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Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on
the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which
develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced
by a complex interaction between biological and mechanical factors—mechanical forces regulate the cellular and molecular composition of
plaques and, conversely, the composition of plaques determines their ability towithstand mechanical load. A deeper understanding of these inter-
actions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrat-
ing clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical
characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in
atherosclerosis, we summarize the current ‘state of the art’ on the interface between mechanical forces and atherosclerotic plaque biology and
identify potential clinical applications and key questions for future research.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Atherosclerosis † Haemodynamics † Blood flow † Mechanotransduction † Endothelial cell † Plaque rupture

Biomechanical forces
This Position Paper is focused on the influence ofbiomechanical forces
on the development, function, and pathophysiology of the vasculature.
In each cardiac cycle, blood is transported under pulsatile pressure
through the aorta for distribution to the peripheral organs through
the branching arterial system. The interactions of pulsatile blood
flow with arterial geometries generate complex biomechanical
forces on the vessel wall with spatial and temporal variations.

Thus, arteries are exposed to circumferential and longitudinal
stresses, i.e. perpendicular and longitudinal forces generated by intra-
luminal pressure, and axial stress (shear stress), which acts

longitudinally on the surface of the arterial wall (Figure 1). Blood
vessels alter their morphology and function in response to changes
in blood flow that are detected by vascular cells through decentra-
lized mechanotransduction mechanisms.1,2 Endothelial cells (ECs)
are exquisitely sensitive to shear stress, the frictional force generated
by blood flow. Average wall shear stress in the healthy human aorta
varies from10 to 20 dynes/cm2 and circumferential stress varies from
1 to 2 × 106 dynes/cm2 according to anatomical site. In areas of ar-
terial stenosis (decreased lumen area and thus radius), the same
blood volume is pushed through a lower cross-sectional area and
thus the blood velocity increases and as a consequence the wall
shear stress increases inside the stenotic region. Furthermore, the
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endothelium downstream the stenosis is exposed to disturbed flow
and oscillatory shear stress. Flow simulation studies describe the
complex situation near arterial bifurcations and side branches,
regions associated with disturbed blood flow showing repetitive
phases of flow reversal resulting in steep spatial and temporal gradi-
ents in wall shear stress.3

Biomechanical regulation of
arterial homeostasis
Mechanical forces regulate multiple aspects of vascular physiology
and function and play a key role in vascular development and homeo-
static mechanisms as well as during arterial disease. In the short term,
acute increases in shear stress trigger activation of ECs and the gen-
eration of substances such as nitric oxide (NO) and prostacyclin,
which promote vasodilation. On the other hand, long-term altera-
tions in flow can lead to structural adjustments to restore vascular
and mechanical homeostasis. Arterial remodelling processes includ-
ing angiogenesis (growth of new blood vessels from pre-existing
vessels) and arteriogenesis (collateral artery growth) are highly sen-
sitive to local mechanical conditions.4– 6 Raised levels of shear stress
represent a major stimulus for exercise-induced angiogenesis, a
process that involves NO signalling.7 In addition, increased flow
leads to increases in arterial diameter, which promotes tissue perfu-
sion. For example, animal studies revealed that unilateral carotid

artery occlusion leads to outward remodelling of the contralateral
carotid artery (in response to increased flow) and inward
remodelling of the occluded artery (due to reduced flow).8,9 The mo-
lecular and cellular mechanisms that accompany arterial remodelling
and repair in response to mechanical forces have only been partially
defined. Studies of cultured ECs and animals demonstrated that high
shear stress activates transcriptional programmes that promote prolif-
eration and matrix remodelling, processes that are intimately involved
in structural remodelling of arteries,10,11 as well as survival of ECs by
inhibiting theexpression ofpro-apoptotic factors.12–14 Flowalso influ-
ences EC migration by regulating actin cytoskeleton remodelling, cell
polarity, formation of lamellipodia, and stress fibre contraction;
factors that are essential for cell traction.15

While the effects of shear stress on vascular physiology have been
studied in detail, the effects of mechanical stretch have received little
attention. Thus, although axial and circumferential stretches also play
an important role in regulating EC physiology, vascular cell prolifer-
ation, and matrix remodelling, the mechanisms involved are not
well understood. Mechanical stretch regulates smooth muscle cell
(SMC) functions by inducing deformation of the extracellular
matrix in which SMCs are embedded, a change that is detected by
mechanoreceptors.16 Physiological pulsatile circumferential stress
on the arterial wall maintains medial SMCs in their contractile differ-
entiated state.17,18 In contrast, excessive pressure increase due to
hypertension or compressive forces produced by balloon angio-
plasty and/or stent placement stretches the artery and activates

Figure 1 Biomechanical forces acting on the arterial wall. Blood pressure and blood flow induce forces in the vascular system that deforms the
vessel wall. When forces are to be compared, they need to be normalized to area. Force per area is called stress and is expressed in N/m2 or Pascal
(Pa). Blood pressure produces a force directed perpendicular to the vessel wall. As a consequence, the cylindrical structure will be stretched cir-
cumferentially, resulting in a circumferential stress. Stress in the range of 300–500 kPa is associated with plaque rupture. In contrast, the force
induced by a difference in movement of blood and the non-moving vessel wall leads to stress and strain parallel to the surface of endothelial
cells. Due to its shearing deformation, this is called a shear stress. This shear stress is of small amplitude (1 Pa) and exerts its main effects
through the activation of mechanosensitive receptors and signalling pathways.
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SMCs, which subsequently undergo phenotypic adaptation to a ded-
ifferentiated synthetic state.19–21 Thus, mechanical circumferential
stress modulates gene expression and SMC functions such as prolif-
eration, survival/apoptosis, migration, and extracellular matrix
remodelling through receptor-tyrosine kinases (e.g. platelet-derived
growth factor receptor), focal adhesions that link the extracellular
matrix and the intracellular cytoskeleton, and ion channels activating
complex intracellular signalling pathways including Ras homologue
gene family, member A (RhoA)/Rho kinase, mitogen-activated
protein kinases (MAPKs), phosphatidylinositol-4,5-bisphosphate
3-kinase (PI3 K)/Akt, forkhead transcription factors of the FoxO sub-
family, and other signalling pathways.11,19,22–24 Of note, some of these
molecular mechanisms have been revealed using in vitro models and
now require validation using ex vivo or in vivo systems.25,26

Biomechanical regulation of focal
atherosclerosis

Shear stress and plaque initiation
Atherosclerosis is characterized by the accumulation of inflamma-
tory cells, lipids, extracellular matrix, and other materials in the
artery wall. Although atherosclerosis is associated with systemic
risk factors (e.g. gender, age, and high serum cholesterol), plaques
form preferentially at branches and bends in arteries that are
exposed to non-uniform, disturbed patterns of blood flow.27 Two
mechanisms have been identified, which could explain the link
between disturbed blood flow and atherosclerosis development,
namely alterations in mass transport and vascular responses to mech-
anical stimuli.28 The ‘mass transport theory’ states that the transport
of certain bioactive substances [e.g. low-density lipoproteins (LDL)]
from the circulation to the vessel wall may be promoted at sites of dis-
turbed flow due to prolonged contact between blood and vascular
ECs. This differs from the ‘shear stress theory’, which emphasizes
the effects of blood flow-induced mechanical forces on vascular
physiology. Of note, these theories are not mutually exclusive.
Both mass transport and shear stress influence plaque formation,
and these factors interact at a functional level, e.g. shear stress
alters vessel permeability that, in turn, regulates molecular trans-
port.29 Several lines of evidence suggest that shear stress regulates
plaque initiation. First, fluid dynamic studies revealed that the
spatial distribution of EC dysfunction, inflammation, and lesion for-
mation in arteries correlates with the magnitude and pattern of
shear stress.30– 32 For example, regions exposed to low, oscillatory
shear in the murine aorta are prone to lesion formation. These sites
are also characterized by a highly heterogenous population of ECs
that display enhanced expression of inflammatory molecules, higher
rates of apoptosis and senescence, and a reduced proliferative
reserve, which compromises vascular repair potential.33–41 A
second important evidence for the ‘shear stress theory’ was provided
in studiesdemonstrating acausal relationshipbetweenshearstressand
atherosclerosisbyapplyingaconstrictivecuff togeneratedistinct shear
stress environments (low, low/oscillatory, and high shear fields) in
carotid arteries in rabbits and mice.42,43 Flow-dependent atheroscler-
osis in mice has been confirmed with other models inducing disturbed
flow by partial ligation or tandem ligations of the carotid artery.44,45

There has been considerable debate over the relative importance of

shear stress magnitude, frequency, or direction (e.g. oscillations, tan-
gential shear) in dictating vascular function,46 but it is conceivable
that ECs can detect changes in each of these parameters and
respond accordingly. This question has been addressed using the
shear stress-altering cuff model that demonstrated that low shear
and low, oscillatory shear induced different vascular responses.42,43

Mechanoreceptors
Evidence for the ‘shear stress theory’ has also been obtained through
the identification and characterization of mechanoreceptors.
A large variety of membrane-associated molecules and microdo-
mains have been proposed as potential shear stress sensors including
ion channels [e.g. transient receptor potential (TRP) channels and
P2X4 receptors], receptor-tyrosine kinases [e.g. vascular endothelial
growth factor receptor (VEGFR) and angiopoietin receptor],
adhesion molecules (e.g. PECAM-1/VE-cadherin/VEGFR2), the gly-
cocalyx, membrane microdomains (e.g. primary cilia and caveolae),
the cytoskeleton, and the lipid bilayer plasma membrane 47 –49

(Figure 2). Several mechanoreceptors have pleiotropic functions
and, therefore, influence atherosclerosis at multiple levels. For
example, bone marrow cell-derived PECAM-1 has been reported
to be both pro-atherogenic50 and atheroprotective,51 irrespective
of the haemodynamic environment, whereas PECAM-1 in ECs accel-
erates atherogenesis in low shear environments.50,52 While the exact
mechanisms have yet to be elucidated, targeting such receptors
therapeutically will require a cell-type and context-specific strategy.
Despite these insights, the mechanisms that allow cells to respond
specifically to distinct mechanical conditions remain largely unknown.
Thus, further studies involving specialized techniques to apply force
to specific receptors or discrete regions of the cell (e.g. magnetic
tweezers) are required to characterize the mechanisms that
regulate the activity and function of mechanoreceptors.53

Shear stress and inflammatory signalling
The application of flow to cultured ECs has been used to identify
causal relationships between shear stress and EC function and to
define the signalling pathways involved. Shear stress influences EC in-
flammatory responses by modulating the expression of non-coding
RNAs as well as mRNAs. Regions with disturbed flow display a
focal enrichment and luminal redistribution of endothelial junctional
adhesion molecule-A (JAM-A) that promotes mononuclear cell re-
cruitment into the arterial wall. Conversely, atheroprotective
laminar flow mediates repression of JAM-A through microRNA
(miR)-145.54 Thesedata identifyendothelial JAM-A as acrucial effect-
or molecule guiding inflammatory cell entry at predilection sites of
atherosclerosis. Low, oscillatory shear stress influences EC ex-
pression of adhesion proteins and other inflammatory molecules
through multiple mechanisms that target the MAPK pathway and
the nuclear factor-kappa-B (NF-kB) pathway.36,55 In contrast,
atheroprotective shear stress induces several negative regulators of
inflammatory pathways including the transcription factors Kruppel-
like family 2 (KLF2) and 4 (KLF4)56– 58 and nuclear factor erythroid
2-related factor (Nrf2).59– 63 The mechanism for KLF2 activation
by shear stress involves ERK5-MEF2 signalling, which activates the
KLF2 promoter,58,64– 66 and suppression of miR-92a, which is a nega-
tive regulator of KLF2 and KLF4 mRNA expressions.67,68 Conversely,
miR-92a is expressed by ECs in atheroprone low shear stress regions,
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increased by hypercholesterolaemia, and in vivo miR-92a blockade
by antagomir treatment protects against the development of athero-
sclerosis.69 High unidirectional shear stress also reduces inflammatory
MAP kinases by inhibiting ASK-1 (an inflammatory MAP kinase kinase
kinase),70 blocking cleavage of protein kinase C epsilon (PKCz),71 in-
ducing MAPK phosphatase-1 (MKP-1), a negative regulator of p38
and JNK MAP kinases,37 and via down-regulation of the angiotensin
II type 1 receptor.72,73

In contrast, low shear stress enhances NF-kB expression via acti-
vation of a JNK1-ATF2 transcriptional programme36 and promotes
NF-kB activation via induction of positive regulators [e.g. Toll-like
receptors,74 bone morphogenic proteins,75– 77 inhibitor of kB
kinase 2 (IKK238), and reactive oxygen species55,78,79]. In addition
to microRNA control,68 recent epigenetic regulation of pro- and
anti-inflammatory gene expression in disturbed flow regions has
been demonstrated including altered flow-induced DNA methyla-
tion of endothelium mediated by DNA methyltransferases.80 –83

Thus, low oscillatory shear stress induces pro-atherogenic epigenetic
and transcriptional programmes in EC, whereas high unidirectional
shear induces multiple anti-inflammatory processes.

Shear stress and endothelial apoptosis,
senescence, and proliferation
Shear stress can also influence EC injury by inducing signalling
pathways that regulate apoptosis or senescence (Figure 3).

Disturbed flow induces EC apoptosis through multiple mecha-
nisms including activation of PKCz,40 JNK MAP kinase,84,85 and
p53,86 and through up-regulation of an unfolded protein response
signalling pathway.39 In contrast, uniform flow suppresses apoptosis
via the up-regulation and/or activation of protective signalling path-
ways involving superoxide dismutase and NO synthase, for
example.70,84,87 – 91

Atheroprone sites are associated with higher rates of EC prolif-
eration compared with protected regions,33,41,85,92 a feature that
may enhance vascular permeability to LDL and other atherogenic
molecules. However, a recent study also indicates that low, oscilla-
tory shear stress can induce EC senescence via activation of p53.93

This seemingly paradoxical situation emphasizes the complex
heterogenous nature of EC phenotypes at atheroprone sites. The
molecular mechanisms linking shear stress with EC mitosis are
uncertain, but it has been established that JNK1 positively regulates
proliferation at atheroprone sites, whereas the induction of the
cyclin-dependent kinase regulator GADD45 promotes quiescence
under high shear stress conditions.94 In addition, down-regulation
of miR-126-5p by disturbed flow abrogates EC proliferation at
atherosusceptible sites by up-regulating the Notch1 inhibitor
Dlk1.41 Administration of miR-126-5p rescued EC proliferation at
disease-prone sites and limited atherosclerosis, demonstrating
the importance of an EC proliferative reserve in the prevention
of atherosclerosis and pointing towards a possible therapeutic
approach.

Figure 2 Mechanoreceptors and intracellular signalling in arterial endothelium. Schematic representation of a large variety of
membrane-associated molecules and microdomains that have been proposed as potential shear stress sensors converting a mechanical signal
into a chemical response. Shear stress activates receptor-tyrosine kinase, such as the vascular endothelial growth factor receptor and PECAM-1,
which regulate leukocyte adhesion and endothelial cell–endothelial cell coupling as well as mechanoresponsiveness. In addition to these mechan-
oreceptors, shear stress can also activate ion channels, actin filaments, caveolae, the glycocalyx, primary cilia, and adherence or gap junction proteins.
Shear stress influences activation of endothelial cells through multiple mechanisms that target the mitogen-activated protein kinases, nuclear
factor-kappa-B, and regulators of these pathways including mitogen-activated protein kinase phosphatase-1, Kruppel-like factors-2 and -4,
nuclear factor erythroid 2-related factor, and endothelial nitric oxide synthase.
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Gene discovery platforms for endothelial
cell mechanosignalling pathways
The identification of biomarkers for atherosclerosis (e.g. proteins,
lipids, or RNA) is an emerging area of research. While classical tech-
niques focus on individual or few factors, the development of high-
throughput strategies, i.e. -omics approaches, allows comparisons
of protein expression patterns or lipidomic profiles at a broad
level in a single experiment.95 Omics studies have been performed
to characterize mechanosensitive signalling pathways directly in
ECs from arterial sites 33,34 and in many cultured cell experi-
ments.10,96 – 99 In cultured ECs, 900–1800 genes were regulated
by varying levels of fluid flow, whereas studies performed in vivo
show a lower number of differentially expressed genes. The gene
profiles associated with the differentially regulated genes show
high variability depending on experimental conditions, and
importantly, the bioinformatics methods used to analyse the data.

Despite this high variability, the current data sets can be summar-
ized with the concept of endothelial priming. In this concept, unidir-
ectional high shear stress confers protection by an up-regulation of
anti-atherogenic, anti-thrombotic, and anti-inflammatory gene
signatures, whereas low oscillatory shear stress induces pro-
thrombotic and pro-inflammatory genes.99 Consequently, regions
exposed to low shear stress are pre-disposed to atherosclerosis
and are more sensitive to high cholesterol levels and inflammatory
mediators, whereas regions exposed to high shear stress are
protected. Recent studies in intact non-atherosclerotic animals
confirmed these in vitro studies and suggest that endothelial
priming occurs in vivo, and this might be one of the reasons for
the presence of predilection sites.100 New studies focused on
obtaining changes in gene networks in ECs during plaque
development are under way and will shed new light on how ECs
react to a combination of mechanical stimuli and an inflamed
sub-endothelium.

Figure 3 Effects of shear and strain on the arterial wall. (top) Schematic representation of different biomechanical forces along the arterial tree;
1 ¼ laminar flow (blue lines) imposing a high shear stress parallel to the vascular wall and a low circumferential strain; 2 ¼ arterial regions with a
change in the diameter (lack of wall parallelism) and/or proximity to bifurcations (presence of disturbed flow, red line) are subjected to a relatively
lower shear stress and higher strain. (bottom left) High shear stress and low strain (‘1’) contribute to maintenance of the physiological properties of
the endothelial barrier (anti-coagulant, anti-inflammatory, and anti-oxidant properties) and of the vessel wall (homeostatic cell and matrix turn-
over). (bottom right) Low shear and high strain (‘2’) cause endothelial cell death and reduce the physiological endothelial barrier function, thus
favouring the formation of atherosclerotic plaques (yellow matter). Plaque progression can also be affected by biomechanical factors inducing an
accelerated cell and matrix turn-over, modifications of the vascular stromal cells, inflammation, and intraplaque haemorrhage. This can boost
plaque growth and in turn impact on the local flow dynamics, thus generating a vicious circle between biomechanical factors and atherosclerosis.
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Plaque progression and remodelling
Arterial sites with developing atherosclerotic plaques undergo com-
pensatory expansive remodelling to maintain their luminal diameter,
a process that presumably normalizes shear stress to a constant
level.101,102,103 Although compensatory remodelling is considered
as the ‘classical’ remodelling response during plaque growth, con-
strictive remodelling (defined as shrinkage of the vessel radius)104

and excessive compensatory remodelling105 (defined as over com-
pensation leading to radius increase) are observed in a small percent-
age of arteries.106 In general, outward remodelling will lead to a
persistence of low shear stress, thereby exaggerating lipid uptake
and inflammation. Since inflammation has been associated with posi-
tive outward remodelling,107 it may contribute to further develop-
ment of vulnerable plaques. As a result, plaques with a large
necrotic coreare foundat lowshear stress locations.105,108 –110 Inter-
estingly, regional differences have been observed in vascular remod-
elling responses, e.g. there is less compensation for plaque growth in
arteries in the lower extremities.111

Plaque evolution after remodelling
Upon further progression of plaques, positive remodelling can no
longer compensate plaque growth resulting in narrowing of the
vessel lumen. In general, lumen narrowing initiates when plaque
burden exceeds 40%.101 While the precise mechanism underlying
the limitation in outward remodelling is unknown, intraplaque
bleeding,112,113 multiple plaque ruptures,114 and a circumferential
extension of endothelial dysfunction at the plaque site have been
put forward as possible explanations.101 Once atherosclerotic
plaques encroach into the lumen, ECs experience a change in
local shear stress, i.e. high shear stress at the upstream part and
low, oscillatory shear stress at the downstream side of the plaque,
where initially low shear stress was present.108 There is a lack of
detailed information as to whether ECs covering the advanced ath-
erosclerotic lesion remain responsive to changes in local shear
stress. On the one hand, the shear stress-dependent transcription
factor KLF2 seems down-regulated,57 cross-talk between ECs via
connexins is diminished115 and endothelial nitric oxide synthase ex-
pression is decreased at plaques.116 On the other hand, a preferen-
tial occurrence of apoptosis of ECs is present in the downstream
regions of advanced human carotid lesions.14 In addition, studies
of stented arteries suggest that ECs overlaying plaques retain the
ability to respond to flow.117 – 119 In summary, whereas plaque initi-
ation typically occurs in low shear stress regions, plaque progres-
sion may be accompanied by (excessive) compensatory
remodelling, thereby keeping the lumen open and maintaining the
low shear stress exposure to the plaque. Plaques may also encroach
into the lumen resulting in exposure to high shear stress for ECs in
the upstream region of the plaque.

The influence of biomechanical
forces on plaque destabilization and
rupture
Pathological studies suggest that a large necrotic core, high macro-
phage content, reduced collagen levels, and thin fibrous cap are the

hallmarks of plaque vulnerability120 –123 and thus may be the precur-
sors of plaque rupture. However, a recent study indicates that only
5% of the identified vulnerable plaques (thin-capped fibroatheromas,
TCFAs) are associated with plaque rupture and suggests that plaque
morphology is not sufficient to predict plaque rupture.124,125 As bio-
mechanical factors are involved in plaque rupture, they might help to
identify vulnerable plaques.

The role of wall stress in plaque rupture
A plaque ruptures if the local wall stress (i.e. stress within an athero-
sclerotic lesion) exceeds the fracture stress (strength) of the fibrous
cap. Note that the stress in the wall is caused by a variety of factors,
including the blood pressure, local geometry, and local tissue com-
position and is 1 × 104 to 2 × 106 times higher than the shear
stress at the endothelium.126 Moreover, maximal predicted plaque
stresses in symptomatic patients are higher than those predicted in
asymptomatic patients, suggesting that plaques with higher stresses
may be more prone to rupture and thus leading to cardiovascular
events.127 Biomechanical stress could therefore potentially act as a
useful tool for risk assessment of plaque rupture. However, the
threshold value for wall stress to be used for risk prediction is cur-
rently under debate.128

Plaque composition influences rupture as it is a key determinant of
cap strength. The highest wall stress is typically found at the thinnest
areas of the fibrous cap,129,130 a region that co-localizes with
increased macrophage density,131 intraplaque haemorrhage,132 and
local microcalcifications.133

The role of low and high shear stress in
plaque destabilization
The causative role of low shear stress in vulnerable plaque formation
was elegantly shown in several animal studies imposing low shear
stress in defined arterial regions.42,134 Although these studies
clearly demonstrate that low shear stress modulates local inflamma-
tion and thereby cap thickness and strength, the majority of such
studies have concentrated on relatively few locations in mature arter-
ies and thus may have introduced an underestimation of the variety of
mechanical factors involved in disease development as was eloquently
pointed out by Peiffer et al.46

The notion that plaque ruptures/ulcerations are most frequently
observed at the upstream side of advanced plaques has strengthened
the idea that high shear stress may be involved in upstream plaque de-
stabilization.135 – 137 Moreover, plaque composition at the upstream
side of the plaque is markedly different from the downstream side, i.e.
enhanced macrophage accumulation and apoptosis, lipid accumula-
tion, intraplaque haemorrhage, and thinner fibrous caps.135,137 As a
result, upstream plaque regions that are exposed to high shear
stress show an increased strain—a local measure for plaque weak-
ness—implying that those regions are more prone to rupture.138 In
vivo studies on the role of shear stress in plaque destabilization con-
firmed increased vulnerability for the high shear stress plaque
regions at 6 months of follow-up.110 High shear stress is known to ac-
tivate matrix metalloproteinases (MMPs), favouring thinning of the
artery wall and eccentric remodelling in an in vivo arteriovenous
fistula model.139 If a similar process occurs in the advanced athero-
sclerotic lesion, this might account for a thin fibrous cap in high
shear regions of the stenosis. Clearly, more studies are needed to

B.R. Kwak et al.3018



investigate the potential causative role of high shear stress in plaque
destabilization.

Location of plaque rupture
As plaque rupture depends on both the local wall stress and the local
strengthof the tissue,wewould like topropose that co-localizationof
high wall stress and shear stress-induced plaque weakening will finally
lead to plaque rupture. Figure 4 depicts the relationship between
shear stress, plaque geometry, the plaque strength—the stress
threshold at which a plaque ruptures—and the local wall stress in
the process of plaque rupture. The minor co-incidence that wall
stress exceeds the local plaque strength and the short time frame
may offer an explanation why only 5% of TCFAs rupture. Shear
stress is a biomechanical parameter acting for many years on TCFA
formation and cap weakening through biological processes. On the
other hand, wall stress concentrations are thought to lead to
plaque rupture over much shorter time frames. Further experimen-
tal and clinical imaging studies are needed to investigate the
co-localization of these biomechanical parameters in identifying
‘rupture-prone TCFAs’.

In summary, low shear stress promotes the initiation and progres-
sion of atherosclerotic lesions. Non-stenotic vulnerable plaques are
typically associated with low shear stress, which can promote inflam-
mation and influence plaque stability. This contrasts with stenotic
high-risk plaques that are typically exposed to high shear stress. Evi-
dence is accumulating for a role of high shear stress in plaque

destabilization. Finally, co-localization of high wall stress and low
plaque strength may be considered as a novel future marker for iden-
tification of vulnerable plaques.

Clinical perspectives

Interactions between drugs and
mechanoresponses
Biomechanical factors may affect the responsiveness of ECs to
pharmacological agents, as demonstrated by the synergy between
statins and laminar shear stress in inducing KLF2-dependent athero-
protective signalling in ECs both in vivo and in vitro.140,141 Consequent-
ly, the endothelium lining atherosusceptible sites of low shear stress
may be less responsive to the pleiotropic effects of statins,140 high-
lighting the importance of considering biomechanical factors in the
development of atheroprotective therapeutics. In addition, changes
in biomechanical forces can be used for targeted drug delivery to ath-
erosclerotic lesions.142 Mechanosensitive liposomes can be used to
preferentially release preloaded drugs under increased shear
stress143 and could thus potentially selectively target the upstream
segment of the advanced plaque (before the point of maximal sten-
osis) that shows an increased incidence of plaque rupture, as dis-
cussed above. In silico tests with these 1,3-diaminophospholipid
vesicles show promising results,143 but validation in more complex
fluids and large animals are mandatory. Another approach includes

Figure 4 Concept of the influence of shear stress and wall stress on plaque rupture. Co-localization of peak wall stress and shear stress-induced
cap thinning and cap strength will dictate location and timing of plaque rupture. (A) (Excessive) compensatory remodelling induces low shear stress
stimulating local inflammation and thereby fibrous cap thinning and plaque weakening, influencing the cap strength, (B) high shear stress induces cap
thinning and weakening. Wall stress inside the cap is related to blood pressure and the local cap geometry and thickness. If the local wall stress
exceeds the cap strength (the wall stress threshold at which it ruptures), the cap will rupture.
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shear-activated nanotherapeutic aggregates.144 This strategy also
uses high shear stress caused by vascular narrowing as a targeting
mechanism to deliver drugs to (partially) obstructed blood vessels.
Microscale aggregates of nanoparticles coated with tissue plasmino-
gen activator (tPA) break into nanoscale components when exposed
to abnormally high fluid shear stress. When administered intraven-
ously in mice, these shear-activated nanotherapeutics induce rapid
clot dissolution in a mesenteric injury model.

Diagnostic and prognostic implications of
biomechanical factors
The implementation of biomechanical factors in the clinical decision-
making for patients with atherosclerosis is today restricted to mea-
surements of flow or pressure alterations. The fractional flow
reserve (FFR) of a coronary atherosclerotic lesion can be measured
as the pressure fall from the proximal aorta to the coronary segment
distal to the lesion, during maximal coronary vasodilatation. Accord-
ing to the latest ESC guidelines, percutaneous coronary intervention
(PCI) is indicated if FFR is ≤0.8.145 FFR-guided PCI has been asso-
ciated with improved clinical outcomes and fewer stents implanted.
Likewise, non-invasively measured coronary flow reserve (CFR)
by transthoracic Doppler echocardiography of the left anterior des-
cending coronaryartery is recommended forpatients with suspected
coronary microvascular disease.145 However, limiting interventions
to only obstructive coronary disease may be insufficient, since
plaques not causing haemodynamically significant flow restriction
may be prone to rupture. One important clinical application of the
above outlined role of biomechanical factors in atherosclerosis
could be to identify sites exposed to unfavourable biomechanical
forces, associated with high risk of plaque rupture, and to use this in-
formation to guide treatment. The development of novel imaging
tools has rendered the evaluation of wall shear stress possible in cor-
onary patients, by integrating clinical examination techniques
(Doppler ultrasound, CT, IVUS, OCT, MRI, VH) with computational
flowdynamics (CFD). Of note, a recent study revealed that rotational
coronary angiography and CFD could be used to accurately measure
FFR in patients with stable angina, thus informing PCI without the
need for invasive catheter-based measurements.146,147 In addition,
phase-contrast MRI-based shear stress measurement techniques
are currently under development to assess the local wall shear
stress distribution in human carotid arteries, likely facilitating in the
near future the clinical assessment of local wall shear stress
without extensive technical expertise. Finally, intravascular palpogra-
phy can be used for measures of plaque deformation (strain) during
pulsating blood flow.

Flow-mediated dilatation (FMD) of a conduit artery following limb
ischaemia is a measure of endothelial function, and an impaired FMD
is a sign of endothelial dysfunction in for example diabetes and sub-
clinical atherosclerosis.148 In contrast to the transient increase in
shear stress during reactive hyperaemia, exercise-induced elevations
of shear stressmaybeassociatedwith amore sustainedFMDincrease
in the supplyingconduit artery.149 In addition to these immediateflow
alterations, also long-term effects on FMD have been demonstrated
after repetitive exercise, suggesting that exercise-induced changes in
shear stress induce beneficial effects in terms of flow-mediated endo-
thelial function and vascular remodelling,150 which may be implicated

in the protective value of physical activity in reducing vascular dys-
function and atherosclerosis.

Recently, the PREDICTION study revealed that low shear stress
was an independent predictor for luminal obstruction in patients
with acute coronary syndrome, but was not associated with a
change in plaque area.108 Although clinical events rates were too
low to evaluate the effects of shear stress on outcome in terms of
acute coronary syndromes,108 this study provides an initial indication
that considering biomechanical factors may be clinically relevant for
assessing locations with progressive disease.

Knowledge from basic science is increasingly being translated into
the clinical setting. A deeper understanding of the effects of mechan-
ical forces on vascular biology will further these developments of
novel shear regulateddrugs, enhancediagnostic tools and informclin-
ical decision-making for interventional cardiologists and cardiovascu-
lar surgeons. Similarly, innovations in the clinic should feedback to
drive new basic science questions in the fields of vascular biology,
engineering, and computational modelling.
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