
Mon. Not. R. Astron. Soc. 399, 1482–1494 (2009) doi:10.1111/j.1365-2966.2009.15363.x

The initial shear field in models with primordial local non-Gaussianity
and implications for halo and void abundances

Tsz Yan Lam,1,2� Ravi K. Sheth1� and Vincent Desjacques3�
1Center for Particle Cosmology, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104, USA
2Institute for the Physics and Mathematics of the Universe, University of Tokyo, Chiba 277-8582, Japan
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ABSTRACT

We generalize the Doroshkevich’s celebrated formulae for the eigenvalues of the initial shear
field associated with Gaussian statistics to the local non-Gaussian fnl model. This is possible
because, to at least second order in fnl, distributions at fixed overdensity are unchanged from
the case fnl = 0. We use this generalization to estimate the effect of fnl �= 0 on the abundance
of virialized haloes. Halo abundances are expected to be related to the probability that a
certain quantity in the initial fluctuation field exceeds a threshold value, and we study two
choices for this variable: it can either be the sum of the eigenvalues of the initial deformation
tensor (the initial overdensity) or its smallest eigenvalue. The approach based on a critical
overdensity yields results which are in excellent agreement with numerical measurements.
We then use these same methods to develop approximations describing the sensitivity of void
abundances on fnl. While a positive fnl produces more extremely massive haloes, it makes
fewer extremely large voids. Its effect thus is qualitatively different from a simple rescaling
of the normalization of the density fluctuation field σ 8. Therefore, void abundances furnish
complementary information to cluster abundances, and a joint comparison of both might
provide interesting constraints on primordial non-Gaussianity.

Key words: methods: analytical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Detections of non-Gaussianity can discriminate between different inflation models (e.g. Maldacena 2003). The local fnl model, where the
primordial perturbation potential is

� = φ + fnl(φ
2 − 〈φ2〉), (1)

where φ is a Gaussian potential field and fnl is a scalar, this has been the subject of much recent study (e.g. Buchbinder, Khoury & Ovrut
2008; Khoury & Piazza 2009; Silvestri & Trodden 2008, and references therein). Constraints on this model tend to be of two types – from
the CMB (Hikage et al. 2008; McEwen et al. 2008; Yadav & Wandelt 2008; Komatsu et al. 2009; Rossi et al. 2009) and from large-scale
structures in the Universe (Koyama, Soda & Taruya 1999; Matarrese, Verde & Jimenez 2000; Scoccimarro, Sefusatti & Zaldarriaga 2004;
Izumi & Soda 2007; Sefusatti & Komatsu 2007; Afshordi & Tolley 2008; Carbone, Verde & Matarrese 2008; Dalal et al. 2008; Desjacques,
Seljak & Iliev 2009; Grossi et al. 2008; Lo Verde et al. 2008; Matarrese & Verde 2008; McDonald 2008; Pillepich, Porciani & Hahn 2008;
Slosar et al. 2008; Taruya, Koyama & Matsubara 2008; Grossi et al. 2009; Kamionkowski, Verde & Jimenez 2009; Lam & Sheth 2009b;
Slosar 2009).

The initial shear field is expected to play an important role in the formation of large-scale structures (Zel’Dovich 1970; Bond & Myers
1996; Lee & Shandarin 1998, hereafter LS; Sheth, Mo & Tormen 2001; Bernardeau et al. 2002; Desjacques 2008). The main goal of the
present work is to show that much of the machinery developed for the study of structure formation from Gaussian initial conditions can be
carried over, with minor modifications, to the study of fnl models. We do so by showing how to generalize the Doroshkevich’s celebrated
formulae for the eigenvalues of the initial shear field associated with Gaussian statistics (Doroshkevich 1970) to the local non-Gaussian fnl

model.
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We then study how the abundance of virialized dark matter haloes depend on fnl. This study focuses on two problems: one is the physical
model for halo formation, and the other is the statistical problem of how this collapse model is used to estimate the abundance of such
collapsed objects. We use the approach pioneered by Press & Schechter (1974) (hereafter PS) and refined by Bond et al. (1991) to address
the statistical problem (see Maggiore & Riotto 2009a; Lam & Sheth 2009a, for recent extensions which treat the fnl �= 0 case). We study two
different models for the physics of halo formation: one in which haloes form from sufficiently overdense regions in the initial fluctuation field
(PS; Sheth et al. 2001), and another in which the criterion for halo formation is that all three eigenvalues of the initial deformation tensor
exceed a certain value (e.g. LS). In the former, we use the triaxial collapse model of Bond & Myers (1996) to estimate this critical overdensity
(following Sheth et al. 2001). If our way of estimating halo abundances are reliable, then comparison with simulations run for a range of fnl

values provides a novel way to study the physics of gravitational clustering.
Section 2 provides explicit expressions for the initial eigenvalue distribution, and for the initial distribution of the variables which arise

naturally in the context of triaxial collapse models. These are used, in Section 3, to estimate how the mass function of virialized objects is
modified when fnl �= 0. This section also shows the result of comparing these estimates with measurements in simulations. With some care
(e.g. Sheth & van de Weygaert 2004), much of the analysis can be carried over straightforwardly to study void abundances; this is the subject
of Section 4. A final section summarizes our results. An Appendix describes an alternative estimate of halo abundances which is logically
consistent with previous work, but which does not reproduce the fnl dependence seen in simulations.

2 TH E L O C A L N O N - G AU S S I A N M O D E L

We are interested in models where the primordial perturbation potential is given by equation (1). We will use P φ(k) to represent the power
spectrum of φ; in what follows, we will set Pφ(k) = Akns−4, where ns ≈ 1, and A is a normalization constant that is fixed by requiring that
the rms fluctuation in the associated non-Gaussian initial density field (which we will define shortly) has value σ 8. The power spectrum and
bispectrum of the � field are

P�(k) = Pφ(k) + 2f 2
nl

(2π)3

∫
d q
[
Pφ(q)Pφ(|k − q|) − Pφ(k)Pφ(q) − Pφ(k)Pφ(|k − q|)] , (2)

B�(k1, k2, k12) ≡ 2fnl

[
Pφ(k1)Pφ(k2) + cyclic

]+ O
(
f 3

nl

)
(3)

(Scoccimarro et al. 2004).

2.1 The shear or deformation tensor

Define D as the real, symmetric 3 × 3 tensor whose components are proportional to the second order derivatives of the potential �:

�ij ≡ φij + 2fnl(φiφj + φφij ), (4)

where φi = ∂i φ and φij = ∂i∂jφ. We will sometimes refer to D as the shear field associated with the potential �. Correlations between the �ij

will be very useful in what follows. These depend on the correlations between φ and its derivatives but, because φ is Gaussian, they can be
computed easily. Doing so shows that the six components of D are not independent: although the three off-diagonal terms are not correlated
with the others, the three diagonal terms are. However, if we set

x =
∑

i

�ii , y = 1

2
(�11 − �22), z = 1

2
(�11 + �22 − 2�33), (5)

then these three parameters, combined with (�12, �23, �31), form a new set of six independent components (Bardeen et al. 1986). When
fnl = 0, then each of these is an independent Gaussian random field.

Most of the complication in fnl models arises from the fact that we are almost always interested in spatially smoothed quantities.
Fortunately, smoothing is a linear operation, and the new variables x, y, z are just linear combinations of the elements of D. Hence, if W(kR)
denotes the Fourier transform of the smoothing window of scale R, to second order in fnl,

〈x2〉 = σ 2, 〈y2〉 = σ 2

15
, 〈z2〉 = σ 2

5
,

〈
�2

ij

〉
i �=j

= σ 2

15
, (6)

〈x3〉 = 2fnlγ
3 〈y3〉 = 0 〈z3〉 = 0

〈
�3

ij

〉
i �=j

= 0, (7)

where

σ 2 = 1

(2π)3

∫
dk

k
4π k7M2(k) P�(k) W 2(kR), (8)

γ 3 = 2

(2π)4

∫
dk1

k1
k5

1M(k1)W (k1R)
∫

dk2

k2
k5

2M(k2)W (k2R)
∫

dμ12 k2
12 M(k12)W (k12R)

B�(k1, k2, k12)

2fnl

(9)

and M(k) ≡ (3D(z)c2)/(5�m H 2
0) T (k), where T(k) is the cold dark matter transfer function and D(z) is the linear growth function. In what

follows, the quantity σS3 ≡ σ 〈x3〉/〈x2〉2 will play an important role, because it represents the leading order contribution to the non-Gaussianity
(note that it is proportional to fnl). Appendix A in Lam & Sheth (2009a) provides a useful fitting formula for this quantity.
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2.2 Joint distribution of eigenvalues

Equation (7) shows that, to first order in fnl, five of the six parameters have zero skewness, so, to first order in fnl, all but x are drawn from
Gaussian distributions. However, x is the trace of D, so it is the linear theory overdensity δ. If p(δ|R) denotes the distribution of δ when
smoothed on scale R, then the fact that the other variables have the same distribution as in the case fnl = 0 allows one to provide an excellent
analytic approximation to the joint distribution of the eigenvalues. Namely,

p(λ|R) = p(δ|R)
34/4

	(5/2)

(
5

2σ 2

)5/2

exp

(
− 5δ2

2σ 2
+ 15I

2σ 2

)
(λ1 − λ2)(λ2 − λ3)(λ1 − λ3), (10)

where δ ≡ λ1 + λ2 + λ3, I ≡ λ1λ2 + λ1λ3 + λ2λ3, and recall that σ is a function of R. Our convention is λ1 ≥ λ2 ≥ λ3. This has the same form
as the Doroshkevich’s (1970) formula for Gaussian fields; the only difference is that here p(δ|R) is not Gaussian (we provide an expression
for it in equation 13 below).

The fundamental reason why this works is that the Doroshkevich’s formula is actually the product of two independent distributions, one
of δ and the other of a quantity which is a combination of the five other independent elements of the deformation tensor (e.g. Sheth & Tormen
2002). Since the distribution of each of these other elements is unchanged from the Gaussian case (we just showed that they all have zero
skewness), this second distribution is unchanged from that of the Gaussian case – the only change is the distribution of δ. In fact, this holds
for any local mapping � = f (φ) (and is also true for the alignment of the principal axes, see Desjacques & Smith 2008).

2.3 Distributions at fixed δ

One consequence of this is that distributions at fixed δ are the same as in the Gaussian case. For example,

p(λi, λj |δ) = 34/4

	(5/2)

(
5

2σ 2

)5/2

exp

(
− 5δ2

2σ 2
+ 15Iij

2σ 2

)
(λi − λj )(λi + 2λj − δ)(2λi + λj − δ) = p0(λi, λj |δ), (11)

where i �= j can take values from 1 to 3, Iij = λiλj + (λi + λj)(δ − λi − λj) = δ(λi + λj) − (λ2
i + λiλj + λ2

j ), and the subscript 0 indicates the
distribution associated with Gaussian initial conditions, for which fnl = 0. Integrating over one of the eigenvalues in the expression above,
e.g. λi, yields an expression for the distribution of the other at fixed δ. Clearly, such expressions will also be the same as in the Gaussian case.
Hence,

p(λj |δ) = p0(λj |δ) (12)

for j = 1, 2, 3.

2.4 Edgeworth approximation for p(δ|R)

Because we are interested in small departures from Gaussianity, the Edgeworth expansion provides a convenient form for the distribution of
δ:

p(δ|R) dδ ≈
[

1 + σ (R)S3(R)

6
H3

(
δ

σ (R)

)]
e−δ2/2σ 2(R)

√
2πσ (R)

dδ =
[

1 + σS3

6
H3(ν)

]
p0(δ|R) dδ, (13)

where σ (R) is given by equation (8), σS3 ≡ 〈x3〉/〈x2〉3/2 = 2fnl γ 3/σ 3, and H 3(ν) ≡ ν(ν2 − 3) with ν ≡ δ/σ (R) (see Lo Verde et al. 2008
and Lam & Sheth 2009b for previous work with the Edgeworth expansion in the context of fnl models.) The final equality writes p as a
correction factor times the Gaussian distribution p0 to highlight the fact that

p(λ|R) =
[

1 + σS3

6
H3 (δ/σ )

]
p0(λ|R) , (14)

where p0(λ|R) is the Doroshkevich’s formula.

2.5 Distribution of eigenvalues

Replacing p(δ|R) in equation (10) by its Edgeworth expansion and integrating over two of the three eigenvalues, we can write

p(λi) = p0(λi) + σS3

6
�p(λi), (15)

where

p0(λ1) =
√

5

12πσ

⎧⎨
⎩20

λ1

σ
exp

(
− 9λ2

1

2σ 2

)
−

√
2π exp

(
− 5λ2

1

2σ 2

)(
1 − 20

λ2
1

σ 2

)[
1 + erf

(√
2
λ1

σ

)]

+ 3
√

3π exp

(
− 15λ2

1

4σ 2

)[
1 + erf

(√
3λ1

2σ

)]⎫⎬
⎭,

p0(λ2) =
√

15

2
√

πσ
exp

(
−15λ2

2

4σ 2

)
,

(16)
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p0(λ3) = −
√

5

12πσ

⎡
⎣20

λ3

σ
exp

(
− 9λ2

3

2σ 2

)
+

√
2π exp

(
− 5λ2

3

2σ 2

)
erfc

(√
2
λ3

σ

)(
1 − 20

λ2
3

σ 2

)

−3
√

3π exp

(
− 15λ2

3

4σ 2

)
erfc

(√
3λ3

2σ

)⎤
⎦ (17)

and

�p(λ1) =
√

5

12πσ

{
25

27

(
8 − 435λ2

1

4σ 2
+ 100

λ4
1

σ 4

)
exp

(
− 9λ2

1

2σ 2

)
+

√
2π

25λ1

27σ

(
51 − 185

λ2
1

σ 2
+ 100

λ4
1

σ 4

)
exp

(
− 5λ2

1

2σ 2

)(
1 + erf

(√
2
λ1

σ

))

+ 3
√

3π
25λ1

4σ

(
5λ2

1

2σ 2
− 1

)
exp

(
−15λ2

1

4σ 2

)[
1 + erf

(√
3λ1

2σ

)]}
, (18)

�p(λ2) =
(

5

6

)3/2 √
15λ2√
2σ

(
15λ2

2

2σ 2
− 3

)
p0(λ2) =

(
5

6

)3/2

H3

(√
15λ2√
2σ

)
p0(λ2), (19)

�p(λ3) =
√

5

12πσ

[
−25

27

(
8 − 435

4

λ2
3

σ 2
+ 100

λ4
3

σ 4

)
exp

(
− 9λ2

3

2σ 2

)
+

√
2π

25λ3

27σ

(
51 − 185

λ2
3

σ 2
+ 100

λ4
3

σ 4

)
exp

(
− 5λ2

3

2σ 2

)
erfc

(√
2
λ3

σ

)

+ 3
√

3π
25λ3

4σ

(
5λ2

3

2σ 2
− 1

)
exp

(
−15λ2

3

4σ 2

)
erfc

(√
3λ3

2σ

)]
. (20)

These results should be easily extended to the distribution of shear eigenvalues at multiple points (e.g. Desjacques & Smith 2008).

2.6 Distribution of δ, e and p

In addition to the individual probability distributions of the three eigenvalues, we can also derive expressions for the quantities of most interest
in the ellipsoidal collapse model. These are the ellipticity e and prolateness p, where

e = λ1 − λ3

2δ
, and p = λ1 + λ3 − 2λ2

2δ
= 1

2
− 3λ2

2δ
= e − λ2 − λ3

δ
. (21)

The discussion above means that the distribution of e and p at fixed δ are unchanged from the Gaussian case:

g(e, p|δ) = 1125√
10π

e (e2 − p2)

(
δ

σ

)5

e−(5/2)(δ/σ )2(3e2+p2). (22)

However, the distribution of ellipticity is changed:

g(e) =
∫

dp

∫
dδ g(e, p|δ) p(δ) ≡ g0(e) + σS3

6
�g(e), (23)

where

g0(e) = 45e

π

1

(1 + 20e2)(1 + 15e2)5/2

[√
5e
(
1 + 30e2

)√
1 + 15e2 − (1 + 20e2

)
arctan

( √
5e√

1 + 15e2

)]
, (24)

and

�g(e) = −45000√
10π

e

|e| e4

[
4725e6 + 90e4 − 26e2 − 1

(1 + 15e2)4(1 + 20e2)5/2

]
. (25)

To check these expressions, we have used a Monte Carlo method to generate (x, y, z, �12, �23, �31) (all but x are drawn from Gaussian
distributions). We then solve the eigenvalue problem (by solving the associated cubic equation) to obtain (λ1, λ2, λ3) and hence (δl, e, p).
We then compute the distributions of the eigenvalues, and of δ, e and p, and compare them with the associated quantities when fnl = 0. The
symbols in Fig. 1 show our Monte Carlo results when the smoothing scale is 1 h−1 Mpc, and the smooth curves show the analytic formulae
derived above. Note the reflection symmetries in Figs 1 and 2 of the opposite sign of fnl: it is due to that fact switching the sign of fnl only
changes the sign of σ S3/6 without modifying other terms in �p(λi) and �g(e).

3 H A L O A BU N DA N C E S

PS argued that the abundance of collapsed virialized haloes may be estimated from the statistics of the initial fluctuation field. They used the
assumption that haloes form from a spherical collapse to argue that such objects started out as sufficiently overdense regions in the initial
fluctuation field. They then used Gaussian statistics to estimate collapsed halo abundances. Although the way in which they used Gaussian
statistics to make the estimate is flawed, LS suggested that one might be able to provide a better estimate of the abundance of collapsed haloes
by repeating the PS argument, but changing the collapse model to allow halo formation to be non-spherical. In particular, they suggested that
one should identify haloes with regions in the initial field where all three eigenvalues were greater than some critical value, λc. We will use
the analysis above to show how this estimate of the halo mass function depends on fnl.
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Figure 1. Difference between initial distributions in the fnl and Gaussian models for fnl = 100 (lower panels) and fnl = −100 (upper panels) when the
smoothing scale is 1 h−1 Mpc. In both panels, the right and left plots show p(λ1/σ ) (orange curve, triangle symbols) and p(λ3/σ ) (green curve, hexagonal
symbols), respectively. For clarity, these curves have been shifted to the right and to the left by 3. The middle plot shows P (λ2/σ ) (blue curve, square symbols).

Figure 2. Difference between initial distributions of ellipticity e in the fnl and Gaussian models for fnl = 100 (lower panels) and fnl = −100 (upper panels)
when the smoothing scale is 1 h−1 Mpc.

3.1 If halo formation depends on the initial overdensity exceeding a critical value

The PS-like estimate of the mass fraction in haloes above mass M is

F (> M) = F [< σ (R)] =
∫ ∞

δc

dδ p(δ|R) =
∫ ∞

δc

dδ

[
1 + σS3

6
H3

]
p0(δ|R), (26)

where R = (3M/4πρ̄)1/3, so σ (R) is actually a function of M, and δc is the critical density required for collapse in the spherical model. So,

∂F

∂σ
= ∂F0

∂σ
+ ∂(σS3/6)

∂σ

(
νc − ν−1

c

)
νc p0(νc) − σS3

6

∂ ln νc

∂σ
νc p0(νc) H3(νc), (27)

and hence

∂F

∂ ln νc
= ∂F0

∂ ln νc

[
1 + σS3

6
H3(νc) −

(
νc − ν−1

c

) ∂(σS3/6)

∂ ln νc

]
≈ ∂F0

∂ ln νc

[
1 + σS3

6
H3(νc)

]
(28)
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(Lo Verde et al. 2008); the term in brackets is the ratio of the halo mass function when fnl �= 0 to that when fnl = 0 (Lam & Sheth 2009a, argue
that, formally, the term in brackets is not the full story, but that it is, nevertheless, a good approximation.) The ratio (∂F/∂ ln νc)/(∂F 0/∂

ln νc) provides a good description of the fractional change in the halo mass function induced by the coupling parameter fnl (Desjacques et al.
2009), even though the functional form of ∂F 0/∂ ln νc does not provide a good description of halo abundances in Gaussian cosmologies.

Halo abundances in fnl = 0 simulations are usually well approximated by the functional form of Sheth & Tormen (1999):

νf (ν) ≡ ∂F ST
0

∂ ln ν
= 2A

√
a ν
[
1 + (

√
a ν)−2p

] e−aν2/2

√
2π

, (29)

where p = 0.3, a = 0.7 and A = 0.322 comes from requiring that the integral over all ν equal unity. Equation (26) with fnl = 0 would yield
a = 1 and p = 0, so A would be modified appropriately. Recently, Grossi et al. (2009) have studied the effect on the fnl model of simply
setting δc → √

aδc in equation (26). In effect, they ignore the consequences of p �= 0. However, Lam & Sheth (2009a) have shown that when
the non-Gaussianity is weak, then the correction factor for halo abundances is well approximated by

∂F/∂ ln νc

∂F0/∂ ln νc
≈ 1 + σS3

6
H3

(
B(σ )

σ

)
, (30)

where

B(σ, z) = √
a δsc(z)

[
1 + β(

√
a δsc/σ )−2α

]
, (31)

with a = 0.7, β = 0.485, and α = 0.615, is motivated by models of triaxial collapse (Sheth et al. 2001; Sheth & Tormen 2002).

3.2 If halo formation depends on all three initial eigenvalues exceeding a critical value

Suppose that the criterion for halo formation is not that δ, the sum of the eigenvalues, exceeds δc, but that the smallest eigenvalue λ3 exceeds
λc. Then, the analogous argument yields

F (> M) = F [< σ (R)] =
∫ ∞

3λc

dδp(δ|R)
∫ δ/3

λc

dλ3 p(λ3|δ) =
∫ ∞

3λc

dδ

[
1 + σS3

6
H3

]
p0(δ|R) P0(λ3 > λc|δ), (32)

where

P0(λ3 ≥ λc|δ) =
⎧⎨
⎩ − 3

√
10

4
√

π

(δ − 3λc)

σ
exp

[
− 5(δ − 3λc)2

8σ 2

]
+ 1

2

{
erf

[
(δ − 3λc)

√
10

4σ

]
+ erf

[
(δ − 3λc)

√
10

2σ

]}⎫⎬
⎭�(δ − 3λc). (33)

If we define �c ≡ λc/σ (R), then

F (≥ �c) ≡ F0(≥ �c) + σS3

6
�F (≥ �c), where (34)

�F (≥ �c) ≡
∫ ∞

3�c

dν
exp(−ν2/2)√

2π
ν(ν2 − 3) P0(ν − 3�c)

= 53/2

162
√

2π

(
100�4

c − 105�2
c + 9

)
exp
(

− 5�2
c/2
)

erfc(
√

2�c) − 53/2

48
√

3π

(
2 − 15�2

c

)
exp
(

− 15�2
c/4
)

erfc(
√

3�c/2)

+ 125
√

5

648π
�c exp

(
− 9�2

c/2
) (

5 − 8 �2
c

)
.

(35)

The halo mass function is
∂F

∂�c
= ∂F0

∂�c
+ ∂ (σS3/6)

∂�c
�F (≥ �c) + σS3

6

∂ (�F )

∂�c
,

∂F0

∂�c
= −

√
10√
π

(
5�2

c

3
− 1

12

)
exp

(
−5�2

c

2

)
erfc(

√
2�c) −

√
15

4
√

π
exp

(
−15�2

c

4

)
erfc

(√
3�c

2

)
+ 5

√
5

3π
�c exp

(
−9�2

c

2

)
,

∂ (�F )

∂�c
= 25

2

√
5

2434π

⎡
⎣exp

(
−9�2

c

2

) (
64 − 870�2

c + 800�4
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(36)
Note that
∂F

∂�c
�= ∂F0

∂�c

[
1 + σS3

6
H3(�c) − (�c − �−1

c

) ∂ (σS3/6)

∂ ln �c

]
. (37)

Thus, in this case, the fnl modification to the halo mass function is qualitatively different from that associated with the spherical evolution
model.

We mentioned above that the ratio (∂F/∂ ln νc)/(∂F 0/∂ ln νc) is well described by the term in brackets in equation (28). Since νc and
�c are linearly proportional to one-another, it is interesting to ask if (∂F/∂ ln �c)/(∂F 0/∂ ln �c) is also well described by the term in brackets
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Figure 3. Halo multiplicity function ∂F/∂ ln ν for the Gaussian simulations at z = 0.3. Black symbols show the measurements from simulations; short-long-
dashed, dotted, dot-dashed and solid curves show equations (26), (36), (29) and (29) with a new normalization (A = 0.26), respectively.

in equation (28). (We have already shown that this ratio is not described by simply replacing νc → 3�c.) Fig. 4 shows that it is not. Thus, if
we were certain that the logic which leads to this estimate of the mass function were reliable, then we would conclude that, by studying how
halo abundances depend on fnl, we may have learnt something important about the physics of halo formation: the initial overdensity matters
more than the value of the smallest eigenvalue.

3.3 Comparison with measurements from numerical simulations

Fig. 3 shows the multiplicity function measured in the fnl = 0 simulations of Desjacques et al. (2009), where a detailed description of the runs
can be found. (Our analysis is complementary to that of Pillepich et al. 2008, who have recently run a large set of simulations of the fnl model;
they studied halo abundances and clustering in their simulations.) Curves show equation (26) (magenta, short-long-dashed), equation (36)
(black, dotted) and equation (29) (cyan, dashed) with δc = 1.66 and λc = 0.41. In contrast to most previous works, equation (36) appears
to give a better fit than equation (29); this may be due to the fact that the halo finder (AHF, see Knollmann & Knebe 2009) is not standard.
(The halo-finder used by Pillepich et al. 2008 is more standard, and they indeed find that equation 29, with standard choices for its free
parameters, works well.) The red solid curve shows equation (29) with a new normalization (A = 0.26) and the agreement with the numerical
measurements is much better.

It is conventional to show the effects of fnl �= 0 on the mass function by ratioing with respect to the fnl = 0 case. The symbols in Fig. 4
show this ratio for fnl = 100 (left-hand panel) and −100 (right-hand panel), respectively. The short-long-dashed, dotted and dot-dashed
curves show these ratios for the same models as in the previous figure (equations 28, 36 and A1). The solid (red) curve shows equation (30).
The estimate motivated by the spherical collapse model (equation 28) describes the measured ratio very well (in agreement with Lo Verde
et al. 2008; Desjacques et al. 2009; Grossi et al. 2009), even though the mass function on which it is based is a bad fit to the fnl = 0 data. On
the other hand, the same logic applied to a prescription based on the smallest eigenvalue (equation 36) fits the Gaussian (i.e. fnl = 0) mass
function reasonably well, but does not describe deviations from non-Gaussianity very well! In addition, the same logic applied to the Sheth &
Tormen (1999) mass function (equation A1) also does not fit the ratio very well. However, our excursion set based approach (equation 30)
seems to match the measurement as well as, if not better than, any of the other methods. Note that it is the only model which matches both
the fnl = 0 mass function, and the fnl �= 0 ratio. We also checked that our excursion set based approach agrees with Pillepich et al. (2008)
fitting formula’s prediction (less than 6 per cent difference in the range of validity of the fitting formula, which is 1.4 < ν < 5).

4 VO I D A BU N DA N C E S

Underdense regions are also a good probe of fnl (Lam & Sheth 2009b). Kamionkowski et al. (2009) have applied the analogue of equation (26)
to study void abundances when fnl �= 0. In what follows, we estimate void abundances associated with the analogue of Section 3.2 by assuming
they are simply the opposite of haloes. However, because of the ‘void-in-cloud’ problem identified by Sheth & van de Weygaert (2004), even
when fnl = 0, these analyses are, at best, appropriate only for the largest voids. Hence, we also discuss the effect of including the correction
for the ‘void-in-cloud’ problem.
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Figure 4. The ratio of halo mass function of fnl = 100 models to the corresponding Gaussian models using equations (28), (30), (A1) and (36), (magenta
short-long-dashed, solid red, cyan dot-dashed and black dotted). Panel on left shows fnl = 100 and panel on the right shows fnl = −100.

4.1 If voids formation depends on all three eigenvalues lying below a critical value

Given a critical value λv, the corresponding mass function of voids is

F (< M) =
∫ 3λv

−∞
dδ p(δ|R)

∫ λv

δ/3
dλ1 p(λ1|δ) =

∫ 3λv

−∞
dδ

[
1 + σS3

6
H3

]
p0(δ|R)P0(λ1 < λv|δ), (38)

where

P0(λ1 ≤ λv|δ) =
{
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]}}
�(3λv − δ). (39)

If we define �v ≡ λv/σ , then the corresponding F 0(≤ �v) and � F (≤ �v) can be obtained by replacing erfc (x) by −[1 + erf (x)] in equations
(34) and (35). The void mass function can be obtained by making the same replacement, so it is
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. (40)

4.2 Void-in-cloud problem: excursion set approach

An important aspect in the void abundance is the overcounting of the voids located inside collapsing regions. The formalism of counting
voids as regions below some critical value [denoted δv in Kamionkowski et al. (2009) and λv in the discussion above] does not account for
this. Sheth & van de Weygaert (2004) examined this problem using the excursion set approach by studying a two barriers problem: δc for
haloes and δv for voids.

We will now extend the calculation of the void-in-cloud effect to models where fnl �= 0. We use the constant barriers to demonstrate
the method. Denote the two constant barriers correspond to the formation of haloes and voids by δc and δv,F (s, δv, δc) as the probability of
a random walk crossing the barrier δv at scale s and it did not cross the other barrier δc. This probability is directly connected to the void
abundances, including the void-in-cloud effect, as the random walk never crossed the halo formation barrier. It is related to the first crossing
distribution f (s, δv) by

F (s, δv, δc) = f (s, δv) −
∫ s

0
dS1 F (S1, δc, δv)f (s, δv|S1, δc), (41)

where the second term on the right-hand side substracts from the first crossing those walks that crossed δc at S1 before crossing δv at s (but
never had crossed δv before S1). Swaping δv and δc:

F (S1, δc, δv) = f (S1, δc) −
∫ S1

0
dS2 F (S2, δv, δc)f (S1, δc|S2, δv). (42)
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Substituting equation (42) into equation (41), we find

F (s, δv, δc) = f (s, δv) −
∫ s

0
dS1 f (s, δv|S1, δc)f (S1, δc) +

∫ s

0
dS1

∫ S1

0
dS2f (s, δv|S1, δc)f (S1, δc|S2, δv)F (S2, δv, δc) (43)

= f (s, δv) +
∞∑

n=1

(−1)n
∫ S0

0
dS1, . . . ,

∫ Sn−1

0
dSn

n−1∏
m=0

f (Sm, δm|Sm+1, δm+1)f (Sn, δn), (44)

where the last expression is obtained after inserting equations (41) and (42) successively. Furthermore, S0 ≡ s and

δn =
{

δv if n is even

δc if n is odd.
(45)

The nth order term in the summation of equation (44) denotes walks that have crossed the two barriers alternatively n times before crossing
δv at s. Below we will work out the predictions of equation (44) for primordial Gaussian perturbations and for models with primordial
non-Gaussianity of the fnl type.

4.2.1 Gaussian initial conditions

We would like to estimate f (s, δv|S, δc), which is the first crossing probability of δv at scale s given it crossed the barrier δc at some scale S

(< s). For Gaussian distributions with sharp-k space filters, f 0(s, δv|S, δc) = f 0(s − S, δv − δc), and equation (44) reduces to

F0(s, δv, δc) = f0(s, δv) +
∞∑

n=1

(−1)n
∫ S0

0
dS1, . . . ,

∫ Sn−1

0
dSn

[
n−1∏
m=0

f0(Sm, δm|Sm+1, δm+1)

]
f0(Sn, δn),

≈ f0(s, δv) exp

(
−|δv|

δc

D2

4ν2
− 2

D4

ν4

)
,

(46)

where the last expression is the approximation given by Sheth & van de Weygaert (2004) with D ≡ |δv|/(δc + |δv|) and ν ≡ δv/
√

s.

4.2.2 Local non-Gaussian fnl models

The calculation of the conditional first crossing probability f (δv, s|δc, S) for the fnl model is analogous to that of halo abundances (Lam &
Sheth 2009a). First, we write down the probability p(s, δ|S, δv) as

p(s, δ|S, δc) =
∫ s

S

dS ′ f (S ′, δv|S, δc) p(s, δ|S ′, δv|S, δc), (47)

provided that δ < δv. So,

P (s, δv|S, δc) ≡
∫ δv

−∞
dδ p(s, δ|S, δc) =

∫ s

S

dS ′ f (S ′, δv|S, δc)
∫ δv

−∞
dδ p(s, δ|S ′, δv|S, δc). (48)

The derivative with respect to s is

∂P (s, δv|S, δc)

∂s
= f (s, δv|S, δc)

2
+
∫ s

S

dS ′ f (S ′, δv|S, δc)
∂

∂s

∫ δv

−∞
dδ p(s, δ|S ′, δv|S, δc). (49)

The above equation is an integral equation for f (δv, s|δc, S) and its zeroth-order solution is given by the left-hand side of the equation (which
can be evaluated using the bivariate Edgeworth expansion). We argue that, in analogy to the calculation of the halo abundance, the first-order
solution is negligible compared to the zeroth order. Therefore, we can make the following approximation:

f (s, δv|S, δc) ≈ 2
∂P (s, δv|S, δc)

∂s
. (50)

Note that for Gaussian distributions,

∂P0(s, δv|S, δc)

∂s
= ∂

∂s

∫ (δv−δc)/
√

s−S

−∞
dx

e−x2/2

√
2π

,

= −(δv − δc)

2(s − S)

exp[−(δv − δc)2/2(s − S)]√
2π(s − S)

,
(51)

which is the expected conditional distribution for Gaussian statistics.
In Appendix B, the right-hand side of equation (50) is evaluated using the Edgeworth expansion. Here, we will approximate the

conditional first crossing probability by

f (s, δv|S, δc) ≈ f0(s, δv|S, δc)

[
1 + σS3

6
ζ (s, δv, S, δc)

]
, (52)

where

ζ (s, δv, S, δc) = −2
∂E(s, S)

∂s

(s − S)3/2

|δv − δc| − E(s, S)
|δv − δc|√

s − S
. (53)
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Figure 5. Predicted void abundances for Gaussian initial conditions. Solid (black) curve shows equation (46) with (δv, δc) = (−2.81, 1.66). Long-dashed
(cyan), dot-dashed (magenta) and short-long-dashed (green) curves are the solution to equation (44) with n = 2, 3, 4, respectively. Predictions without the
void-in-cloud effect are also shown: dotted (red) is the zeroth order solution of equation (44), which is equivalent to the PS result; short-dashed (blue) shows
the prediction from the LS formalism (equation 40 with λv = −0.69).

Substituting equation (52) into equation (44) and keeping only terms linear in (σ S3/6), we can recast the integral equation into the form

F (s, δv, δc) = F0(s, δv, δc) + σS3

6

⎧⎨
⎩f0(s, δv)H3

(
δv√
s

)

+
∞∑

n=1

(−1)n
∫ S0

0
dS1, . . . ,

∫ Sn−1

0
dSn

[
n−1∏
m=0

f0(Sm, δm|Sm+1, δm+1)

]
f0(Sn, δn)

[
n−1∑
m=0

ζ (Sm, δm, Sm+1, δm+1) + H3

(
δn√
Sn

)]⎫⎬
⎭.

(54)

4.3 Comparison of models

Fig. 5 shows theoretical expectations of void abundances when fnl = 0: the solid (black) curve shows equation (46) with (δv, δc) = (−2.81,
1.66). The long-dashed (cyan), dot-dashed (magenta) and short-long-dashed (green) curves show equation (44), keeping terms up to n = 2,
3, 4, respectively. The zeroth order solution of equation (44) without the void-in-cloud effect is shown as the dotted (red) curve. It is the first
crossing probability of a constant barrier and is the same as the PS prediction. Finally, the short-dashed (blue) shows the prediction of the LS
formalism (equation 40) with λv = −0.69.

The predictions from the PS formalism and the LS formalism (both without the void-in-cloud effect) are different over a large range of
void size, so comparisons with numerical measurements could distinguish which models describe best the formation of voids. Furthermore,
while the effect of void-in-cloud is significant for small voids, it is negligible for big voids.

The approximation equation (46) provides a very good description of the solution to the integral equation (44), even in the regime of
very small voids (ν2 ∼ 0.5) for which equation (44) requires the inclusion of high order terms. If one characterizes the accuracy of the n-order
term by the smallest ν at which the inclusion of the next order term modifies the result by less than 1 per cent, then the second and third
orders are accurate for ν � 0.9 and �0.6.

Fig. 6 compares the ratio of the void abundances for fnl �= 0 relative to the case fnl = 0 for the various analytic approximations described
above. The curve labels are identical to those in the previous figures, except for the solid (black) curve showing equation (28) and an addition
dot-long-dashed (orange) curve showing the same equation upon neglecting the ∂(σS3)/∂s term. These two curves, as well as the short-dashed
(blue) curve, include the scale dependence of σS3 using the approximation formula given in Lam & Sheth (2009a). The other curves [dotted
(red), long-dashed (cyan), dot-short-dashed (magenta) and short-long-dashed (green) for n = 0, 2, 3, 4 in equation 44] assume a constant
σS3 = 0.022. As we can see, unlike halo abundances, a positive value of fnl increases the relative number of big voids, whereas a negative
fnl decreases it.

The overlapping of the solid (black), dot-long-dashed (orange) and dotted (red) curves justifies a posteriori our assumption of constant
σS3. For big voids, the dotted curve deviates only slightly from the other two where it agrees reasonably well with higher order solutions
to the integral equation (44). Hence, the difference between the various curves (apart from the blue short-dashed) are mostly governed by
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Figure 6. Ratio of void abundances of fnl �= 0 to the fnl = 0 case. Left- and right-hand panels show fnl = 100 and −100, respectively. Curve labels are the same
as the previous figure, with the exception of the solid (black) showing the PS prediction (the square brackets in equation 28) and an addition dot-long-dashed
(orange) curve showing the same equation but ignoring the ∂(σS3)/∂s term. Models without the void-in-cloud effect (black solid, blue short-dashed and orange
dot-long-dashed) include the scale dependence of σS3; the others use |σS3| = 0.022.

σS3 rather than the different functional form of the models. Note, however, that the prediction of the LS formalism (blue short-dashed)
considerably departs from the other curves.

Including higher order terms in equation (44) so as to better account for the void-in-cloud effect does not change the results for big
voids. This is expected from our model in which big voids are unlikely to be embedded in a larger collapsing region. However, including the
void-in-cloud effect modifies the ratio of void abundances for the smallest voids. Namely, a positive fnl tend to decrease the number of small
voids. This may originate from an increase of high-mass haloes, which is such that small voids are more likely to sit inside an collapsing
region. Our prediction is at best qualitative because higher order terms are needed to describe accurately the small voids regime [Our results
shown in Fig. 5 indicate that the third order approximation (magenta) is valid only for ν � 0.6]. We have not pursued the inclusion of
higher order corrections here since constant barriers may not be a good approximation for the formation of haloes and voids as suggested
by the analysis of (Gaussian) initial conditions of cosmological simulations. None the less, our formalism allows the incorporation of scale
dependence barriers, which shall be useful when numerical measurements are available.

5 D ISCUSSION

We extended the Doroshkevich’s celebrated formulae for the eigenvalues of the initial shear field associated with Gaussian statistics to the
local non-Gaussian fnl model. We showed that, up to second order in fnl, this is straightforward because, at fixed overdensity, the distribution
is the same as when fnl = 0 (i.e. Gaussian initial conditions). Our analytic formulae are in good agreement with measurements of the
distribution of (λ1, λ2, λ3) in Monte Carlo realizations of the fnl distribution (Figs 1 and 2).

Our extension of the Doroshkevich’s formulae to the local non-Gaussian fnl model provides the first step in the study of triaxial structure
formation in models with primordial non-Gaussianity. This is interesting because, for Gaussian initial conditions, halo formation is more
triaxial than spherical. In particular, in the triaxial collapse model, the evolution of a patch depends on its initial overdensity δ as well as the
parameters e and p, which describe its initial ellipticity and prolateness. We showed that the distribution of e and p at fixed δ is unchanged
from when fnl = 0 (equation 22). Therefore, equation (31), which was determined for fnl = 0 models, should continue to be useful even
when fnl �= 0.

We applied our formulae for the initial shear field to study the change in halo and void abundances in the local non-Gaussian model
(Section 3). When fnl = 0, halo abundances predicted by a model in which halo formation is associated with having all three initial shear
eigenvalues above some critical value are in better agreement with the simulations than those implied by the usual overdensity threshold
criterion (Fig. 3). However, the predicted dependence of f (ν, fnl)/f (ν, 0) fnl is in better agreement with the simulations (see Fig. 4) in the
latter case.

To understand this better, we extended the ellipsoidal collapse formalism to the local non-Gaussian model. We included the moving
barrier formulation of ellipsoidal collapse (Sheth et al. 2001; Sheth & Tormen 2002) using two different approaches. The first is analogous to
that used in the case of spherical collapse (Section A); the predicted dependence on fnl did not agree with measurements from the simulations.
The second is an extension of the excursion set approach following Lam & Sheth (2009a). For the case of a constant barrier (associated with
spherical collapse), this approach reproduces the results of Lo Verde et al. (2008) and Maggiore & Riotto (2009b). Its extension to moving
barriers appears promising since it matches the measured halo counts when fnl = 0 as well as the dependence on fnl (Fig. 4).

For fnl models, differences in the density field evolved from Gaussian and non-Gaussian initial conditions are more dramatic in the
underdense regions (Lam & Sheth 2009b). Fig. 5 shows a number of predictions for void abundances for fnl = 0, while Fig. 6 shows the effect
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of using our triaxial formalism to study how these depend on fnl. The trends are generally like those in the halo abundance, except that the
dependence on the sign of fnl is reversed (compare Figs 4 and 6). This is consistent with the recent work of Kamionkowski et al. (2009). Still,
one might have expected that an excess of massive haloes also implies an excess of large voids (since all the mass is concentrated in a smaller
volume). This is what is indeed found for fnl = 0 when one increases the normalization amplitude σ 8 of the fluctuation field. However, this
is not true in fnl models. In this respect, void abundances provide complementary information to cluster abundances, so a joint comparison
of both could be used to put constraints on the level of non-Gaussianity.

We also demonstrated how the void-in-cloud effect can be included in models where fnl �= 0. We used the constant barriers as an
example. We found that the inclusion of the void-in-cloud effect modifies the abundances of small voids. As a result, models with positive fnl

show a strong decrement in very small voids whereas models with negative fnl show the opposite. This may be due to the enhancement of
high-mass haloes for fnl > 0 which effectively increases the probability of finding small voids inside a high-mass halo. Higher order terms
in equation (44) and a more accurate description of scale dependent barriers will be needed to make more quantitative predictions.

Our results have other applications which we have not completed. The distribution of the eigenvalues of the initial shear field can be used
to study the shapes of haloes and voids; combining the signals with the halo/void abundance and shape distribution would further constrain
the value of fnl. This is a subtle point because, although halo shapes are expected to correlate with the parameters e and p, we have shown
that, at fixed δ, the distribution of e and p does not depend on fnl. Hence, naively, the shape distribution is not informative. In practice, one
usually averages over a range of halo masses. In other words, these will have a range of δ/σ values, so the result of this averaging may
depend on fnl, for the same reason that the distribution of e (equation 23) depends on fnl. And finally, we are in the process of extending our
non-linear redshift space probability distribution function for the dark matter (Lam & Sheth 2008) to these fnl models.
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APPEN D IX A : C RITICAL VA LUE A PPROACH

The derivation of equation (26), which assumes that F is simply related to P, without writing the intermediate steps associated with the
excursion set approach, is ad hoc. For example, if we assume the same logic that leads to equation (26) but choose the integrand p(δ|R) so
that it returns equation (29) in the case fnl = 0, then we find that

νcf (νc) ≡ ∂F

∂ ln νc
= ∂

∂ ln νc

∫ ∞

√
a νc

dν 2A

[
1 + σS3

6
H3

] (
1 + 1

ν2p

)
e−ν2/2

√
2π

,

= ∂ F ST
0

∂ ln νc

(
1 + σS3

6
H3(

√
a νc)

)
+ ∂(σS3/6)

∂ ln νc

2A√
2π

{
e−aν2

c /2

[
aν2

c − 1 +
(
aν2

c

)1−p
]

− 1 + 2p

2p
	

(
1 − p,

aν2
c

2

)
.

}
. (A1)

The first line of this expression has not made its way into the fnl = 0 literature – a testament to how much more popular the excursion
set approach (see below) has become. It does not provide a particularly good description of the measured dependence on fnl, so we do not
consider it further.

A P P E N D I X B: B I VA R I ATE ED G E WO RT H E X PA N S I O N FO R VO I D A BU N DA N C E S

We used the bivariate Edgeworth expansion to study the first crossing probability when fnl �= 0 in Lam & Sheth (2009a). We can define the
analogy of Gmn here:

Qmn =
∫ 0

−∞
dδ p0(δ + δv, s|δc, S)hmn

(
δ + δv√

s
,

δc√
S

,

√
S

s

)
, (B1)

where the hmn were defined in Lam & Sheth (2009a),
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(B2)

with p0(x) = e−x2/2/
√

2π. In addition, we may define

Q3 ≡
∫ 0

−∞
dδ p0(δ + δv, s|δc, S)H3(δc/

√
S) = H3(δc/

√
S)

1 + erf
[
(δv − δc)/2

√
s − S

]
2

. (B3)

If we again ignore the scale dependence of σ S3, then

f (δv, s|δc, S) = 2
∂P (δv, s|δc, S)

∂s
= f0(δv, s|δc, S) − 2

σS3

6

∂

∂s

[
E(s, S)p0

(
δv − δc√

s − S

)]
, (B4)

where E(s, S) is the same as in Lam & Sheth (2009a) with b = δv and B = δc.
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