in the network (Squartini et al., 2011b; De Benedictis & Tajoli, 2011; Head &

Mayer, 2014).

An extensive empirical literature in empirical international economics suggests

that the so called gravity model of international trade is a useful starting point

to model economic relations between countries (Anderson, 2011; Brakman & van

Bergeijk, 2010). However, the gravity model of trade is a model for bilateral flows,

not network ties.

We adopt the basic version of the gravity model and adapt it to the binary

structure of our data. We rely on the gravity model of trade for its recognized

empirical success, rather than its theoretical standing, which is still debated in

international economics (Anderson, 2011). Our models focus on patterns of local

dependence among countries while accounting for gravity factors that are generally

known to affect economic relations among countries.

While the application of the gravity model of trade to FDI flows is not new (Bevan

& Estrin, 2004; Blonigen et al., 2007), the application that we develop to FDI ties

deserves additional discussion. FDI flows are determined by streams of investment

events involving companies in different countries. We focus on the relation between

countries that these event streams establish and, possibly, sustain. In this paper, we

choose not to model the underlying event sequences that happen at the level of

individual companies. This difference in the level of analysis is important because it

illustrates how time-varying streams of events at the micro level (firms) may result in

relatively stable relations at more aggregate levels (countries)—stability that justifies

a network representation.
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The revised gravity model we present specifies the probability of observing a

link connecting two countries as proportional to the product of their sizes (the

“masses,” as measured, for example, by their GDP) and inversely proportional to

their geographic distance. The illustration we develop builds directly on Koskinen &

Lomi (2013). Our analytical focus is on tie variables. We propose that our approach

adds to the existing literature on third-country effects in the gravity model (Feenstra,

2002) in which local dependencies between countries are controlled for generically,

but cannot be directly modeled (Anderson, 2011; Anderson & van Wincoop, 2003).

Inspecting the FDI ties across ten years depicted in Figure 1, on the country level,

the FDI network demonstrates a great deal of inertia with many stable ties through

time (the Jaccard index ranges from 0.096 to 0.24). Inertia is also demonstrated

by persistence of local dependencies as evidenced in the models fit in Koskinen &

Lomi (2013). Thus it is not only individual ties being entrenched and dyads being

reinforced, the same patterns of FDI tend to persist. While there is an inertia, it is

also evident from Figure 1 that there is a change. To parse out whether the change

in structure over time may be explained by changes in the tie-composition according

to one model or whether there is a change to the process itself we need to allow for

the model to change over time. A time-heterogeneous model that allows for different

parameters for different intervals affords analysis of change of dynamics but it is also

desirable to summarize these changes in a consistent manner. It should be obvious

that the density varies considerably over time, something that affects the magnitudes

of other effects. The hierarchal model is one way of achieving this. Furthermore,

although the initial observation is sparse (a density of 0.002) it is vested with some

structure. Counts of triadic structures indicate that the dyadic dependencies are not

sufficient for explaining the observed clustering (there is one each of the transitive

020 T and mixed 120 U triads, and you only get one or more of these less than 10

times out of 1,000 according to the U|MAN distribution). We also need to start

with some initial conditions. While for some types of networks it may be possible to

assume an initial clean slate (for example first-year university students), in principle

this assumption is unlikely to be equally plausible across all networks analyzed in

empirical studies

4.1 Model specification

We use the same model specification as in Koskinen & Lomi (2013), which is

a combination of effects that account for local, structural dependencies, as well

as “gravity effects”. This model specification displayed a good goodness-of-fit for

the time-heterogeneous, piece-wise constant model in which θ(1), . . . , θ(M−1) were

estimated. We assume that g(x; θ) = θTz(x) in Equation (2), where z(x) is a vector

of statistics with elements:

1. intercept/density z1(x) =
∑

i,j xij
2. reciprocations z2(x) =

∑
xijxji

3. alternating out-stars z3(x) =
∑n−2

k=2(−1)ksout
k (x)/λk−2

4. alternating in-stars z4(x) =
∑n−2

k=2(−1)ksink (x)λk−2

5. alternating triangles z5(x) = λ
∑

i,j xij[1 − (1 − 1/λ)L2ij ]

6. alternating independent 2-paths z6(x) = λ
∑

i,j[1 − (1 − 1/λ)L2ij ]
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Fig. 1. FDI ties of 97 states over 10 years. Nodes color-coded by continent and laid out

in geographical space (Europe magnified) with labels for eight states in the geographical

extremes. (Color online)
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where L2ij is the number of two-paths between i and j, and sout
k (x) and sink (x)

are the counts of the number of out-k-stars and in-k-stars, respectively. Statistics

one through six capture network endogenous dependencies and are derived out of

the Markov (Frank & Strauss, 1986) and social circuit dependence assumptions

(Snijders et al., 2006). The alternating star effects model the marginal “cost” or

“benefit” of sending (receiving) an additional FDI tie given the number of ties

the state currently sends (receives). Alternating triangles reflect tendencies towards

or against (depending on sign of coefficient) creating ties embedded in transitive

structures. Transitive triangles are consistent with local hierarchy and aggregate into

clustered regions. Independent two-paths corresponds to indirect ties, where states

tend to be tied by many (few) intermediate others.

Covariate-related effects are included as follows:

7. interaction/homophily GDP z7(x) =
∑
xij logVi logVj

8. sender GDP z8(x) =
∑
xij logVi

9. receiver GDP z9(x) =
∑
xij logVj

10. distance z10(x) =
∑
xij logDij

to capture “gravity” effects. Regardless of any underlying rationale based on

the gravity model, states are embedded in geographical space and the potential

dependencies between ties stemming from spatial effects need to be taken into

account. The functional form of the “naive” gravity model also happens to coincide

with the spatial interaction function employed in Daraganova et al. (2012). An

alternative could be to form conditional networks, say conditional on distance

deciles as in Abbate et al. (2012), allowing further interactions of structural effects

and distance. In principle the ERGM framework also allows such interaction of

distance and configurations.

We chose a simplistic model φ(θ(0), . . . , θ(M−1)|η) for the interval-level parameters.

Furthermore, we make the simplifying assumption that φ(θ|η) =
∏
φ(θ(m)|μ,Σ),

where, as in Snijders & Koskinen (2012), φ(·|μ,Σ) is multivariate normal N(μ,Σ).

This allows us a standard normal conjugate model for updating μ and Σ conditional

on θ(0), . . . , θ(M−1). In particular, we assume that a priori Σ ∼ invwishartp(Λ
−1
0 , ν0),

and conditionally on Σ, μ | Σ ∼ Np(μ0,Σ/κ0). Typically the number of observation

points M will be smaller or not much larger than p, meaning that the degrees of

freedom ν0 have to be set so as to assure that the posterior (μ,Σ) is proper. For

this example we set ν0 = p + 2, and Λ0 = I . For the rate parameters we assume

ρ(m) � gamma(α, β) a prior, with α = 1 and β large.

A benefit of the Gaussian hierarchical model is that the full conditional posteriors

are of standard form. A standard results is that the full conditional distribution of

μ given θ(0), . . . , θ(M−1) and Σ is Np(μ1,Σ1/(κ0 +M)), where

μ1 =
M

κ0 +M
θ̄ +

κ0

κ0 +M

and θ̄ = 1/M
∑

m θ
(m). The full conditional posterior of Σ is invwishartp(Λ

−1
1 , ν0+M),

where

Λ1 = Λ0 + Q +
κ0M

κ0 +M
(θ̄ − μ0)(θ̄ − μ0)

T

and Q =
∑

m(θ(m) − θ̄)(θ(m) − θ̄)T.
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Fig. 2. Posterior distributions for ρ(m) (top left), μ, and θ(0). MCMC posteriors for μ (black),

ABC with tolerance ε = 7 (red), and ε = 4 (green). Bottom right provides the density estimate

for θ(0) from hierarchical model (black) and fitted separately (blue). (Color online)

The estimation procedure was implemented in Matlab (code available upon

request) and a partial implementation is forthcoming as a routine in R that draws

on the package Bergm (Caimo & Friel, 2014).

4.2 Results

The overall substantive results of the analysis are similar to that Koskinen & Lomi

(2013). However, their analysis was limited to the choice of either a time-homogenous

model, which was shown to have a poor fit, or a time-heterogeneous model, which

demonstrated a good fit but only offered estimates for each interval separately. The

main target of inference here is the posterior distribution for μ given in Figure 2,

which is a joint inference for the entire period that takes into account the variation

across intervals as well as the model for the initial observation. The posteriors for

μ may be considered a consistent way of summarizing the dynamics over time, a

parametric pooling of the interval-level estimates. While the top-level parameters μ

are of primary interest we may also investigate the posterior predictive distributions

for θ(0), . . . , θ(M−1)

∫
π(θ(0), . . . , θ(M−1), μ,Σ|x0, x(t1), . . . , x(tM−1))dμdΣ
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Fig. 3. Posterior predictive distributions for θ(0), . . . , θ(M−1) by coordinate and year.

These are the marginal predictive distributions for the interval-level parameters

given data plotted in Figure 31.

In summary, the dependence between FDI ties stemming from endogeneity

induced by the sender of the tie is evidenced in the alternating out-degree effect. This

reflects that there are costs and benefits associated with establishing an additional

tie i → h for i, that depends on present commitments. This is also concordant with

a “rich-get-richer” (or positive feedback) effect possibly produced by a decline in

the costs (and risks) of entering a foreign market after the first entries. There is no

evidence of transitivity in the FDI ties despite the significant triad census profile

for the cross-sections reported in Koskinen & Lomi (2013). We would perhaps have

expected some evidence of local hierarchy above the global hierarchy evidenced

by the degree-based effects. A possible explanation is that the gravity components

account for this.

What we learn from comparing the posterior for μ with the posterior for θ in

the homogenous model (θ(m) = θ, for all m; Figure 6 of Koskinen & Lomi, 2013)

is that the extra layer of parameters, allowing θ(m) to vary about a mean μ, comes

with additional uncertainty. This is evidenced in wider posteriors for μ than for

the time-homogenous θ. Only some of this additional uncertainty is contributed by

the initial observation. For example, the point estimate of the mutuality parameter

in the homogenous model is 0.88 (with standard deviation 0.25) with a posterior

1 A error was detected in the data for 2000 used by Koskinen & Lomi (2013). We have left this
uncorrected for comparability. Correcting the data has the effect of increasing the marginal estimates
(with constant prior) for the interval 1999–2000 of alternating out-stars and triangles from 1.1 and
−0.21 to 2.2 and 0.27, respectively, and attenuating the GDP effects, but leaving everything else largely
unchanged.
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probability of being positive of nearly unity. The corresponding parameter in the

hierarchal model is 0.64 (with standard deviation 0.46) with only a 0.92 probability

of being positive. This is partly a result of the evidence for reciprocity provided

by x0 (reflected in θ(0) in Figure 3) pulling μ towards zero. The initial observation

has a different effect on the parameter for alternating out-stars (the posterior mean

for the hierarchal model is 0.89 compared to 0.84 for the time-homogenous model).

The time-homogenous model where θ(m) is forced to be equal to θ for each interval

m is miss-specified and gives artificial precision through pooling information across

intervals arbitrarily.

There are considerable differences in rates of change over the period. The rates for

the intervals 1994–95 and 1995–96 are around 0.7 but the rate for 1996–97 is close

to 1.0 (top left panel of Figure 2). This closely resembles the results of Koskinen &

Lomi (2013) both for their time-homogenous and time-heterogeneous models (recall

the difference in parameterization for ρ noted in the description of updating step c

above). The mixing for the rate parameters in the chain is poor. Conditional on a

current path-length r(m), ρ(m) is drawn using a Gibbs updating step, in one block.

This is fast but moves between different length chains, i.e. increasing or decreasing

r(m), is slow. The considerable variability in path length and consequently in ρ is

related to the fact that rates for the holding times are constant. Increasing the rate

ρ implies that an increased number of tie-variables will be updated. The number

of tie-variables that have to change is however extremely small in proportion to the

total number of tie-variables. However, the conditional distributions for θ(m) appear

to be more or less independent of the rate ρ(m) (results not presented here).

For the ABC-MCMC, we fixed the rate parameters at the values indicated by

red triangles in the top left panel of Figure 2. As expected the uncertainty in the

ABC posterior is reduced by decreasing the tolerance ε. Decreasing the tolerance

accentuates the difference between the ABC posterior and the “true” posterior

distribution. This is particularly obvious for alternating in-stars, where we see a shift

in the distribution to the left. As noted in Section 3.3.2, the ABC posterior would

converge to the true posterior as the tolerance tends to zero had the LERGM been

an exponential family distribution with sufficient statistics z(·). The discrepancies

between the MCMC posteriors and the ABC MCMC posteriors illustrate the fact

that the dependency through time from the conditioning in the LERGM renders

it different from its limiting ERGM. Notable deviations are the posteriors for the

structural effects in-stars and two-paths. This may also affect the interaction and

sender GDP effects.

The posterior predictive distributions for θ(m) in Figure 3, obtained in the process of

performing inference for μ, suggest that the parameters are serially autocorrelation.

This is not surprising as the simplistic model we have used does not account for

time-dependence in the parameters. The predictive distributions for θ(0) are generally

more spread out than for m > 0 reflecting the fact that x0 is very sparse and the

distribution of ψ not using the hierarchical structure is uncertain. The bottom right

hand panel of Figure 2, demonstrates the effect on the distribution of for example

the alternating out-star parameter by imposing the model φ(·|μ,Σ). The inference

for x0 thus borrows power from the subsequent process and its posterior is pulled

towards the mean μ although the bottom right panel of Figure 2 illustrates that we

can also fit a model for x0 both separately and jointly.
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The posterior predictive distributions in Figure 3 demonstrate the added value

of the model for the initial state. With one exception, there is a remarkably good

correspondence between θ(0) and the subsequent θ(m)’s for m > 0. For density and the

covariate dependent parameters the distribution for θ(0) is roughly in the range of the

other parameters (allowing for the added uncertainty due to the sparseness of the first

network). For alternating in- and out-stars there is a smooth transition from t0 and

onwards following a clear downward trend. If we were to interpret this as evidence

of decreasing in- and out-degree centralization over time, the additional modeling

of the initial state accentuates these trends. Looking at the networks in Figure 1, we

see that in 1994 there are two big players, the USA and France, that account for

most ties, but that the FDI networks become gradually less heterogeneous as the

electricity market matures.

Similarly, for alternating triangles the distribution for x0 makes the pattern of

change to transitivity over time more visible. The tendency towards transitivity

appears to increase over time until 1999 after which the effect decreases, becoming

negative for the last interval. The agreement in θ(0) with θ(m) for m > 0 in terms

of magnitude, as well as trends, demonstrates that it is meaningful to assume an

ERGM for the initial state even if the ERGM for the initial x0 has to account for the

potentially accumulated time-heterogeneity of several years, whereas the parameters

θ(m) (m > 0) only need to describe the dynamics of a one-year interval. The notable

exception to this is the alternating independent two-path parameter. The “pooled”

estimate (μ) is very close to zero and all predictive distributions are centered on

the origin with the exception of θ(0) for which there is strong evidence that it is

positive. This may be interpreted as the initial network being more connected than

we would expect, everything else equal. Two components, one centered on the USA

and the other on France, contribute many such two-paths. The latter one, consisting

of France, Belgium, Italy, the Netherlands, Sweden and Finland, is tied together by

eight ties with only the tie between France and Germany being reciprocated.

Figure 4 illustrates the benefit of the added layer μ and Σ compared to the

modeling formulation in Koskinen & Lomi (2013). The mixing for the interval-level

parameter associated to alternating in-stars is bad in the sense that there is a lot of

serial autocorrelation (possibly due to the proposals of the paths v). However, the

mixing of the chain in the upper level for global parameter μ is excellent. Considering

that the posteriors for the average across intervals (μ) is very close to the posteriors

(θ(m) = θ, for all m) in the time-homogenous model, with the same substantive

interpretation of effects, but with a much greater efficiency, the hierarchical model

is preferable even if it does not take into proper account associations between

parameters over time.

5 Conclusions

We have demonstrated an elaboration of the longitudinal ERGM that allows for

estimating effects for the initial condition as well as a parametric form for the

change over time by exploiting a simple and flexible hierarchical representation of

network dynamics. Bayesian techniques transfer seamlessly across different domains

and models, providing a compact, unified approach to analysis. The analysis of FDI

relations between countries observed over a decade produced evidence of network
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Fig. 4. Comparison of posterior draws for global mean parameter μ and posterior predictive

θ(m) (m = 1) for interval 1996–97 (alternating in-stars).

centralization (both in in- as well as out-degree), of strong spatial effects, and

of a strong country size effect on sending FDI ties. These conclusions take into

account the variation across years and the interdependence with other effects such

as, for example, varying densities. The model captures well the co-evolution of firms

target selection strategies behind observed FDI decisions, and the global network of

relations between countries in the specific industry we have examined.

In the new modeling framework we have proposed, inference relies on recent

advanced Bayesian computational methods. More specifically. We adopted an

approximate exchange sampler based on the algorithm of Caimo & Friel (2011)

to carry out estimation for initial conditions. The ABC-MCMC likelihood-free

approach affords an easier and less computationally intensive estimation of the

hierarchical model. The likelihood-free nature of ABC-MCMC also offers additional

flexibility in modeling complex time-heterogeneity. The ABC-MCMC approach relies

on intuitions very similar to non-Bayesian stochastic approximation techniques

frequently used for non-longitudinal ERGMs. Here it offers considerable gains is

estimation speed, but appears to induce some systematic errors that may be due

to the LERGM not being an exponential family distribution. The ABC-MCMC is

however one of the more simplistic likelihood-free approaches and elaborations that

have proved successful for similar problems may improve on the accuracy of the

results. These elaborations also provide natural alternatives for the exchange sampler

such as particle MCMC (Andrieu et al., 2010), something that would open up for

modeling initial states for longitudinal models where no natural first observation

model suggests itself (for example the SAOM).

The parametric framework for handling changing dynamics over time is very

general and has the benefit of improving inference considerably. As is well-known

in machine learning, adding layers deals effectively with complicated dependencies
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and heterogeneous information. A computational fringe benefit in the context of

our analytical framework is that the inference for μ “smooths” the inference for the

lower-level parameters θ(m).

The main benefit of the extension of the model is that it provides us with a

procedure for a joint analysis of data for a process that is obviously heterogeneous

through time. The hierarchal framework allows further parameterizing the change in

the process, something that the time-homogenous and time-heterogeneous models of

Koskinen & Lomi (2013) were unable to provide. In particular, the marginal analysis

of the interval-level parameters suggested that the model may be further improved

by modeling the decreasing centralization and cyclic transitivity parametrically. A

straightforward elaboration of the hierarchal model used here would be to explicitly

to let the dynamics depend on time as θ = μ + βW + ε, for ε � NM(0,Σ), and

where W = (W0, . . . ,WM−1) for “network-level” predictors Wm. For a particular

time-period m, Wm may incorporate (tm − t̄) and (tm − t̄)2 to capture the dependence

on time. As these covariates are defined on the network-level they may in addition

include world-level covariates. Adding more waves and refining the functional form

of the time-heterogeneity will enable us to elaborate the functional form of these

changes. An alternative to a smooth parametric change to the parameters could be

inferring change-points in the process.

For the particular example of FDI, the first observation at 1994 was very sparse

and did not affect the overall inference dramatically. However, the marginal analysis

for the initial observation (the posterior predictive distribution) suggests that an

ERGM for the initial state contributes information that is consistent—and may be

interpreted alongside with the inference for the subsequent LERGM. In particular,

the additional estimates highlight the pattern of the change to the dynamic process

over time. Many empirical data sets may have non-trivial first observations that

might affect significantly the longitudinal analysis. For example, a longitudinal model

that fails to account for an initial state characterized by high levels of homophily,

may erroneously suggest the conclusion that homophily is not a significant data-

generating mechanism for the specific sample that is being analyzed. As an example,

Igarashi (2013) discusses whether the lack of gender effects in a LERGM analysis of

two waves of face-to-face interaction may be due to gender-biases primarily affecting

the early stages of interaction. Simultaneously fitting an ERGM and a LERGM

may directly answer that question.

References

Abbate, A., De Benedictis, L., Fagiolo, G., & Tajoli, L. (2012). The international trade

network in space and time. LEM Working Paper Series, Institute of Economics Scuola

Superiore Sant’Anna. Available at SSRN: http://ssrn.com/abstract=2160377

Anderson J. E. (1979). A theoretical foundation for the gravity equation. American Economic

Review, 69, 106–116.

Anderson, J. E. (2011). The gravity model. Annual Review of Economics, 3, 133–160.

Anderson, J. E., & van Wincoop, E. (2003). Gravity with gravitas: A solution to the border

puzzle. The American Economic Review, 93, 170–192.

Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72.3, 269–342.

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2015.3
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 16:59:44, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2015.3
https:/www.cambridge.org/core


76 J. Koskinen et al.

Bergstrand J. H. (1985). The gravity equation in international trade: Come microeconomic

foundations and empirical evidence. The Review of Economics and Statistics, 67, 474–481.

Bevan, A. A., & Estrin, S. (2004). The determinants of foreign direct investment into European

transition economies. Journal of Comparative Economics, 32, 775–787.

Blonigen, B. A., Davies, R. B., Waddell, G. R., & Naughton, H. T. (2007). FDI in space: Spatial

autoregressive relationships in foreign direct investment. European Economic Review, 51,

1303–1325.

Bortot, P., Coles, S. G., & Sisson, S. A. (2007). Inference for stereological extremes. Journal of

the American Statistical Association, 102, 84–92.

Brakman, S., & van Bergeijk, P. (2010). The gravity model in international trade: Advances and

applications. Cambridge: Cambridge University Press.

Caimo, A., & Friel, N. (2011). Bayesian inference for exponential random graph models.

Social Networks, 33, 41–55.

Caimo, A., & Friel, N. (2014). Bergm: Bayesian exponential random graphs in R. Journal of

Statistical Software 61(2).

Chakrabarti A. (2003). A theory of the spatial distribution of foreign direct investment.

International Review of Economics & Finance, 12, 149–169.

De Benedictis, L., & Tajoli, L. (2011). The world trade network. The World Economy, 34,

1417–1454.

Daraganova, G., Pattison, P., Koskinen, J., Mitchell, B., Bill, A., Watts, M., & Baum, S. (2012).

Networks and geography: Modelling community network structures as the outcome of

both spatial and network processes. Social Networks, 34, 6–17.
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