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ABSTRACT
We study the covariance matrix of the cluster mass function in cosmology. We adopt a two-line
attack: first, we employ the counts-in-cells framework to derive an analytic expression for the
covariance of the mass function. Secondly, we use a large ensemble of N-body simulations in
the � cold dark matter framework to test this. Our theoretical results show that the covariance
can be written as the sum of two terms: a Poisson term, which dominates in the limit of
rare clusters; and a sample variance term, which dominates for more abundant clusters. Our
expressions are analogous to those of Hu & Kravtsov for multiple cells and a single mass
tracer. Calculating the covariance depends on: the mass function and bias of clusters, and
the variance of mass fluctuations within the survey volume. The predictions show that there
is a strong bin-to-bin covariance between measurements. In terms of the cross-correlation
coefficient, we find r � 0.5 for haloes with M � 3 × 1014 h−1 M� at z = 0. Comparison
of these predictions with estimates from simulations shows excellent agreement. We use the
Fisher matrix formalism to explore the cosmological information content of the counts. We
compare the Poisson likelihood model, with the more realistic likelihood model of Lima
& Hu, and all terms entering the Fisher matrices are evaluated using the simulations. We
find that the Poisson approximation should only be used for the rarest objects, M � 5 ×
1014 h−1 M�, otherwise the information content of a survey of size V ∼ 13.5 h−3 Gpc3 would
be overestimated, resulting in errors that are nearly two times smaller. As an auxiliary result,
we show that the bias of clusters, obtained from the cluster–mass cross-variance, is linear on
scales >50 h−1 Mpc, whereas that obtained from the auto-variance is non-linear.
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1 IN T RO D U C T I O N

The last decade of research in cosmology has largely been focused
on devising probes to reveal the physical nature of dark energy and
the origin of the accelerated expansion of the Universe. Among the
most promising probes, as identified for example in Albrecht et al.
(2006), are cluster counts.

From a theoretical perspective, the abundance of clusters per unit
solid angle d� is an integral of the mass function over mass M and
volume element dV:

dN

d�
=

∫
dz

dV

d� dz

∫
Mth(z)

dMn(M) , (1)

where Mth(z) is a redshift-dependent mass detection threshold for
the clusters and where the mass function is defined as the number of
haloes per unit volume and unit mass, i.e. n(M) = dN/dV/dM, with
M the virial mass. For a wide range of cosmological models, n(M)
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can be accurately predicted from the semi-analytical prescriptions
based on the spherical or ellipsoidal collapse model (e.g. Press &
Schechter 1974; Sheth & Tormen 1999, and see Section 3.4 for
more details).

The mass function is primarily sensitive to the statistics of the
initial conditions and to the amplitude σ 8 and shape of the matter
power spectrum. The latter depends on the matter density of the
Universe �m, the Hubble parameter h, the spectral index of the
primordial power spectrum n, and the dark energy equation of
state w ≡ Pw/ρw , where Pw and ρw are the pressure and energy
density of the dark energy. The volume element integral in the
above equation renders the cluster counts even more sensitive to
�m and w. Measuring the cluster abundance at different redshifts
can constrain a dynamical w and thus enable one to differentiate
between a cosmological constant � and alternative dark energy
scenarios such as quintessence (Wang & Steinhardt 1998), or dark
energy inhomogeneities coupling to dark matter (Manera & Mota
2006).

For many decades, the study of clusters of galaxies has been a
centrepiece for observational cosmology, which has produced many
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important results and cosmological inferences. Currently, there are
four observational strategies for detecting clusters: X-ray emission
(see Borgani et al. 2001; Reiprich & Böhringer 2002; Allen et al.
2003; Schuecker et al. 2003; Henry 2004; Mantz et al. 2008, 2010;
Vikhlinin et al. 2009, and references therein); optical emission (see
Gladders et al. 2007; Rozo et al. 2010, and references therein); the
Sunyaev–Zel’Dovich (SZ) effect (Sunyaev & Zeldovich 1972) , i.e.
the up-scattering of CMB photons off hot electrons in the intra-
cluster medium (see Vanderlinde & The SPT Collaboration 2010;
Planck Collaboration et al. 2011; Muchovej et al. 2011; Sehgal &
The ACT Collaboration 2011, and references therein) and weak
gravitational lensing (see Schirmer et al. 2007; Abate et al. 2009;
Israel et al. 2010, and references therein).

One of the most challenging aspects of deriving cosmological
constraints from cluster counts is the fact that virial masses are not
directly observable: a conversion is needed to translate observables
such as flux, luminosity, temperature and SZ decrement into mass.
The mass–observable relation is degenerate with cosmological pa-
rameters, as shown in Lima & Hu (2005), and can severely degrade
the inferred constraints. Substantial progress has been made in cal-
ibrating the mass–observable relation in the recent years, through
numerical simulations, or by comparing different methods against
each other (Zhang et al. 2007, 2008; Okabe et al. 2010). Lima & Hu
(2005) also proposed a self-calibration technique that uses the clus-
tering of clusters to break the degeneracy between the uncertainties
in the mass–observable relation and cosmological parameters.

Owing to observational challenges, the cluster studies mentioned
earlier employ small numbers of massive clusters (at most a few
hundreds, but in general a few tens) to constrain cosmology. In
obtaining these constraints it is widely assumed that the likelihood
function for the selected clusters follows the Poisson distribution.
Whilst this assumption may be reasonable for the most massive
clusters, M ∼ 1015 h−1 M�, it will certainly fail at lower masses.
Future surveys, such as eROSITA (Predehl et al 2010), LSST (2009),
Euclid (Refregier et al. 2010), Pan-STARRS,1DES (2005), will be
able to detect large samples of intermediate-mass clusters, M ∼
1014 h−1 M�. In order to make accurate inferences from these data,
the cluster likelihood function will require a more complex statis-
tical treatment, and in particular knowledge about the covariance
matrix of the mass function.

This paper is driven by the following two questions: what is the
covariance matrix for measurements of the mass function? How
much are forecasted errors, which rely on the Poisson approxi-
mation, affected by more realistic modelling of the cluster likeli-
hood function? The main theoretical tools that we shall employ to
answer these questions will be the counts-in-cell formalism intro-
duced by Peebles (1980) and further developed by Hu & Kravtsov
(2003, hereafter HK03) and Lima & Hu (2004, hereafter LH04).
We shall also compare the theoretical results obtained via this for-
malism to measurements obtained from a large ensemble of N-body
simulations.

As this paper was nearing submission, a study by Valageas et al.
(2011) was reported; this work explores related, but complementary,
questions to those presented here.

This paper is structured in the following way. In Section 2, we
review the counts-in-cells formalism and also the extension to the
cluster likelihood developed by LH04; in Section 3 we derive the
mass function covariance in a formal way; in Section 4 we describe
the numerical simulations from which we measure the mass func-

1 http://pan-starrs.ifa.hawaii.edu

tion covariance; in Section 5 we present a comparison between the
measured and the predicted covariance; and in Section 6 we use the
Fisher matrix formalism to estimate the impact that the full covari-
ance matrix of the mass function has on cosmological constraints.
Finally, in Section 7 we discuss and summarize our findings.

2 TH E O R E T I C A L BAC K G RO U N D

2.1 The cellular model

In this section, we give a short description of the counts-in-cell
formalism, used by HK03 to compute the linear theory sample
variance of cluster counts, and by LH04 to estimate the impact of
the latter on Fisher matrix predictions.

Consider some large cubical patch of the Universe of volume Vμ

and containing N clusters that possess some distribution of masses.
Let us subdivide this volume into a set of Nc equal cubical cells and
the mass distribution into a set of Nm mass bins. Let the number of
clusters in the ith cell and in the αth mass bin be denoted as Ni,α .
We shall assume that the probability that the ith cell contains Ni,α

clusters in the mass bin α is a Poisson process:

P (Ni,α|mi,α) = m
Ni,α

i,α exp(−mi,α)

Ni,α!
. (2)

For any quantity X, we denote the average over the sampling distri-
bution – the Poisson process in this case – as 〈X〉P, and the ensemble
average over many realizations of the density field as X ≡ 〈X〉s ,
termed sample variance in HK03. The average of Ni,α over the sam-
pling distribution can be written as (see also Cole & Kaiser 1989;
Mo & White 1996):

mi,α ≡ mi,α

[
1 + bαδV (xi)

]
, (3)

where mi,α = nαVi is the ensemble- and Poisson-averaged number
of counts in cell i and mass bin α. The volume of the cell and the
cell-averaged overdensity are given by:

Vi =
∫

d3x W (x|xi); (4)

δV (xi) = 1

Vi

∫
d3x W (x|xi)δ(x), (5)

whereW (x|xi) is the window function for the ith cell (see Sec-
tion 3.2 for more details). The number density and linear bias of the
clusters averaged over the mass bin α are given by:

nα =
∫ Mα+	Mα/2

Mα−	Mα/2
dMn(M) ; (6)

bα = 1

nα

∫ Mα+	Mα/2

Mα−	Mα/2
dMb(M)n(M), (7)

where b(M) is the linear bias of haloes of mass M.
As was shown in HK03, the correlations in the underlying density

field induce a correlation in the number counts of the cells, defined
as:

S
αβ
ij ≡ 〈(

Ni,α − mi,α

) (
Nj,β − mj,β

)〉
P ,s

= 〈(
mi,α − mi,α

) (
mj,β − mj,β

)〉
s

= mi,αmj,βbαbβ

∫
d3k

(2π)3
W ∗

i (k)Wj (k)P (k), (8)
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where for independent Poisson processes the probability P(Ni,α ,
Nj,β |mi,α , mj,β ) = P(Ni,α|mi,α)P(Nj,β |mj,β ). In the last line we in-
troduced the power spectrum P(k) as the Fourier transform of the
correlation function ξ ,

ξ (r) ≡ 〈δ(xi)δ(xj )〉s =
∫

d3k
(2π)3

P (k) exp (−ik · r) . (9)

Wi(k) is the Fourier transform of the cell window function and
r = xi − xj (see Section 3.2).

2.2 The Gauss–Poisson likelihood function for counts in cells

The likelihood of drawing a particular set of cluster counts N ∈
{N1,1, . . . , NNc,1, N1,2, . . . , NNc,Nm } in the cells, given a model for
the counts in the cells m ∈ {m1,1, . . . , mNc,1, mNc,2 . . . , mNc,Nm },
was written by LH04:

L(N|m,S) =
∫

dNm

[
Nm∏
α=1

Nc∏
i=1

P (Ni,α|mi,α)

]
G(m|m,S), (10)

with N = Nc × Nm, and where it was assumed that the statistics
of the cell-averaged density field are described by a multivariate
Gaussian:

G(m|m,S) ≡ (2π)−N/2

|S|1/2
exp

[
−1

2
(m − m)TS−1(m − m)

]
, (11)

with S defined in equation (8). Measurements of the bispectrum of
the CMB have shown that the statistics of the initial fluctuations are
very nearly Gaussian (Komatsu et al. 2010). Whilst we know that
the non-linear growth of structure in the present epoch drives the
statistics of the density field to become non-Gaussian, in the limit
that the cells are large compared to the coherence length of the field,
we expect that the Gaussian approximation will be very good.

At this point we may also be more precise about what we mean
by ensemble and Poisson averages:

〈X(N)〉P ,s ≡
∞∑

N1,1=0

. . .

∞∑
NNc,Nm =0

L(N|m,S)X(N). (12)

Equation (10) can be simplified in two limits.

(i) Case I: in the limit that the ensemble average variance is
much smaller than the Poisson variance: i.e. Sii � mi . In this case,
the Gaussian effectively becomes a delta function centred on m and
the likelihood simply becomes a product of Poisson probabilities:

L(N|m) ≈
Nm∏
α=1

Nc∏
i=1

P (Ni,α|mi,α). (13)

(ii) Case II: in the limit that the number of counts in each cell
and mass bin is large, then the Poisson process becomes a Gaussian:

Nm∏
α=1

Nc∏
i=1

P (Ni,α|mi,α) ≈ G(N|m,M), (14)

where M → M
ij
αβ = δK

i,j δ
K
α,βmi,α . Hence, as shown in LH04, the

likelihood function becomes:

L(N|m,S) ≈
∫

dNmG(N|m,M)G(m|m,S) (15)

and via the convolution theorem this can be approximated as a
Gaussian with shifted mean and augmented covariance matrix:

L(N|m,S) ≈ G(N|m,C); C = M + S, (16)

where M → M
ij

αβ = δK
i,j δ

K
α,βmi,α . Note that in the above equation,

the approximate sign is used since negative number counts are

formally forbidden (for a more detailed discussion of this see Hu &
Cohn 2006).

3 C OVA R I A N C E O F T H E MA S S FU N C T I O N

The final result of Section 2 is that in the limit of a large number
of counts per cell, the joint likelihood for all the cells is a Gaussian
with model mean m and with a covariance matrix, C = M + S.
In the following section, we shall use these results to answer the
question: what is the covariance matrix for measurements of the
mass function?

3.1 A formal approach

The mass function n(M) is the number density of clusters in a
volume V , per unit mass. Using our counts in cells distribution, an
estimator for the mass function in the ith cell is:

n̂i(Mα) = Ni,α

Vi	Mα

, (17)

which, if we average over all cells and all cells have equal volume,
becomes:

n̂(Mα) = 1

Vμ	Mα

∑
i

Ni,α. (18)

The above estimate is unbiased, and its expectation value n(Mα) ≡
〈n̂(Mα)〉P ,s can be formally calculated using equation (12):

n(Mα) =
∞∑

N1,1=0

. . .

∞∑
NNc,Nm =0

L(N|m,S)
∑

i

Ni,α

Vμ	Mα

=
∫

dNmG(m|m,S)
∞∑

N1,1=0

P (N1,1|m1,1) . . .

×
∞∑

NNc,Nm =0

P
(
NNc,Nm |mNc,Nm

) Nc∑
i=1

Ni,α

Vμ	Mα

= 1

Vμ	Mα

∫
dNmG(m|m,S)

∑
i

mi,α

=
Nc∑
i=1

mi,α

Vμ	Mα

. (19)

In a similar fashion, the covariance matrix of the cluster mass func-
tion can also be calculated:

Mαβ ≡ 〈[n(Mα) − n(Mα)] [n(Mβ ) − n(Mβ )]〉s,P

=
∑
i,j

〈Ni,αNj,β〉s,P

V 2
μ	Mα	Mβ

− n(Mα)n(Mβ ), (20)

where the expectation of the product of the counts can be written
as:∑
i,j

〈Ni,αNj,β〉s,P =
∞∑

N1,1=0

. . .

∞∑
NNc,Nm =0

L(N|m,S)
∑
i,j

Ni,αNj,β

=
∫

dNmG(m|m,S)

[ ∑
i,j ,i �=j∪α �=β

mi,αmj,β +
∑

i

〈
N 2

i,α

〉
P

]
.

(21)

Recall that mi,α = n(Mα)	MαVi and that for the Poisson distribu-
tion we have: 〈X2〉 = 〈X〉[1 + 〈X〉]. On inserting these relations into
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the above equation, and on completing the sums, we find:∑
i,j

〈Ni,αNj,β〉s,P =
∫

dNmG(m|m,S)

×
∑
i,j

[
mi,αmj,β + mi,αδ

K
i,j δ

K
α,β

]
=

∑
ij

[
S

αβ
ij + mi,αmj,β + mi,αδ

K
i,j δ

K
α,β

]
, (22)

where in the last line we used equation (8). On inserting this result
back into equation (20), we obtain:

Mαβ =
∑

ij

[
mi,αδ

K
i,j δ

K
α,β + S

αβ
ij

]
Vμ

2	Mα	Mβ

= δK
α,βn(Mα)

Vμ	Mα

+ n(Mα)n(Mβ )bαbβ

Vμ
2

×
∑

ij

ViVj

∫
d3k

(2π)3
W ∗

i (k)Wj (k)P (k). (23)

Considering the first term in the above, we may simplify this expres-
sion by performing the sums over i and j, and the window functions
i.e.∑

i

ViWi(k) =
∑

i

Vi

∫
d3x exp [ik · x] W (x|xi)

=
∫

d3x exp [ik · x]
∑

i

ViW (x|xi) = VμW̃ (k).
(24)

Hence, the covariance matrix can be written as:

Mαβ = n(Mα)n(Mβ )bαbβσ 2(Vμ) + δK
α,βn(Mα)

Vμ	Mα

, (25)

where σ 2(Vμ) is the mass density variance in the entire volume:

σ 2(Vμ) ≡
∫

d3k
(2π)3

|W̃ (k)|2P (k). (26)

From equation (25) it can be seen that the crucial quantity which
controls the covariance between estimates of the mass function in
different mass bins is σ (Vμ). The strength of the covariance is also
modulated by the linear bias and the mass function in each of the
bins considered.

3.2 A short-cut to the covariance

Whilst in the above we have presented a formal derivation of the
mass function covariance from the HK03 and LH04 formalism,
there is a more intuitive approach to arriving at the same result as
given by equation (25), which we mention below.

Let us consider the limiting case where we have a single cell that
fills the whole of our sample space Vi → Vμ; also mi,α → mα and
similar for all the other quantities defined in the cells. The above
formalism still applies, and we have that the covariance matrix of
mass function can be written as:

Mαβ = S
α,β
ii

V 2
μ	Mα	Mβ

+ δK
α,β

mi,α

V 2
μ	Mα	Mβ

= n(Mα)n(Mβ )bαbβσ 2(Vμ) + δK
α,β

n(Mα)

Vμ	Mα

,
(27)

where σ (Vμ) is the variance in the total volume.

3.3 The cross-correlation coefficient

As a direct corollary to the previous results, we may write an ex-
pression for the correlation matrix, which is defined as:

rαβ ≡ Mαβ√MααMββ

. (28)

On factoring out [n(Mα)/Vμ	Mα]1/2 from
√Mαα in the denomi-

nator, and a similar term from
√Mββ , and on using the fact that

mα = n(Mα)	MαVμ, we find:

rαβ =
√

mαmβ bαbβσ 2(Vμ) + δK
αβ[

1 + mαb
2
ασ

2(Vμ)
]1/2 [

1 + mβb
2
βσ 2(Vμ)

]1/2 . (29)

Two limits are apparent: when
√

mαmβ bαbβσ 2(Vμ) � 1, then
rαβ → δK

α,β and the mass function covariance matrix is decor-
related; this would happen for the case of rare haloes, for
which the mass function is very small. On the other hand, when√

mαmβ bαbβσ 2(Vμ) � 1, then rαβ → 1 and the covariance matrix
is fully correlated. This would be the case for smaller haloes, for
which the mass function is quite large.

Finally, we note that taking Vμ → ∞ and hence σ (Vμ) → 0 does
not guarantee that the correlation between different mass bins is neg-
ligible. As the above clearly shows, it is the quantity Vμσ 2(Vμ) that
is required to vanish for negligible correlation to occur. For a power-
law power spectrum, we would have that Vμσ 2(Vμ) ∝ R3R−(3+n) ∝
R−n, which only vanishes for n > 0. For cold dark matter we have
a rolling spectral index, and n > 0 for k � 0.01 h Mpc−1, which
implies that Lbox � 500 h−1 Mpc for the covariance to diminish.

At this juncture, we point out that equations (25) and (29) con-
stitute the main analytic results of this work, and all which follows
will be concerned with their validation and implications.

3.4 Ingredients for evaluating the covariance

To evaluate the covariance matrix we need to provide models
for n(M), b(M) and the Fourier transform of the survey window
function.

To compute n(M) and b(M) we employ the mass function and
bias models presented in Sheth & Tormen (1999):

dn

d log M
= ρ̄

M
fST(ν)

d log ν

d log M
; (30)

fST(ν) = A

√
2q

π
ν

[
1 + (qν2)−p

]
exp

[
−qν2

2

]
; (31)

bST(ν) = 1 + qν2 − 1

δsc
+ 2p/δsc

1 + (qν2)p
, (32)

where A = 0.3222, q = 0.707, p = 0.3. In the above we have intro-
duced the peak-height ν(M) ≡ δsc/σ (M), where δsc = 1.686/D(z) is
the spherical overdensity for collapse, and where σ 2(M) is the vari-
ance of the linear density field extrapolated to z = 0, smoothed with
a spherical top-hat filter of radius R (see below for more details).
This radius is defined so as to enclose a mass M = 4πρR3/3, with
ρ the mean matter density of the Universe at the present epoch.

For the survey window function we shall consider two simple
examples. The first is a cubical top-hat, defined by:

W (x|xj ) =
{

1/Vj , xl
j − Lbox/2 ≤ xl < xl

j + Lbox/2

0, otherwise
, (33)
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where l ∈ {1, 2, 3} denotes the Cartesian components of the vectors,
j is the cell index, and Lbox is the size of the cell of volume Vj =
L3

box. The Fourier transform of this top-hat window function is:

Wj (k) = exp(ik · xj )
3∏

l=1

j0

(
klLbox

2

)
, (34)

where j0(y) ≡ sin y/y is the zeroth order spherical Bessel function.
The volume variance for this window function is:

σ 2(Vμ) =
3∏

l=1

{∫ ∞

−∞

dkl

2π

}
P (k1, k2, k3) |W̃ (k)|2,

= 8
3∏

l=1

{∫ kmax

kmin

dkl

2π

}
P (k1, k2, k3) |W̃ (k)|2, (35)

where in the second equality we have used the isotropy of the power
spectrum, e.g. P(k1, k2, k3) = P( − k1, k2, k3). In equation (35) we
use the following relation:

|W̃ (k)|2 =
3∏

l=1

j 2
0

(
klLbox

2

)
. (36)

The second window function is a spherical top-hat:

Wj (r) =
{

3/(4πR3), |xj | < r < |xj | + R

0, otherwise ,

where R is the radius of the spherical top-hat. The variance of the
density field in this case has the familiar form:

σ 2(Vμ) = 1

2π2

∫ kmax

kmin

dk k2P (k)W̃ 2(kR) (37)

for which the Fourier transform is given by:

W̃ (x) = 3

x3
[sin x − x cos x] ; x ≡ kR. (38)

On a technical note, we point out that for the k-space integrals
given by equations (35) and (37), we have introduced lower and
upper limits kmin > 0 and kmax, respectively. For a real survey, the
upper limit is decided by the resolution of the instrument used.
If the measurements are made from numerical simulations, which
is the case with this work, the softening length of the simulations

will dictate the largest frequency Fourier mode available: kmax =
2π/lsoft and for our simulations kmax ∼ 100 h Mpc−1. However, in
practice the largest useful Fourier mode is much smaller, and occurs
where the shot-noise correction to the power spectrum becomes
comparable with the signal (Smith et al. 2003).

The lower limit kmin is a more complex issue. In the case of sim-
ulations, no modes with wavelength larger than the simulation box
Lsim can contribute to the variance, which suggests the straightfor-
ward solution of adopting kmin = 2π/Lsim. Since we are attempting
to confront the theory with the reality defined by simulations, we
shall always assume this cut-off scale. However, for real surveys,
the variance on a given scale will be affected by the existence of
modes on scales larger than the size of the survey. We therefore
recommend in this case kmin → 0, or at least the inverse horizon
size at the redshift of the survey. For more discussion of the impor-
tance of kmin for the predictions of the variance, see discussion in
Appendix A.

Note that in the above we shall relate the radius R of the spherical
top-hat to that of the cubical top-hat function, through the relation
R = (3/4π)1/3Lbox. In other words the volumes of the spherical and
cubical sample volumes are taken to be identical.

4 N- B O DY SI M U L AT I O N S

We study the covariance matrix with a suite of 40 large numerical
simulations, executed on the zBOX-2 and zBOX-3 supercomputers
at the Institute for Theoretical Physics, University of Zürich. For all
realizations snapshots were output at: z = {5, 4, 3, 2, 1, 0.5, 0}. We
shall refer to these simulations as the zHORIZON Simulations.

Each of the zHORIZON simulations was performed using the pub-
licly available GADGET-2 code (Springel 2005), and followed the
non-linear evolution under gravity of N = 7503 equal-mass par-
ticles in a comoving cube of length Lsim = 1500 h−1 Mpc. The
cosmological model is similar to that determined by the Wilkinson
Microwave Anisotropy Probe experiment (Komatsu et al. 2009).
We refer to this cosmology as the fiducial model. The transfer func-
tion for the simulations was generated using the publicly available
CMBFAST code (Seljak & Zaldarriaga 1996; Seljak et al. 2003), with
high sampling of the spatial frequencies on large scales. Initial con-
ditions were set at redshift z = 50 using the serial version of the
publicly available 2LPT code (Scoccimarro 1998; Crocce, Pueblas &

Table 1. zHORIZON cosmological parameters. Columns are: density parameters for matter, dark energy and baryons;
the equation of state parameter for the dark energy w; normalization and primordial spectral index of the power
spectrum; dimensionless Hubble parameter.

Cosmological parameters �m �DE �b w σ 8 n H0 (km s−1 Mpc−1)

zHORIZON-I 0.25 0.75 0.04 −1 0.8 1.0 70.0
zHORIZON-V1a/V1b 0.25 0.75 0.04 −1 0.8 0.95/1.05 70.0
zHORIZON-V2a/V2b 0.25 0.75 0.04 −1 0.7/0.9 1.0 70.0
zHORIZON-V3a/V3b 0.2/0.3 0.7 0.04 −1 0.8 1.0 70.0
zHORIZON-V4a/V4b 0.25 0.8 0.04 −1.2/−0.8 0.8 1.0 70.0

Table 2. zHORIZON numerical parameters. Columns are: number of particles, box size, particle mass, force softening,
number of realizations and total simulated volume.

Simulation parameters Npart Lsim (Mpc h−1) mp( h−1 M�) lsoft (kpc h−1) Nensemb V tot ( h−3 Gpc3)

zHORIZON-I 7503 1500 5.55 × 1011 60 40 135
zHORIZON-V1, -V2, -V4 7503 1500 5.55 × 1011 60 4 13.5

zHORIZON-V3a 7503 1500 4.44 × 1011 60 4 13.5
zHORIZON-V3b 7503 1500 6.66 × 1011 60 4 13.5
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Scoccimarro 2006). Table 1 summarizes the cosmological param-
eters that we simulate and Table 2 summarizes the numerical
parameters used.

In this paper we also study the Fisher matrix of cluster counts
for which we use another series of simulations. Each of the new
set is identical in every way to the fiducial model, except that we
have varied one of the cosmological parameters by a small amount.
For each new set we have generated four simulations, matching
the random realization of the initial Gaussian field with the corre-
sponding one from the fiducial model. The four parameter variations
that we consider are {n → {0.95, 1.05}, σ8 → {0.7, 0.9}, �m →
{0.2, 0.3}, w → {−1.2,−0.8}}, and we refer to each of the sets
as zHORIZON-V1a,b,...,zHORIZON-V4a,b, respectively. Again, the
full details are summarized in Tables 1 and 2.

Lastly, dark matter halo catalogues were generated for all snap-
shots of each simulation using the Friends-of-Friends (FoF) algo-
rithm (Davis et al. 1985), with the standard linking-length parameter
b = 0.2, where b is the fraction of the inter-particle spacing. For this
we employed the fast parallel B-FOF code, kindly provided to us by
V. Springel. The minimum number of particles for which an object
is considered to be a bound halo was set at 20 particles. This gave
a minimum host halo mass of M ∼ 1013 M� h−1.

5 R ESULTS

In this section we confront the counts-in-cells theory with the results
from N-body simulations.

5.1 Cell variance in simulations and theory

Since σ 2(Vμ) plays a vital role in determining the strength of any
covariance in the mass function measurements, we shall make a de-
tailed study of it, for both window functions discussed in Section 3
and considering volumes of varying size. We evaluate σ 2(Vμ) in two
different ways, analytically and from N-body simulations. Further-
more, owing to concerns regarding the impact of non-linear bias and
mass evolution, we also compute the matter–matter, halo–matter
and halo–halo variance, which we denote as σ 2

mm(Vμ), σ 2
hm(Vμ) and

σ 2
hh(Vμ), respectively. Comparing these quantities will then make

clear any departures from linearity.
Our analytical approach to determining the variances is based

on standard quadrature routines to evaluate the theoretical expres-
sions: for equation (35), we use the multi-dimensional Monte Carlo
integration routine VEGAS; and for equation (37), we use the QROMB

routine (for more details see Press et al. 1992). In evaluating these
integrals we take the linear theory power spectrum matching our
simulations, fully described in Section 4. Also, we take the largest
mode in the simulation box to determine the lower limit of the
k-integrals kmin.

The second method is one of brute force: we measure σ 2
mm(Vμ),

σ 2
hm(Vμ) and σ 2

hh(Vμ) directly from the ensemble of simulations.
Our estimator for the variances can be expressed as:

σ̂ 2
ab ≡

∫
d3k

(2π)3
Pab(k)W 2(kLbox)

≈ 1

Vμ

Ng/2∑
i,j ,k=−Ng/2+1

P̂ab(kijk)|W (kijk, Lbox)|2, (39)

where the indices (i, j, k) label the Fourier mesh cell and kijk the
magnitude of the wavenumber corresponding to that cell. The total
number of grid cells considered is N3

g; also, a and b are ∈ {m, h},

and P̂ab(kijk) ≡ Vμδa(kijk)∗δb(kijk) are estimates of the various
auto- and cross-power spectra. The window functions are as given
in Section 3. The estimates of the variance also require a correction
for shot-noise, which for the halo–halo variance we implement in
the following way:

σ̂ 2
hh,c = σ̂ 2

hh,d − 1

Nh

∑
i,j ,k

|W (kijk, Lbox)|2, (40)

where Nh is the number of haloes in the considered mass bin, and
σ̂ 2

hh,c and σ̂ 2
hh,d are the variance of the continuous and discrete halo

density fields, respectively. There is a similar shot-noise correction
for the matter–matter variance; we assume that the halo-mass cross-
variance requires no such correction. Note that the above method for
estimating σ (Vμ) is not the conventional one, where one partitions
the real space counts into cells and then computes the variance of
that distribution. However, it should be entirely equivalent, but with
the added advantages of being fast, since we are using a Fast Fourier
Transform (FFT), and allowing for the computation of the variance
in arbitrary cell structures.

Rather than testing all of the halo mass bins that we will employ
later for the mass function covariance, we have chosen to show
results for all the haloes in the simulation with M > 1013 h−1 M�.
Fig. 1 presents our results for σ mm(Vμ), σ hm(Vμ) and σ hh(Vμ) as a
function of the cubical window function size, Lbox; recall that for
the spherical window we take the radius to be R = (3/4π)1/3Lbox.
In all three panels, the points represent results from the N-body
simulations, whereas the lines denote the analytical integrals. The
red full circles and solid lines are obtained by smoothing the density
field with the cubical top-hat, while the blue empty circles and
dashed lines denote smoothing with the spherical top-hat function.
The simulation results represent the mean of the 40 realizations,
with errors appropriate for a single run. The size of the simulation
box (Lsim = 1500 h−1 Mpc) is marked through a vertical black line
on the horizontal axis. The effects of the shot-noise corrections on
the estimates of σ̂ 2

mm,c and σ̂ 2
hh,c are too small to be noticed on this

log–log plot.
As expected for a hierarchical mass distribution, in all cases

the variance decreases steeply with the increasing box size. On
comparing the results obtained from the simulations for the two
window functions, we find very good agreement up until the size of
the cubical region becomes similar to the size of the simulation cube.
At this scale, the variance from the cubical window function displays
a significant loss in signal. For scales larger than the simulation box,
the smoothing result becomes somewhat meaningless and unstable
due to the oscillatory nature of both window functions, which can
be seen from the measurements.

Turning to the evaluation of the theoretical expressions for the
variance, we see that in the case of the spherical top-hat there is
excellent agreement between the simulations and the theory on
small scales, Lbox < 200 h−1 Mpc. For Lbox ≥ 200 h−1 Mpc, the
linear expressions underestimate the measurements by ≈20 per cent
or even more. However, on comparing the theoretical predictions
for the cubical filter function with the measurements, we find a large
discrepancy. We tested whether this was due to an error in the VEGAS

evaluation of the integrals. An independent check with MATHEMATICA

produced the same results.
After some investigations, we found that the discrepancy between

the simulation and theory results was solely attributable to the dif-
ference between the discrete lattice structure of the Fourier space
used in the simulations, and the continuum of Fourier modes used
in the numerical integrals. A detailed discussion of this is presented
in Appendix A1. In that section we also show that as the simulation
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Figure 1. The rms density variance as a function of the sample volume
size Lbox. From top to bottom, we show results for σmm(Vμ), σ hm(Vμ),
σ hh(Vμ), respectively. In each panel, blue empty and solid red circles denote
measurements from the simulations, made using the spherical and cubical
top-hat filter functions. The corresponding analytical predictions for the
variance are denoted by the dashed blue and solid red lines, respectively.
The size of the simulation box 1500 h−1 Mpc is indicated by black vertical
lines, and the measurements are an average of 40 simulations.

box size is increased, the theory and simulation results converge.
Further, as is shown in Appendix A2 the theory predictions are
sensitive to the lower limit kmin. In applying this to the real Universe,
we suggest letting kmin → 0.

5.2 Linearity of the bias

In linear theory, the relation between the variances plotted in Fig. 1
is given by:

σ 2
hh(Vμ) = b σ 2

hm(Vμ) = b
2
σ 2

mm(Vμ). (41)

b is the average linear bias from equation (7), estimated for a single
mass bin containing all haloes larger than 1013 h−1 M�. For the
theoretical bias, we use the Sheth–Tormen model (Sheth & Tormen
1999, 2002), averaged over the same mass bin. All quantities are
at redshift 0. Since the bias is >1, σ hh(Vμ) is slightly larger than
σ hm(Vμ), which in turn is also slightly larger than σ mm(Vμ). At this
level of detail the differences between the curves appear to be well
related to each other as in equation (41).

To check this more accurately we next estimate the halo bias in the
simulations and compare it directly with the theoretical predictions.
In direct analogy with the Fourier-space bias estimates in Smith,
Scoccimarro & Sheth (2007), we construct the following real-space
bias estimates:

b̂hm ≡ σ 2
hm

σ 2
mm

; b̂hh ≡
√

σ 2
hh

σ 2
mm

, (42)

where all quantities in the above depend on Lbox. Fig. 2 presents the
comparison between the estimates of the linear bias from the sim-
ulations and the values obtained from the Sheth–Tormen formula.
The top and bottom panels show the results for bhm and bhh, respec-
tively. Again, the solid red and empty blue circles denote the results
from the cubical and spherical window functions, respectively. The
Sheth–Tormen theory is represented by the thick green dashed line.

Considering bhm (top panel), the first thing to remark is that the
bias appears extremely flat over all of the scales probed – for the
mean of the realizations the bias relation is linear to better than 1
per cent precision. Secondly, the peak-background split model of
Sheth & Tormen predicts this value astonishingly well: b = 1.498.

Turning our attention to bhh (lower panel), the raw simulation
measurements (upper set of points) indicate that on scales Lbox ≥
200 h−1 Mpc, the bias displays a weak scale-dependence and is
roughly ∼3 per cent higher than the Sheth–Tormen prediction.
However, on smaller scales non-linear effects are apparent and the
overall amplitude is steadily increasing with decreasing scale, being
�7 per cent higher than the Sheth–Tormen prediction for Lbox =
50 h−1 Mpc. The figure also shows the importance of correcting
σ 2

hh for shot-noise when making estimates of the bias. The upper
and lower set of points in this panel denote the uncorrected and
corrected estimates, respectively. The shot-noise correction reduces
the discrepancy between the simulations and linear theory to within
∼2 per cent for Lbox ≥ 200 h−1 Mpc, however the non-linearity on
smaller scales remains.

Both cubical and spherical window functions yield very similar
results. In the rest of this work we shall employ the Sheth–Tormen
bias, since on the scales of interest we have shown that it is at
worst <5 per cent compared to the average bias of the haloes in our
simulations.

Finally, we mention that for the analytical results in the following
sections, we shall use: (i) the volume variance measured from the
matter–matter power spectrum with a cubical window function, and
not the analytical variance, given the discrepancy seen in Fig. 1. The
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Figure 2. Comparison between the halo bias measured from the simulations
and the Sheth–Tormen linear theory predictions as a function of the sample
volume length. The symbols are as in the previous figure, and the theoretical
prediction is represented by the dashed green line. The top panel shows
the bias derived from the halo-matter variance, while the bottom panel
shows the bias from the halo–halo variance. The lower panel also shows
the importance of the shot-noise correction on the bhh measurements: the
upper and lower sets of points denote the halo–halo bias before and after the
shot-noise correction, respectively.

cubical window function is a natural choice, since our simulations
also have this geometry; (ii) the Sheth–Tormen bias; (iii) the Sheth–
Tormen mass function.

5.3 An estimator for the mass function covariance

We estimate the mass function covariance matrix from the ensemble
of 40 simulations of the fiducial cosmological model, described in
Section 4. As we will show shortly, this number of realizations is
insufficient for a reliable estimate of the covariance matrix. In order
to overcome this problem, we have adopted the simple strategy of
subdividing the volume associated with each realization into a set
of smaller cubes. In particular, we divide each dimension of the
original cube by 2, 3 and 4. Hence, each cube of 15003 h−3 Mpc3 is
partitioned into 8, 27 and 64 subcubes with corresponding volumes
of 7503 h−3 Mpc3, 5003 h−3 Mpc3 and 3753 h−3 Mpc3, respectively.
The ‘subcubing’ procedure thus provides us with 40, 320, 1080 and
2560 quasi-independent realizations. We note that this strategy was
also adopted by Crocce et al. (2010), who used it to compute sample-
variance error bars on the mass function in the MICE simulations.
However, it has never been employed to compute the covariance
matrix of counts.

One potential disadvantage of this approach is that the real-
izations thus obtained are not perfectly independent, since there
will be modes with wavelength of the order of the initial box size
1500 h−1 Mpc, which will potentially induce some covariance be-
tween the structures in each set of subcubes. However, as described
in Appendix B, we have checked that this effect is of marginal
importance. We shall therefore treat the measurements in each sub-
cube as providing essentially independent information. Conversely,
the subcubing approach should actually be thought of as the most
relevant scenario, since in the real Universe there is no cut-off in
the power spectrum on scales larger than the survey. As we demon-
strated in Fig. 1, the cut-off scale in the simulations dramatically
affects the behaviour of the density variance on the scales of the box.
Hence, studying the mass function covariance using simulations that
do not account for power on scales larger than the box modes may
in fact lead to incorrect inferences about the real Universe.

Our estimator for the covariance matrix can be expressed as
follows. Let Nruns be the total number of independent simulations
in the fiducial suite, and Nsc the number of subcubes per simulation
that we consider. For each subcube size, we estimate the average
mass function as:

n̂(Mα) = Nsc

Vsim	Mα

1

Ntot

Ntot∑
i=1

Ni,α , (43)

where we defined N tot = Nruns
∗Nsc and Ni,α is the number of counts

in the ith subcube and mass bin α; Vsim = 15003 h−3 Mpc3, and
Nruns = 40. We estimate the mass function covariance between
mass bins α and β:

M̂αβ =
(

Nsc

Vsim

)2 1

	Mα	Mβ

1

Ntot

Ntot∑
i,j=1

Ni,αNj,β

− n̂(Mα)n̂(Mβ ).
(44)

Note that in the above equation we subtract off the mean mass
function averaged over all subcubes and all realizations in bins α

and β. In order to check that the covariance matrix which we present
below is not affected by our choice of the mean density of haloes,
we recompute it using an alternative method: we determine the
mean density for each realization and subtract it from the counts
in the subcubes of that realization. This alternative is described in
Appendix B. However, the results obtained from both methods are
consistent.

The covariance matrices of the counts and the mass function are
related through the equation:

Ĉαβ = V 2
μ	Mα	MβM̂αβ . (45)

In the following sections, we present measurements made at z =
0. The mass function analysis is carried out for 12 logarithmically
spaced bins, going from (1013 < M [ h−1 M�] < 1015). Finally, let
us make the clarification that when we refer to ‘halo mass’, we mean
the mass returned from the FoF algorithm.

5.4 Measurements: variance

Fig. 3 presents the fractional errors on the mass function,
σ [n(M)]/n(M), from both theory and simulations, for the subcube
sizes mentioned in Section 5.3. In all panels the points denote the
measurements from the simulations. The theoretical predictions of
equation (25) are estimated for a single realization of given size
Lbox, following the recipe at the end of Section 5.2. Then the vari-
ance is rescaled by 1/N tot, so that the fractional errors in all four
panels correspond to a total volume of 135 h−3 Gpc3.
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Figure 3. Comparison between the predicted and measured fractional error on the halo mass function as a function of halo mass. The four panels show the
results obtained when the sample volume length is taken to be: Lbox = {1500 , 750 , 500 , 375 } h−1 Mpc. In each plot, the dashed blue lines denote the fractional
Poisson error; the red dot–dashed lines denote the pure sample variance error; and the solid lines represent the total. All errors have been rescaled to a total
survey volume of V = 135 h−3 Gpc3.

The agreement between the theory and the measurements is very
good, with a slight difference at the low-mass end for the subcubes
considered. This difference does not occur when the estimate is
made using the full simulation boxes to estimate the variance (see
the top left panel of Fig. 3). We also note that the Poisson model
(dashed lines) agrees well with the simulations at the high-mass
end. However, at lower masses, the variance becomes dominated by
the sample variance, as given by the first term of equation (25). For
a mass bin α the latter is simply:

σ [n(Mα)]

n(Mα)
≈ b̄α σ (Vμ), (46)

and this is denoted in Fig. 3 by the dot–dashed lines.
On comparing all four panels, we observe that with the exception

of the first panel with Lbox = 1500 h−1 Mpc, the results are almost
indistinguishable. This is quite interesting, since for these subcube
volumes, Fig. 1 shows σ (Vμ) to be a decreasing function of Lbox.
For a given mass bin we would expect the errors for the smaller
subcube measurements to be significantly larger. This is indeed the
case, but the fact that we use the variance on the mean, i.e. we divide
by

√
Ntot, leads to results that are very similar.

The slight difference between the measurements and the predic-
tions is not easy to understand, since for the theoretical estimation
we use σ (Vμ) measured from the simulations. This is done for all
subcubes, so we do take into account that modes with wavelength
larger than the subcube size may contribute to the covariance in
the subcubes. The limit is set by the size of the original simulation

box Lsim = 1500 h−1 Mpc. However, the bias is the Sheth–Tormen
prescription, which Fig. 2 shows to be slightly lower than the one
measured from the halo–halo power spectrum. This effect might be
more pronounced for the small-mass bins, but more work is needed
here to arrive to a definitive conclusion, and we defer this to a future
study.

Before moving on, we note that this startling agreement for the
fractional errors on the mass function was noted before by Crocce
et al. (2010). In that work the variance on a given subcube scale
was computed theoretically using the linear theory variance in a
spherical top-hat taken to have the same volume as the subcube
(see the earlier discussion in Section 3). These authors pointed out
that when using an ensemble of simulations with no subcubing the
theory over-predicted the measurements. Here we have shown that
there is no conflict between the theory and the measurements, if one
uses the volume variance measured from the simulations.

5.5 Measurements: covariance

Fig. 4 presents the theoretical mass function correlation matrix from
equation (29) versus the measured one. The left-hand panels show
the predictions, obtained in the same way as in Fig. 3, and the right
ones the measurements. From top to bottom, the following subcube
sizes are considered: Lbox = 375, 500, 750, 1500 h−1 Mpc.

The figure reveals a remarkable agreement between measure-
ments and theory: the trend observed in Fig. 3 is also present here,
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Figure 4. The correlation matrix of the cluster mass function rαβ , i.e. equation (29). The left and right columns show the results from theory and simulations,
respectively. From top to bottom, the size of the sample volume is given by: Lbox = {375, 500, 750, 1500} h−1 Mpc. The theoretical predictions for the
correlation matrix are generated using the estimate of σmm(Vμ) measured directly from the simulations. Note that in the bottom-right panel we plot |rij|, so as
to maintain the same heat-bar intensity scale as in the other plots.
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Figure 5. Rows of the cluster mass function correlation matrix rαβ as a function of the mass scale Mβ , with Mα fixed. Each of the 12 panels shows the results
for one of the 12 rows of rαβ . In all panels, the theoretical predictions and the measurements from the simulations are denoted by the empty squares and solid
triangle symbols, respectively. The magenta, green and blue colours represent the sample volume sizes Lbox = {1500, 750, 375} h−1 Mpc, respectively.

with the predictions marginally larger than the measurements in
some of the mass bins. We find that the measurements are strongly
covariant: for clusters with M � 3 × 1014 h−1 M�, the cross-
correlation coefficient is r � 0.5. Only for the highest-mass clusters
does the covariance matrix become close to diagonal. The exception
is for the ensemble of cubes with Lbox = Lsim. In this case the real-
izations appear to be only weakly correlated with r � 0.1, for M �
3 × 1013 h−1 M�. However, as was discussed above and shown in
Fig. 1, the behaviour of σ (Vμ) at the simulation box scale is not
representative for the real Universe, owing to the absence of power
on larger scales. Had we run a simulation of larger volume, then
the volume variance on the scale Lbox = 1500 h−1 Mpc would have
been significantly larger.

Fig. 5 presents the same information as Fig. 4, but in a more
quantitative format. The plot has 12 panels, with each panel depict-
ing a single row from the correlation matrix, i.e. rij(Mi, Mj) versus
Mj, with Mi fixed. In this plot the solid triangles denote the mea-
sured correlation coefficient, while the empty squares represent the
theory predictions. For clarity, we show results only for the box
sizes 1500, 750, 375 h−1 Mpc, represented by the magenta, green
and blue symbols, respectively. It is clear from this figure too that
the theory predictions and the measurements are in remarkably good
agreement. On comparing the correlation coefficient for different

subcube sizes, we again note the similarity of these results, despite
the variation in σ (Vμ): just as in Fig. 3, the covariance on the mean
leads to the observed similarity. The exception is for the Lbox = Lsim

cubes, and we offer the same explanation for this as noted above.
We conclude this section by stating that equation (25) gives a

very reliable prediction for the mass function covariance, provided
one employs the true variance within the volume.

6 C O S M O L O G I C A L IN F O R M AT I O N
F RO M T H E MA S S FU N C T I O N

In this section we examine how the cosmological information con-
tent of the cluster mass function changes, when we exchange the
standard Poisson assumption for the more complex likelihood mod-
els of equations (10) and (14).

6.1 Fisher information

In all cases we shall use the standard definition of the Fisher in-
formation (for an excellent review of Fisher matrix techniques in
cosmology, see Heavens 2009):

Fpapb
= −

〈
∂2 lnL
∂pa∂pb

〉
, (47)
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where pa and pb are elements of the cosmological model parameter
set upon which the likelihood depends. From the Fisher matrix, one
may obtain an estimate of the marginalized errors and covariances
of the parameters:

σ 2
papb

= [F −1]papb
, (48)

as well as the unmarginalized errors:

σpa = [Fpapa ]−1/2. (49)

6.2 The Poisson Fisher matrix

In the case of Poisson errors, using equation (2) and (13) we write:

lnL =
∑
i,α

ln P (Ni,α|mi,α)

=
∑
i,α

[−mi,α + Ni,α ln mi,α − ln Ni,α!
]
. (50)

On partially differentiating the above expression with respect to
parameters pa and then pb, and on performing the ensemble average,
one finds:

F Poisson
papb

=
∑
i,α

∂mi,α

∂pa

∂mi,α

∂pb

1

mi,α

. (51)

6.3 The Gaussian Fisher matrix

As was shown earlier, in the case of the full likelihood model
for the counts (cf. equation 10), we expect the Fisher matrix to
be significantly modified from the Poisson case in the region of
many counts per mass bin. In this limit, the likelihood is given
by equation (14), and we have the standard result for the Fisher
information for a Gaussian likelihood (Tegmark, Taylor & Heavens
1997):

FGauss
papb

= 1

2
Tr

[
S−1 ∂S

∂pa

S−1 ∂S

∂pb

]
+ ∂m

∂pa

T

S−1 ∂m
∂pb

. (52)

6.4 The Gauss-Poisson Fisher matrix

LH04 developed an approximation for the Fisher matrix, which
interpolates between the correct forms for the information in the
limit of rare peaks and sample-variance-dominated counts. Their
expression is:

FG+P
papb

≈ 1

2
Tr

[
C−1 ∂S

∂pa

C−1 ∂S

∂pb

]
+ ∂m

∂pa

T

C−1 ∂m
∂pb

, (53)

where C = M + S, and M is a diagonal matrix with the elements
mi,α , as defined in Section 2.

6.5 Estimating Fisher matrices from simulations

In order to evaluate all of the expressions for the Fisher matrices
presented in the previous sections, we require the knowledge of
three quantities: the partial derivatives of the mean counts with
respect to the parameters ∂m/∂pa ; the inverse of the total covariance
matrix C−1 and the derivative of the sample variance covariance
matrix ∂S/∂pa . In this section we shall use numerical simulations
to directly evaluate all of these quantities.

We first measure the halo mass function for each of the variational
cosmologies described in Section 4. With this information we are
then able to numerically obtain the derivatives ∂m/∂pa for the
simulated parameters pa ∈ {�m, σ8, n,w}. When computing the
mass function derivatives, we reduce the effects of cosmic variance
on the estimates, using the fact that the first four simulations of the
fiducial cosmology have matched initial conditions with the four
variational cosmologies simulations. Hence, our reduced-cosmic-
variance estimator for the derivatives can be written as:

∂n̄α

∂pb

= n̄α

Nvar

Nvar∑
r=1

∂ log n̄(r)
α

∂pb

, (54)

where n̄α is the average mass function for mass bin α, estimated
from all 40 independent realizations; Nvar = 4 is the number of the
variational simulations; r denotes the simulation realization going
from 1 to Nvar; n̄(r)

α is the mass function in the fiducial case, estimated
for each of the four realizations that have matched initial conditions
to the variational cosmologies realizations (for an explicit definition
of this see equation (B1)). The logarithmic derivatives are estimated
as:

∂ log n̄(r)
α

∂pb

= n̄(r)
α (pb + 	b) − n̄(r)

α (pb − 	b)

2	bn̄
(r)
α (pb)

. (55)

Note that since we estimate ∂m/∂pa using double-sided deriva-
tives, we may take larger step sizes in the parameters to compute
the derivatives than would be allowed for single-sided derivatives
(Eisenstein, Hu & Tegmark 1999). For the former case, the er-
rors in the derivatives are of quadratic order in the step size: i.e.
	[∂m/∂pa] ≈ (	pa)2∂3m/∂p3

a/6. Thus parameter step sizes of
20 and 10 per cent should correspond to relative errors of roughly 4
and 1 per cent in the derivatives, respectively. In actuality, the true
accuracy of the derivatives also depends on the value of the third
partial derivative.

In Fig. 6 we show simulation measurements of the average mass
functions for the fiducial and variational cosmologies. This figure
makes very clear not only the sensitivity of the mass function to
the cosmological parameters considered, but also the halo mass
range over which most of it occurs. Changes in �m and the slope of
the primordial power spectrum n impact the mass function for the
whole range of halo masses. The low-mass end is less sensitive to
variations in σ 8, while the dark energy equation of state parameter
w barely affects the mass function.

In the smaller panels of Fig. 6 we show the derivatives of the
halo abundance, estimated using equation (55). The error bars are
computed as errors on the mean of the Nvar = 4 realizations, as
they are also for the mass functions in the larger panels. The �m-
derivative is almost constant and large for all bins, while the σ 8 one
monotonically increases from 0 at the low-mass end to a large value
at the high-mass end. The behaviour of the spectral-index-derivative
is quite interesting, as it changes sign at M ∼ 3 × 1014 h−1 M� and
becomes negative at the high-mass end. Its overall variation is not as
large as in the case of �m and σ 8, which will be better constrained
by the halo abundance.

Another interesting finding of this exploration concerns the
w-derivative, which should be 0 at redshift 0 according to linear
theory and the Sheth–Tormen mass function. We find it to be small
and positive, ∼0.05, for most of the mass range considered, and
rising slightly to ∼0.1 at the low-mass end. The w-derivative does
not vanish because in reality the mass function depends on the full
non-linear growth history. This encompasses the growth of struc-
ture at all redshifts, and thus makes the present-day halo abundance
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Figure 6. Top section of each panel: dependence of the z = 0 cluster mass function on cosmology, as a function of cluster mass. Symbols denote measurements
from the simulations and lines depict the Sheth & Tormen (1999) mass function. The green colour represents the fiducial model, whereas the red/blue colours
are for the plus/minus variations in the parameters. Bottom sections: logarithmic derivatives of the cluster number counts with respect to the considered
parameters, as a function of cluster mass. Points with errors denote measurements from the simulations (cf. equation 55), the error bars being on the mean.
Lines denote the Sheth–Tormen predictions.

sensitive to w. These results are consistent with the findings in
earlier studies (Linder & Jenkins 2003; Jennings et al. 2010).

We next follow the recipe of Section 5.3 to estimate the covariance
matrices in each of the variational cosmological models. From these
estimates we are then able to form the partial derivatives of the
covariance with respect to the cosmological parameters: ∂C/∂pa .
Again, as was done for ∂m/∂pa , we take advantage of the matched
initial conditions to reduce the cosmic variance on the estimates of
the partial derivatives of the covariance matrix.

6.6 Forecasted errors

Having obtained all of the necessary ingredients we are now in a
position to evaluate the Fisher information directly from the simu-
lations.

Fig. 7 shows the cumulative fractional Fisher errors, 	pa/pfid
a ,

estimated using equation (49), as a function of the minimum cluster
mass, and for the four cosmological parameters that we consider.
The results obtained for the various subcube sizes are almost iden-

tical with the exception of the case where Lbox = Lsim: as explained
earlier, the underestimate of the variance on scales of the simula-
tion makes the estimate of the mass function covariance, and hence
the Fisher errors unrealistic. For brevity we shall present only the
findings for L = 375 h−1 Mpc, which we consider very reliable.

For our fiducial survey, we adopt parameters relevant for future
all-sky X-ray cluster surveys, such as eROSITA (Predehl et al 2010).
This mission will be able to target intermediate-mass range clusters,
and not just the most massive objects in the Universe as is the
case for current and past surveys. We adopt a total survey volume
of V ∼ 13.5 h−3 Gpc3, and we rescale our measured covariance
matrices to this volume. For this comoving volume at z = 0, we
find in the simulations approximately 4.5 × 106 haloes in the mass
interval [1, 5] × 1013 h−1 M�, 5.4 × 105 haloes in the interval
[0.5, 1] × 1014 h−1 M�, 2.3 × 105 haloes in the interval [1, 6.5] ×
1014 h−1 M� and 8000 haloes with masses larger than the latter
limit.

In Fig. 7 the solid green squares denote the results obtained for
the Poisson Fisher matrix, as given by equation (51). The solid
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Figure 7. Fractional Fisher matrix errors on the cosmological parameters, as a function of the minimum cluster mass used. The four panels show the results
for the cosmological parameters: pα ∈ {�m, σ8, n, w}. In all panels, the symbols show the estimates made from the N-body simulations, with varying
assumptions about the form of the cluster likelihood function. Solid green squares denote the Poisson errors obtained with equation (51); solid red circles
denote the errors obtained from the second term of equation (53); blue triangular shaped symbols denote the errors derived from the trace-term in equation (53).

red circles denote the errors resulting from the second term of
equation (53). The blue triangular-shaped symbols denote the er-
rors obtained from only the trace-part of equation (53), where in-
stead of S, we have used the covariance matrix from our sim-
ulations Ĉ (cf. equation 45). We do not expect that replacing
Ĉ with S will change our conclusions concerning the informa-
tion carried by this term, except to possibly make the errors
larger.

As expected, for all of the cosmological parameters considered,
the fractional errors obtained from the Poisson approximation are
smallest. Including the full covariance matrix, as in the second
term of equation (53), reduces the amount of information, and this
results in a significant increase in the fractional errors. For the case
of Mmin ∼ 1013 h−1 M�, the errors are roughly a factor of ∼3 larger
when the full-covariance is used as opposed to the Poisson case.
When Mmin ∼ 1014 h−1 M�, the errors are only a factor of ∼2
worse. For the rarest objects, where the covariance becomes almost
diagonal, the errors from the two methods are very similar. We
find that the trace part of equation (53) contributes negligibly to
the information, and if this term is taken separately, it yields errors
that are roughly one order of magnitude larger than those from the
second term.

Let us explore the consequences of this last result a little further.
Consider the Fisher matrix given by equation (53), if the first term
on the right-hand-side is negligible, then the information about each
cosmological parameter enters the system only through the deriva-
tives of the model mean with respect to the parameters. Since the
model here is the mean counts, the bias provides no information.

However, the amplitude of the elements of the information matrix
can be modulated by the inverse covariance matrix. Owing to the
fact that increasing the elements of the covariance matrix only leads
to a smaller inverse covariance, we thus conclude that adding the
variance from the bias can only ever decrease the Fisher informa-
tion. However, as discussed in Lima & Hu (2005), the information
content of the first term of equation (53) becomes of great impor-
tance in the presence of a scatter between the true and observed
mass.

Note also that the cumulative dependence of the errors on the
mass bins can partly be understood by examining the behaviour of
the derivatives as shown in Fig. 6. The errors flatten out at those
points in the mass range where the derivatives of the parameters are
close to 0, as in the case of σ 8 at the low-mass end, or n at masses
∼3 × 1014 h−1 M�.

Finally, we emphasize that the forecasts that we make above are
to illustrate the importance of going beyond the Poisson likelihood
approximation and should not be taken as serious predictions for a
potential survey. The cosmological dependence that we have con-
sidered here arises strictly from the mass function. In order to make
a realistic forecast we would have to take into account a number of
observational factors: realistic survey geometries; the evolution of
the mass function with redshift; the evolution of the volume element
with the cosmological model; and the evolution in the minimum de-
tectable mass at each redshift; and a scatter in the relation between
the observed mass proxy and the true cluster mass (see Marian &
Bernstein 2006, for an example of forecasting weak lensing cluster
counts).
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7 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have studied the covariance of the halo mass
function, and the cosmological information content of such data.
We adopted a two-line attack on these problems: the first line was
theoretical and we developed an analytic model to explore these
issues; the second was the use of a large ensemble of numerical
simulations to measure directly all quantities of interest.

In Section 2, we summarized the counts-in-cells formalism
(Peebles 1980; HK03), and developed it for application to deal
with cluster counts in multiple mass bins. We described the Gauss–
Poisson likelihood function for the counts in cells with multiple
mass bins. The expression was analogous to that derived by LH04
for multiple cells and a single mass bin.

In Section 3, we used this framework to derive a formal expres-
sion for the covariance of the halo mass function and the cross-
correlation coefficient, i.e. equations (25) and (29), respectively.
We found that there were two terms contributing: a Poisson shot-
noise term, which dominates in the limit of rare clusters, and a term
associated with the sample variance, which is dominant for abun-
dant clusters. This expression is analogous to the results of HK03
for multiple cells and a single mass bin. The expression was found
to depend on three quantities: the cluster mass function; the cluster
bias and the variance in the survey volume.

In Section 4, we presented the details of our large ensemble of
numerical simulations: 40 simulations of a fiducial model and 32
simulations of modified cosmological models.

In Section 5, we made a rigorous comparison of the results from
the theoretical modelling with those obtained directly from the nu-
merical simulations. We measured the variance of matter and cluster
fluctuations in cells of various sizes and found, for spherical and cu-
bical top-hat cells, that the simulations and theory predictions were
discrepant for large cell sizes. We showed that this was entirely at-
tributable to the difference between the discrete lattice structure of
the Fourier space in the simulations, and the continuum of Fourier
modes in the theory integrals. The cubical and spherical top-hat
simulation results were in good agreement, except on the largest
scales where simulation box-scale effects were important.

We also measured the halo bias in cells of various sizes from
the simulations. We found that the bias from the halo-mass cross-
variance showed very little scale dependence over the range Lbox =
[50, 1500] h−1 Mpc, whereas that from the halo auto-variance
showed significant scale dependence, before and after the shot-
noise correction. We found that the Sheth & Tormen (1999) model
was an excellent fit to the former and a reasonable fit to the
latter.

We then measured the covariance of the mass function in the
simulations. To increase the number of realizations, we used the
strategy of subdividing each large simulation volume into a set of
smaller subcubes. We found that the estimated covariances were in
excellent agreement with the theoretical predictions. This was under
the condition that we used the actual variance of mass fluctuations
measured in the simulations.

In Section 6, we employed the Fisher matrix formalism to ex-
plore the information content of the cluster counts. Using the more
realistic likelihood functions, we demonstrated numerically that the
Poisson likelihood model only provides a reasonably accurate de-
scription of the data for clusters that are more massive than M �
5.0 × 1014 h−1 M�. Future surveys that aim to target cluster samples
with masses M � 5 × 1014 h−1 M� must adopt more sophisticated
likelihood analysis, such as discussed by LH04, Hu & Cohn (2006)
and here in, which take into account the full covariance matrix of

the counts. Otherwise, significant underestimates of the true errors
will occur.

There are a number of possible future directions for the work that
we have presented here. First, as pointed out by Lima & Hu (2005),
one of the main uses of adopting the counts-in-cells approach is that
it helps to lift the degeneracy between nuisance parameters, which
are involved in calibrating the cluster masses, and the cosmological
parameters. This occurs because the sample variance depends on
the bias of the clusters, which has a different behaviour with cosmo-
logical parameters than the counts. Whilst we have shown explicitly
that the terms in the Fisher matrix that depend on the derivatives
of the covariance matrix, and hence derivatives of the bias, do not
carry a great deal of cosmological information by themselves, it
will be interesting to see whether for a more realistic scenario,
where one must marginalize over these nuisance parameters, the
self-calibration can be successfully performed to restore the lost
information.

We also note that the counts-in-cells technique has been high-
lighted as a powerful means for constraining primordial non-
Gaussianity (Oguri 2009; Cunha, Huterer & Doré 2010; Marian
et al. 2011). It is of some importance to explore this approach using
numerical simulations, since it is not clear whether the extension of
the current formalism to such modified cosmological models works
in practice.
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A P P E N D I X A : TH E VO L U M E VA R I A N C E

In this section, we investigate the impact of systematic effects on
the volume variance, which arise due to the anisotropic lattice in
Fourier space and also low- and high-k truncation of the matter
power spectrum.

A1 Fourier lattice versus a continuum of modes

As was described in Section 3.4 the matter variance in the volume
is a key quantity for correctly evaluating the covariance matrix of

Figure A1. The rms density variance σmm(Vμ) as a function of the sample
volume size Lbox. In each panel, blue empty and solid red circles denote
theoretical predictions made on the Fourier space lattice using the spherical
and cubical top-hat filter functions, respectively. The predictions made using
a continuum of Fourier space modes are denoted by the dashed blue and
solid red lines, respectively. The top panel compares the results when the
simulation box size is taken to be Lsim = 1500 h−1 Mpc. The bottom panel
shows the same but for the case where Lsim = 6000 h−1 Mpc.

the cluster counts. Also, as was shown in Section 5.1, there is a
discrepancy between the theoretical predictions and measurements
in simulations obtained for σ (Vμ). We now investigate the origin of
these discrepancies.

We start by examining the importance of the discrete cubical
Fourier lattice, which is used in the estimates from the simulations,
and the continuum of Fourier modes, which is used to evaluate the
theory. We start by generating a Fourier lattice as in the simula-
tions, where each lattice point is spaced from the next one, along
each dimension, by kf = 2π/Lsim. Then at each lattice point, we
compute the magnitude of the k-vector and evaluate the linear theory
power spectrum at that point. σ (Vμ) is then obtained as described
in equation (39), by summing up the grid of power spectra values
multiplied by the square of the appropriate window function. The
top panel of Fig. A1 shows the results of this exercise for both the
spherical and cubical window functions. We also compare this to the
results obtained from the theory, assuming a continuum of modes.
The results that we find for the theory evaluated on the cubical mesh
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are in remarkably good agreement with the measurements from the
simulations presented in Fig. 1.

To be sure that the discrepancy is due to the lattice, we should
expect that as the simulation box size becomes significantly larger,
the results for the lattice should approach those of the continuum.
We test this by regenerating the Fourier lattice, but this time taking
Lsim = 6000 h−1 Mpc, and keeping the maximum Fourier mode the
same as before. The bottom panel of Fig. A1 shows that the results
are now in much better agreement.

Thus, we are led to conclude that in matching the results from
the simulations we must be mindful of taking into account the
anisotropic lattice structure of the Fourier space to obtain accurate
comparisons between the theory and the simulations. This then
further justifies our choice of using the σ (Vμ) measured in the
simulations to make the predictions for the covariance of the counts.

Finally, these results also act as a cautionary tale: when interpret-
ing the results of numerical simulations on very large scales, we
should take more care in assigning the power to the lattice cells in
the initial conditions. We should use methods that suppress this dis-
cretization. For instance, it would seem more sensible to compute
the power averaged over a lattice cell and not simply the power at
the lattice cell point. Also including the missing zero modes may
be a more realistic strategy (see e.g. Sirko 2005).

A2 Cut-off scales

In Fig. 1 we evaluated the integrals in equations (35) and (37),
keeping the upper and lower bounds fixed at the values kmin =
2π/Lsim = 0.004 h Mpc−1 and kmax = 2π/lsoft = 100 h Mpc−1.
This was done for a fair comparison with our simulations, which do
not have modes larger than the simulation box Lsim = 1500 h−1 Mpc,
nor structures smaller than the softening scale, lsoft = 0.06 h−1 Mpc.
We now present a short discussion of how the mass-fluctuations-
variance σ (Vμ) depends on the cell volume and the cut-off scales
in the power spectrum.

For the large cell sizes that we are interested in, i.e. Lbox >

50 h−1 Mpc, we find no dependence of σ (Vμ) on kmax, for the range
of values kmax = [1, 100] h Mpc−1.

For the lower cut-off scale kmin, the situation appears to be more
complex. In Fig. A2, we show the result of computing the mass-
fluctuations-variance averaged in cubical and spherical top-hat vol-
umes, as a function of the cubical cell volume [recall that we take
the radius of the spherical top-hat cell to be R = (3/4π)1/3Lbox].
In the plot we consider the values of σ (Vμ) for three different sim-
ulation sizes: Lsim = {750, 1500, 3000 h−1 Mpc}. These box sizes
correspond to the: solid red, long-dashed green and dot–dashed ma-
genta lines, respectively. The thicker/thinner lines in the plot depict
the spherical/cubical top-hat smoothing.

For the case of the spherical top-hat filter, we find that the vari-
ance for kmin = 2π/750 h Mpc−1 = 0.008 h Mpc−1 is roughly
a factor of ∼2 times smaller than the variance obtained when
kmin = 2π/3000 = 0.002 h Mpc−1. However, for the case of the
cubical top-hat window function, we find that the difference in the
variance for these same two values of kmin is more than an order of
magnitude.

In Fig. A2, the thick dotted blue curve presents predictions for
σ (Vμ) with the spherical window function. Hence, the Covariance
matrix can be written as kmin = 2π/L. The thick and thin dashed
blue lines show the same, but for the case of the cubical filter
function. For this case, the thin line is obtained when the linear
theory matter power spectrum is used, and the thicker line shows the
results obtained when the non-linear power spectrum from halofit

Figure A2. Dependence of the rms density variance on the lower limit kmin

of the k-space integrals, as a function of the sample volume size Lbox. The
thin solid red, dashed green and dot–dashed magenta lines denote results
obtained for a cubical top-hat window function, where kmin = 2π/Lsim with
Lsim = {750, 1500, 3000} h−1 Mpc, respectively. The thick solid, dashed
and dot–dashed lines represent the same, but for the case where the filter
function is a spherical top-hat. The thick and thin blue dotted lines denote
the same as above except this time the lower limit of the k-space integrals is
given by kmin = 2π/Lbox.

(Smith et al. 2003) is employed. The differences are very small.
Thus, using the linear theory power spectrum for the mass variance
is quite reasonable on these scales. The main point of this last
example is to show that for large cell sizes, the results for σ (Vμ)
are very sensitive to the presence/absence of power on very large
scales.

A P P E N D I X B: C O N V E R G E N C E
O F T H E C OVA R I A N C E MATR I X

B1 Covariances from individual simulations

Here we consider an alternate approach to estimating the covariance
of the cluster counts. We are concerned that if there is a significant
variance of the cluster counts on the scales of the simulation cube,
then by computing the covariance around the mean cluster mass
function averaged over all simulations, we are overestimating the
covariance. To answer this question, we adopt the strategy of using
the subcubes in a single simulation to make an estimate of the
covariance, and finally we then average these estimates over all the
simulations.

For each simulation run we therefore have:

nr (Mα) = Nsc

Vsim	Mα

1

Nsc

Nsc∑
i=1

N
(r)
i,α , (B1)

where N(r)
i,α is the number of counts in the rth run, ith subcube and

αth mass bin. The covariance for each run is:

M(r)
αβ =

(
Nsc

Vsim

)2 1

	Mα	Mβ

1

Nsc

Nsc∑
i,j=1

N
(r)
i,αN

(r)
j,β

− nr (Mα)nr (Mβ ) , (B2)
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Figure B1. The chessboard test: we compare the mass function corre-
lation matrix measured from ‘white’ and ‘black’ subcubes (see the Ap-
pendix text). The results are very similar for both subcube sizes considered,
3753 h−3 Mpc3 and 2503 h−3 Mpc3.

and the average covariance:

Mαβ = 1

Nruns

Nruns∑
r=1

M(r)
αβ . (B3)

We have checked that using equations (B1) and (B2) does not change
the measured mass function covariance in any significant way. We
therefore conclude that the method of estimating the covariance
described in Section 5.3 is not biased by the estimates of the mean
density.

B2 The chessboard test

When dividing a big simulation box into smaller subcubes, the
largest wavelength modes may affect the observables measured in
the smaller cubes. In the case of clusters, some of the subcubes may
have very different mean counts than others, and in general, the
smaller the subboxes, the larger the expected covariance between
them. This is also true for real surveys, which measure observables
in a finite volume of the Universe: some of these observables are
impacted by modes larger than the size of the survey.

In order to check the validity of our approach, we measure the
covariance of the mass function using subcubes that are not adjacent,
and should therefore be less covariant. We shall refer to this as the
‘chessboard test’, as its 2D analogue would be similar to using only
the white or the black squares of a chessboard to compute the mass
function covariance. This test has the limitation that large mode
correlations can span more than just two subcubes, particularly if
the latter are small. Nevertheless, if we find the covariance measured
from the ‘white’ subcubes different from that obtained from the
‘black’ ones and also different from the all-subcubes-covariance,
then our box-division method is flawed.

We perform this test for the conservative values n = 4, 6, i.e.
we consider 43 and 63 subcubes, with volumes 3753 h−3 Mpc3 and
2503 h−3 Mpc3, respectively. The result is shown in Fig. B1. There
is no major difference between the ‘white’, ‘black’ and total mass
function correlation matrix (cf. Fig. 4). We conclude that modes
with wavelengths smaller than the size of the subcubes considered
here are not explicitly responsible for generating the mass function
covariance.
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