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Background. We examined whether viral dynamics in the genital tract during the natural history of acute
human immunodeficiency virus type 1 (HIV-1) infection could explain efficient heterosexual transmission of HIV.

Methods. We measured HIV-1 concentration in blood and semen samples from patients with acute and long-
term HIV-1 infection. We explored the effect of changes in viral dynamics in semen on the probability of trans-
mission per coital act, using a probabilistic model published elsewhere.

Results. Considered over time from infection, semen HIV-1 concentrations, in men with acute infection,
increase and decrease in approximate parallel with changes occurring in blood. Modeling suggests that these acute
dynamics alone are sufficient to increase probability of heterosexual transmission by 8–10-fold between peak (day
20 after infection, based on the model) and virologic set points (day 54 and later after infection). Depending on
the frequency of coitus, men with average semen HIV-1 loads and without sexually transmitted diseases (STDs)
would be expected to infect 7%–24% of susceptible female sex partners during the first 2 months of infection.
The predicted infection rate would be much higher when either partner has an STD.

Conclusions. Empirical biological data strongly support the hypothesis that sexual transmission by acutely
infected individuals has a disproportionate effect on the spread of HIV-1 infection. Acute hyperinfectiousness may,
in part, explain the current pandemic in heterosexual individuals.

The average probability of male-female transmission of

HIV-1 per unprotected coital act has been estimated,

in a large number of observational studies (reviewed

in [1, 2]), to be .0005–.0026 (1/2000–1 transmission

event/384 coital acts) during established (i.e., nonacute)

HIV-1 infection. In a study using survey-based data on

sexual behaviors in the United States, Pinkerton et al.
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[3] calculated that these probabilities of transmission

per coital act would result in low rates of lifetime trans-

mission (0.19–0.40 infected partners/man; 0.09–0.18

infected partners/woman), which, by themselves, could

not sustain an epidemic. These estimates have been

recently cited as evidence for the putative importance

of iatrogenic spread in areas where the pandemic is

growing the fastest [4]. However, most estimates of

probability of transmission per coital act used for such

calculations do not take into consideration biological

factors that might increase or decrease the probability

of transmission of HIV-1. Because the studies from

which probabilities of transmission are derived enroll

only HIV-1–discordant couples, it is important to note

that the overall estimates generated from such studies

generally reflect transmission by individuals with long-

term infection—necessarily underestimating the poten-

tial influence of transmission by acutely infected in-

dividuals with peak HIV-1 loads [5]. Transiently high

viremia could translate to heightened probability of

transmission during acute infection. Indeed, in a re-

cent study of HIV-1–serodiscordant couples in Uganda,
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Gray et al. [2] observed a strong relationship between blood

HIV-1 load and probability of heterosexual transmission.

However, that genital fluids (not blood) are the principal

vehicle for sexual transmission of HIV presents a particular

problem for modeling the likelihood of HIV transmission dur-

ing acute HIV-1 infection on the basis of blood data. This is

because acute HIV-1 infection represents the period of initial

establishment of anatomic HIV-1 reservoirs; therefore, the viral

dynamics in blood, which have been well described for acute

HIV-1 infection [6–9], cannot be assumed to apply to the gen-

ital tract. If HIV-1 load were to increase more rapidly in genital

fluids than in the systemic compartment, for instance, the prob-

ability of transmission during acute HIV-1 infection would be

greater than that predicted on the basis of concurrent blood

HIV-1 load; if, on the other hand, semen HIV-1 load were to

increase slowly, relative to blood HIV-1 load, it is possible that

no peak in probability of transmission would occur at all, de-

spite elevated blood HIV-1 load during acute HIV-1 infection.

Previous human studies examining the excretion of HIV-1 in

semen during acute HIV-1 infection have been limited by an

inability to obtain semen samples over time from untreated

patients with acute HIV-1 infection. In a study involving ex-

perimental infection of macaques with HIV type 2GB122 or sim-

ian/HIV89.6p [10], however, Pullium et al. demonstrated that

virus load peaked and subsequently declined over a similar time

frame and with similar kinetics in both semen and blood. These

data led us to hypothesize that both semen and blood HIV-1

concentrations, within an individual with acute infection, are

related by a constant ratio—that is, by a constant log differ-

ence—as they change over time.

In this report, we examine the relationship between blood and

semen HIV-1 concentrations observed in a cohort of men with

acute HIV-1 infection. We then use the observed data to develop

a predictive model of the excretion of HIV-1 in semen during

acute HIV-1 infection and to explore the effect of these dynamics

on the efficiency of heterosexual transmission of HIV-1.

PATIENTS, MATERIALS, AND METHODS

Data on Patients

Patients with acute HIV-1 infection. For preliminary de-

scriptive modeling of compartmental viral dynamics, both

blood and semen HIV-1 concentrations were available for men

with known dates of HIV-1 infection or with known dates of

onset of an acute retroviral syndrome, who had been enrolled

in the Duke-UNC-Emory Acute HIV Consortium [11] and the

GlaxoSmithKline-sponsored Quest study cohorts [12]. In-

cluded data from these cohorts were obtained at single time

points before antiretroviral therapy. Semen data were not in-

cluded for patients with evidence of concurrent sexually trans-

mitted diseases (STDs). To develop a more precise model, viral

dynamics in blood were assessed by combining blood data from

these same cohorts with additional data on blood HIV-1 con-

centrations from individuals with well-characterized acute HIV

infection that had been directly abstracted from the published

literature [9]. When the date of infection for an individual

patient was not known, the date of infection was estimated

assuming a 14-day incubation period, on the basis of previously

published data [13–16]. For all data on patients with acute

infection, blood and semen HIV-1 concentrations were ob-

tained and recorded before antiretroviral therapy, up to 1 year

after HIV-1 infection. Informed consent was obtained from all

participants; human-experimentation guidelines of the US De-

partment of Health and Human Services and/or those of all

participating authors’ institutions were followed in the conduct

of this research.

Patients with long-term HIV-1 infection. Developing the

constructed model of viral dynamics in semen required us to

estimate the distribution of semen HIV-1 concentrations for

patients with chronic HIV-1 infection at virologic set point; for

this purpose, data on semen HIV-1 load were collected from

patients with chronic HIV-1 infection enrolled in previously

published studies at the University of North Carolina at Chapel

Hill and University Hospital in St. Gallen, Switzerland [1]. Data

were included for patients who were HIV-1 antibody positive,

had CD4+ cell counts 1 200 cells/mm3, and had no documented

concurrent STDs.

HIV-1 RNA measurements. HIV-1 RNA concentrations

in semen plasma were determined by use of NucliSens HIV-1

QT (lower limit of detection, !400 copies/mL; NASBA; bio-

Merieux) [17], by use of a modification of the Roche Ultra-

sensitive reverse-transcriptase polymerase chain reaction (lower

limit of detection, !200 copies/mL), or by use of both assays.

Roche PCR was performed as follows: 500 mL of seminal plasma

was mixed with 500 mL of normal human plasma and was

centrifuged for 90 min at 50,000 g. The upper 900 mL of the

supernatant was discarded, and the pellet was resuspended in

the remaining 100 mL and used in the Roche PCR Amplicor

kit, according to the manufacturer’s descriptions. NASBA re-

sults were used for analysis when results of both assays were

available; results for the 2 assays were similar for the subset of

specimens on which both assays were run (P.L.V., unpublished

data). HIV-1 RNA concentrations in blood plasma were de-

termined by use of various commercially available assays.

Study Design

This retrospective cohort study approached the problem of the

probability of transmission of acute HIV-1 infection as follows:

1. The relationship between HIV-1 concentrations and

time was assessed in both semen and blood compartments, for

patients donating both types of samples;
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2. A precise model of viral dynamics in semen was con-

structed on the basis of longitudinally collected blood data and

a hypothesized relationship between blood and semen com-

partments (i.e., parallel compartmental dynamics)—the pre-

diction accuracy of the constructed model was then tested for

agreement with observed data on semen HIV-1 concentration;

and

3. The effect of predicted changes in viral dynamics in

semen on the probability of transmission per coital act over

time during acute HIV-1 infection was explored by combining

the constructed model of viral dynamics in semen with a prob-

abilistic model published elsewhere [1].

Statistical Methods

HIV-1 RNA measurements. Results for either compartment

(blood or semen) that were undetectable were assigned a value

that was one-half the absolute lower limit of detection for the

assay that was used and for that compartment. All HIV-1 RNA

data were then log-transformed before analysis.

Descriptive viral dynamics in semen. For patients with

concurrent blood and semen HIV-1 load values, individual ob-

servations were plotted versus the time from infection. Cor-

relation of blood and semen HIV-1 concentrations and trends

in semen HIV-1 RNA concentration over time were assessed

by use of Pearson’s correlation. Descriptive regression mod-

els on the observed semen data were compared by use of the

likelihood ratio test.

Construction of model of viral dynamics in semen. Be-

cause descriptive models were based on relatively few semen

samples obtained from study subjects before the initiation of

antiretroviral therapy, we constructed a model of viral dynamics

in semen starting with more-abundant data on blood HIV-1

concentrations in samples obtained from untreated patients

with acute HIV-1 infection: a piecewise polynomial linear

mixed model [18] with a covariance structure based on random

coefficients was first used to obtain the population average

curve for blood data. Knots for the piecewise regression were

chosen on the basis of a grid search for maximum likelihood

estimators, with peak viremia estimated to occur on day 20,

and the period of chronic infection estimated to begin on day

54. The mean HIV-1 RNA load was assumed to be �6.00 log

copies/mL on day 0, for consistency with previous reports [9].

A predictive average semen HIV-1 curve was made by adjusting

the model of viral dynamics in blood so that the predicted set

point matched the mean semen HIV-1 concentration for a

population of 42 patients with chronic HIV infection and CD4

cell counts 1200 cells/mm3. The prediction accuracy of the final

constructed model was assessed in terms of agreement between

predicted and observed values, as measured by the number of

observed data points falling within prediction bands around

the predicted population curve in the final constructed model.

Estimation of probability of transmission for hypothetical

partnerships during acute HIV-1 infection. To estimate the

effect of changes in semen HIV-1 load on an individual’s in-

fectiousness during acute infection, probabilities of male-female

transmission per coital act were calculated from predicted se-

men HIV-1 RNA load values, for hypothetical partnerships, by

use of a probabilistic model published elsewhere [1]. As put

forth by Chakraborty et al. [1], this model based estimates of

probability of transmission per coital act on rates observed

among HIV-serodiscordant couples and on an assumption that,

for any individual partnership, this probability was primarily

determined by the absolute R5 HIV-1 count per ejaculate, for

the male partner, and by the CCR5+ cervicovaginal receptor-

cell density, for the susceptible female partner. By reconciling

distributions for these parameters, which were observed in clin-

ical studies, with observed transmission rates, Chakraborty et

al. were able to estimate the effects of varying either parameter

on the probability of transmission within hypothetical part-

nerships. To do the same, using the present data, we estimated

inputs to the model of Chakraborty et al., assuming 100% R5

HIV-1 in semen during acute infection, 70% R5 in semen for

patients with chronic infection [19], a median ejaculate volume

of 2.30 mL [1], and a median cervicovaginal receptor-cell den-

sity of 184.8 CCR5+ cells/mm3 [20]. Predicted semen HIV-1

curves were generated by adjusting the curve from the con-

structed model on viral dynamics in semen to match (at day

54) R5 HIV-1 counts in semen for representative men at set

point. The estimated probability of transmission for partner-

ships including these men were then plotted versus the time

from infection. Probabilities of transmission within partner-

ships in which the partners had different frequencies of un-

protected coitus during the period from day 0 to day 54 were

calculated assuming regular coitus at evenly spaced intervals,

beginning on day 0.

RESULTS

Excretion of HIV-1 in semen during acute infection. To

assess the dynamics of the excretion of HIV-1 in semen during

acute HIV-1 infection, we examined concurrent blood and se-

men HIV-1 RNA concentrations in samples from 30 men with

acute HIV-1 infection participating in 2 large, acute-infection

cohorts. All semen samples from subjects with acute infection

were donated 14–84 days (median, 38 days) after the estimated

date of infection. Semen HIV-1 RNA concentrations were sim-

ilar between cohorts. Overall, in samples from men with acute

infection, semen HIV-1 RNA concentrations (mean � SD,

log copies/mL) were significantly higher than those4.1 � 1.14

in samples from a comparison group of 42 antiretroviral treat-

ment–naive men with chronic HIV-1 infection (mean � SD,

log copies/mL) ( ). Semen HIV-1 RNA con-3.49 � 1.28 P p .04
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Figure 1. Regression model on semen data. Concurrent, pre-antiret-
roviral-therapy HIV-1 concentrations in semen (black circles) and blood
(white circles) are shown plotted vs. the estimated time from infection,
for men with acute HIV-1 infection without sexually transmitted diseases
( ). A cubic regression model on observed semen HIV-1 concen-n p 30
tration data (solid black line) is shown, along with its 95% confidence
intervals (interrupted black line).

Figure 2. Population average curve for longitudinal blood data. The average fitted curve (heavy black line) for the longitudinal HIV-1 load measurements
( ) was obtained by use of a piecewise polynomial linear mixed model. Its 95% confidence intervals are shown by the thinner black lines.n p 171
Longitudinal data for each patient ( ) are displayed in gray.n p 53

centrations determined close to the time of the onset of symp-

toms were significantly higher than those determined later dur-

ing acute infection ( ). The fitted cubic regression curveP ! .01

for the semen data (figure 1) closely resembled the form of

previously published models [6–9] describing viral dynamics

in blood; this curve had a statistically significantly better fit

than did the alternate quadratic regression curve ( ).P ! .0001

In addition, we found that acute-infection blood and semen

HIV-1 concentrations were significantly correlated over time,

despite a likely rapid flux in these measurements within indi-

viduals (Pearson’s correlation, 0.37; ).P p .04

Modeling viral dynamics in semen. Although these cross-

sectional data suggested similar dynamics in blood and semen,

the resultant descriptive model had insufficient prediction ac-

curacy to allow estimation of the dynamics of the probability

of transmission. However, we had access to abundant, longi-

tudinally obtained blood data, which we used to develop a more

precise model of viral dynamics in semen. We reasoned that,

if the relationship between blood and semen HIV-1 concen-

trations were relatively constant within each individual in a

population during acute infection, then the scatter of semen

HIV-1 concentrations plotted versus time, for a population,

would parallel changes in blood plasma viremia in the same

population. We therefore constructed a predictive model of

viral dynamics in semen, from blood data, assuming the hy-

pothesized relationship, and then assessed the prediction ac-

curacy of this constructed model in terms of agreement between

predicted and observed semen HIV-1 RNA load values, fol-

lowing a paradigm frequently used to study population phar-

macokinetics. A blood curve representing mean log10 HIV-1

RNA concentration was constructed on 171 longitudinal blood

HIV-1 concentration data points, for 53 patients (mean follow-

up, 12.4 days; median follow-up, 1 day; range, 1–80 days), by

use of piecewise polynomial regression (figure 2) [18]. This

curve demonstrated an initial rapid increase in blood HIV-1

load, reaching an estimated average peak HIV-1 RNA load of

5.93 log copies/mL at day 20 after infection (6 days after onset

of symptoms, for patients with an acute retroviral syndrome)

and declining to 4.74 log copies/mL by day 54 (day 40 after

onset of symptoms). Assuming parallel dynamics in blood and

semen, we constructed a predictive average semen probabilities

curve by adjusting the model of viral dynamics in blood so

that the predicted set point matched the mean semen HIV-1

concentration for patients with chronic HIV-1 infection and

CD4 cell counts 1200 cells/mm3. Finally, we measured the pre-
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Figure 3. Observed and predicted semen HIV-1 RNA distributions.
Semen plasma HIV-1 RNA concentrations (black circles) are superimposed
on a prediction band representing the constructed model on viral dynamics
in semen. Prediction bands were defined by adjusting the average fitted
blood curve so that predicted values at day 54 (virologic set point) matched
a distribution of semen HIV-1 concentrations in men with long-standing
HIV-1 infection ( ). The band shown here is defined by the predictedn p 42
population SD.mean � 1

Figure 4. Calculated probabilities of transmission per coital act over
time. Calculated probabilities of transmission for hypothetical partnerships
involving a female partner of average susceptibility are shown, as they
change over time, for 3 representative individuals with acute HIV-1 in-
fection. Viral dynamics in semen were assumed to follow those of the
constructed model on viral dynamics in semen, adjusted to match the
position of a given individual in the distribution of semen HIV-1 load
values at day 54 among men with long-standing HIV-1 infection. Cal-
culated probabilities for individuals at the 25th (black), 50th (dark gray),
and 75th (light gray) percentile semen HIV-1 load values are shown,
assuming fixed, average partner susceptibility.

diction accuracy of the constructed model by calculating the

number of semen HIV RNA values from the primary infection

cohorts that fell within prediction bands around the predicted

population curve (figure 3). Predictions of the constructed

model of viral dynamics in semen were in excellent agreement

with the distribution of timed semen HIV-1 concentrations:

77% of semen HIV-1 load values were within 1 SD of the

predicted population mean, on the basis of the distribution of

set-point concentrations for patients with chronic HIV-1 in-

fection. Altering the assigned value for initial inoculum by 100-

fold (i.e., by 2.0 log) in either direction had a minimal (con-

sistently !11%) effect on peak and set-point HIV-1 load

estimates generated by the model. Changing this parameter had

no effect on the prediction accuracy of the constructed model.

An alternative model, imposing a shift of 14 days in the time

to peak HIV RNA level between blood and semen, showed

lesser agreement with observed semen HIV-1 load values.

Dynamics of the probability of transmission. To better

understand the effect of the changes in semen HIV-1 load pre-

dicted by our constructed model of viral dynamics in semen

on an individual’s infectiousness during acute infection, we

used the previously published probabilistic model of Chakra-

borty et al. [1], treating male-female sexual transmission of

HIV-1 as a function of R5 HIV-1 count in an ejaculate and

CCR5+ receptor-cell density in cervicovaginal tissues. We ex-

plored the effect of varying semen HIV-1 concentrations on

the probability of transmission in a hypothetical partnership.

By assuming the accuracy of the constructed model of viral

dynamics in semen, we generated predicted semen HIV-1

curves for men with representative semen HIV-1 concentrations

at day 54. We then derived estimates of the dynamics of the

probability of transmission, assuming average susceptibility in

a hypothetical partner (figure 4). We estimated that, at the time

of peak viremia predicted by our constructed model (day 20

after infection), the probabilities of transmission per coital act,

for individuals at the 25th, 50th, and 75th percentiles of the

observed distribution of semen values for men at set point,

were 1/1099, 1/213, and 1 transmission event/53 coital acts,

respectively (table 1). For calculations of the probabilities of

transmission within hypothetical partnerships in which the

partners had different frequencies of unprotected coitus during

the period from day 0 to day 54, we assumed average suscep-

tibility of the partner, no change in the susceptibility of the

partner during this time, and regular coitus at evenly spaced

intervals, beginning on day 0. The probabilities of transmission

within stable partnerships, assuming 8 coital acts/month over

the course of 54 days of infection, were 0.6%, 3.2%, and 12.4%,

respectively, for the same categories of individuals as above.

DISCUSSION

The present study has provided empirical evidence that men

with acute HIV-1 infection are biologically hyperinfectious be-

cause of increased genital shedding of HIV-1. In addition, the

present study has provided evidence that, during acute infec-

tion, HIV-1 load increases and decreases in semen in approx-
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Table 1. Calculated probabilities of HIV-1 transmission for susceptible female partners of men with acute HIV-1 infection.

Semen HIV-1
RNA concentration
percentile, days
from infection

Semen HIV-1 RNA
concentration,

log10 HIV-1 RNA
copies/mL

Point estimate of
probability of HIV-1

transmission/coital act
(95% confidence bound)

Estimated
odds of HIV-1
transmission/

coital act
Fold change
(day 20–54)

Probability of transmission
during acute phase (day 0–54)
in a partnership with a given

frequency of unprotected coitus

4 acts/
month

8 acts/
month

16 acts/
month

75th

20 5.19 0.019 (.009, .041) 1:53 8.3 0.065 0.124 0.232

54 4.00 0.0023 (.0013, .0038) 1:435

50th

20 4.40 0.0047 (.0022, .00996) 1:213 8.5 0.016 0.032 0.062

54 3.21 0.00055 (.00032, .00092) 1:1818

25th

20 3.49 0.00091 (.00042, .00195) 1:1099 9.1 0.003 0.006 0.012

54 2.30 0.0001 (.00006, .00018) 1:10,000

imate parallel with changes occurring in blood, which have

been well described. Our present model of viral dynamics in

semen suggests that, on average, individuals are hyperinfectious

beginning before the onset of the acute retroviral syndrome

and continuing for ∼6 weeks thereafter.

In a study of discordant couples in Uganda, Gray et al. [2]

provided compelling evidence that blood HIV-1 load influences

the probability of heterosexual transmission; Chakraborty et al.

[1] developed a model to predict the transmission of HIV-1

from an infected man to his female partner on the basis of

semen HIV-1 concentration, and the predictions of that model

were in close agreement with the empirical results from the

study of couples in Uganda. In the present study, we used this

probabilistic model to examine the effect of excretion of HIV-

1 in semen during acute HIV-1 infection on sexual transmis-

sion, for a given population. We focused specifically on a pop-

ulation of men with clade-B HIV-1 infection who had no

evidence of other STDs. For an average individual in this pop-

ulation, the results suggested a very high average probability

of heterosexual transmission (0.0047 or 1 transmission event/

213 coital acts), ∼20 days into acute infection. These men would

be expected to transmit virus to 2%–6% of female sex partners

during the first 2 months of infection. These data contrast with

very low rates projected for this population on the basis of

probabilities seen in established infection [3]. Of importance,

men in sub-Saharan Africa with clade-C HIV-1 infection have

3–4-fold higher semen HIV-1 loads [21], even without STD

coinfection. Assuming no STDs for either the index patient or

the partner, an average man with acute HIV-1 infection in sub-

Saharan Africa would, conservatively, infect 7%–24% of female

sex partners during the first 2 months of infection. In part-

nerships in which either partner had an STD, this rate could

exceed 50%.

All these estimates of the probability of transmission during

acute infection should be considered as minimal estimates, for

several additional reasons. First, average fitted curves for pop-

ulations tend to blunt individual peak values when individual

curves are asynchronous—which is almost certainly the case

in patients in our study and, hence, in our final constructed

model. Second, overall, genital fluid HIV-1 inoculum is only

1 potentially important biological determinant of individual

infectiousness. A given inoculum of HIV-1 may be expected to

have higher infectious potential during acute infection, since

early variants (typically R5) are very homogeneous in env and

are closely related to successfully transmitted strains. The ab-

sence of antibodies to HIV-1 in infectious body fluids early

during acute infection might also increase the potential of trans-

mission. Third, other factors related to increased susceptibility

of the partner (e.g., frequent genital ulceration or absence of

acquired mucosal immunity [22–24]) or high rates of partner

change and riskier modes of sexual interaction [25] would be

expected to amplify the effect of increased infectiousness during

acute HIV-1 infection on probability transmission and spread

within sexual networks [26].

A number of lines of epidemiologic evidence suggest that

acute infection fuels heterosexual spread of HIV-1. Both look-

back studies examining transmission rates [27, 28] and case

series documenting rapid secondary transmission [13, 29] have

suggested an elevated risk of transmission per coital act, relative

to chronic infection. In addition, mathematical modeling stud-

ies [26] and evidence of extensive case-clustering among acutely

infected patients [29] have demonstrated that acute HIV-1 in-

fection may play an important role in the pandemic.

The present study used cross-sectional data and cannot ac-

count for possible selection bias with regard to the time samples

were obtained from patients. It is also not possible to completely

evaluate the influence of potential confounders, such as STDs

or differences in viral subtype or phenotype, in the study pop-
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ulation. In addition, patients with symptomatic, acute HIV-1

infection may have higher than average blood HIV-1 loads;

however, in the present study, higher blood HIV-1 load values

would not necessarily lead to overestimation of the probability

of transmission, given the way that our particular model was

constructed. Moreover, the present study’s weaknesses are

counterbalanced by important strengths. By pooling longitu-

dinally collected blood data from multiple studies, we were able

to develop a model of viral dynamics for a population, with

precision and predictive power. The hypothesis-driven statis-

tical approach that we used to assess viral dynamics in semen

in the present study may have promise in assessing other clinical

situations and difficult-to-sample tissue compartments, such as

the female genital tract or the central nervous system. Finally,

the present study directly relates measured changes in genital

HIV-1 shedding to probability of transmission, by use of the

empirically derived model of Chakraborty et al. [1]. The pro-

jections derived from the model of Chakraborty et al., on the

basis of our estimates of viral dynamics in semen, cannot ac-

count for the influence of variations in the susceptibility of

female partners; nonetheless, the ability to estimate the effect

of measurable biological phenomena on the probability of HIV-

1 transmission is a powerful tool that could be useful in mod-

eling HIV-1 prevention strategies. In particular, the observation

that, in the absence of STDs, viral dynamics in blood during

acute HIV infection may accurately reflect viral dynamics in

the genital tract allows more-confident exploration of the effects

of interventions early during HIV disease on transmission in

populations.

Only a small number of the estimated 40,000 acute HIV-1

infections that occur annually in the United States [30] are

diagnosed, and there are few specific public health systems in

place to facilitate identification or management of the syn-

drome. It has been assumed that, because of the brevity of

acute infection, individuals with acute infection would make a

minor contribution to the epidemic. However, the efficiency

of transmission predicted by the present study forces recon-

sideration of such assumptions and underscores acute HIV-1

infection as a unique public health opportunity [31]. This may

be particularly true in sub-Saharan Africa. Public health inter-

ventions directed at acutely infected individuals, including safe-

sex counseling, condom promotion, and antiretroviral therapy,

can decrease sexual infectivity to the extent that sexual practices

are altered and/or HIV-1 load is reduced over time. These effects

are maximized when introduced early during infection and at a

time of high transmission potential. The potential clinical benefits

[32] of acute antiretroviral treatment for individual patients who

are diagnosed during antibody-negative acute infection further

emphasize the need for improved and early identification of cases

of HIV-1 infection. Treatment considerations for recent sex con-

tacts should include both prospective screening for acute and

chronic HIV infection and appropriate screening for other sex-

ually transmitted pathogens. An estimated average probability of

sexual transmission of 1 transmission event/213 coital acts—a

risk of HIV-1 acquisition similar to that associated with percu-

taneous blood exposures in the setting of chronic HIV-1 infection

[33]—may further warrant rapid identification and notification

of potentially exposed partners, with possible provision of post-

sexual-exposure prophylaxis.

The benefits potentially associated with diagnosis of acute

HIV-1 infection are likely to be greatest if cases of infection

are identified around the period of peak viremia, a circumstance

that is, at present, rare. Public health strategies that may aid

in the identification of early acute infections include incor-

porating pooling and nucleic acid screening into routine HIV-

1 testing [34] and developing more-effective acute HIV-infec-

tion referral networks [12]. These efforts may make it possible

to implement a proactive response to prevention of transmis-

sion by patients with acute HIV-1 infection and to facilitate

these patients’ early entry into care.
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Members include the following: D. Cooper (Australia); B. Hoen

and B. Autran (France); S. Kinloch, A. Phillips, F. Lampe, and

G. Janossy (United Kingdom); C. Tsoukas and R. Sekaly (Can-

ada); J. Andersson (Sweden); V. Miller and Z. Racz (Germany);

clinicians in 120 recruiting centers; and the supporting team of

GlaxoSmithKline (V. Mallet, S. Turkish, S. Fortes, C. Python, M.

Haberl, and L.-E. Goh [Quest project leader United Kingdom]).
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B. Dale and A. Capt (Roche Molecular Systems), and R. Moss
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