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Recent findings have demonstrated that stroke lesions affect neural communication in the entire brain. However, it is less clear

whether network interactions are also relevant for plasticity and repair. This study investigated whether the coherence of neural

oscillations at language or motor nodes is associated with future clinical improvement. Twenty-four stroke patients underwent

high-density EEG recordings and standardized motor and language tests at 2–3 weeks (T0) and 3 months (T1) after stroke onset.

In addition, EEG and motor assessments were obtained from a second population of 18 stroke patients. The graph theoretical

measure of weighted node degree at language and motor areas was computed as the sum of absolute imaginary coherence with all

other brain regions and compared to the amount of clinical improvement from T0 to T1. At T0, beta-band weighted node degree

at the ipsilesional motor cortex was linearly correlated with better subsequent motor improvement, while beta-band weighted node

degree at Broca’s area was correlated with better language improvement. Clinical recovery was further associated with contrale-

sional theta-band weighted node degree. These correlations were each specific to the corresponding brain area and independent of

initial clinical severity, age, and lesion size. Findings were reproduced in the second stroke group. Conversely, later coherence

increases occurring between T0 and T1 were associated with less clinical improvement. Improvement of language and motor

functions after stroke is therefore associated with inter-regional synchronization of neural oscillations in the first weeks after stroke.

A better understanding of network mechanisms of plasticity may lead to new prognostic biomarkers and therapeutic targets.
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Introduction
Stroke lesions have impact on neural interactions in the

entire brain (Grefkes and Fink, 2011; Corbetta, 2012;

Carrera and Tononi, 2014; Dijkhuizen et al., 2014).

Evidence that this is the case comes from modelling

(Alstott et al., 2009), animal experiments (van Meer

et al., 2010), as well as from imaging studies investigating
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neural interactions (i.e. functional connectivity or effective

connectivity) between brain regions of human stroke

patients.

Functional MRI has revealed disruptions in interhemi-

spheric functional connectivity between homologous

motor, language, and spatial attention areas, which were

linearly associated with corresponding neurological deficits

of the patients (He et al., 2007; Warren et al., 2009; Carter

et al., 2010). Other studies have observed generally reduced

interactions among nodes of the motor network (Sharma

et al., 2009), and in particular between premotor and pri-

mary motor areas (Grefkes et al., 2008). These network

changes evolve over time and seem to be maximal �1

month after stroke onset (Park et al., 2011). In addition,

stroke patients with severe motor deficit also build up

enhanced inhibitory influence from the unaffected to the

affected motor cortex in subacute to chronic stages

(Grefkes et al., 2008; Rehme et al., 2011). Improvements

of motor performance are associated with a reduction of

pathological influences from contralesional motor cortex

and a restitution of ipsilesional effective connectivity

between premotor and primary motor areas (Grefkes

et al., 2010).

Changes in network interactions occur also at the time

scales of actual neural oscillations. EEG and magnetoence-

phalography (MEG) recordings in a task-free resting state

have revealed reduced phase synchronization between the

affected hemisphere and other brain areas in the alpha

frequency band (Dubovik et al., 2012; Westlake et al.,

2012). The magnitude of alpha-band phase synchronization

between a given brain area and the rest of the brain was

found to be linearly associated with behavioural perform-

ance in tasks depending on this brain area. For instance,

the more spontaneous alpha oscillations in Broca’s area

were phase synchronized with the rest of the brain, the

better patients were able to produce words (Dubovik

et al., 2012; Guggisberg et al., 2015). Improvement of

neurological deficits during rehabilitation goes in parallel

with increases in alpha-band phase synchronization

(Westlake et al., 2012) and, vice versa, enhancing alpha-

band coherence with neurofeedback seems to reduce motor

deficits after stroke (Mottaz et al., 2015). During move-

ment tasks, network dynamics of beta oscillations seem to

be affected and associated with movement performance

(Gerloff et al., 2006; De Vico Fallani et al., 2013).

In contrast to the solid evidence that neurological deficits

after stroke are associated with disturbed neural inter-

actions among brain regions, it is less clear whether net-

work interactions are also relevant for brain plasticity and

repair after stroke. The identification of such network

mechanisms of plasticity would be important as this

might yield new therapeutic targets and help predict

future improvement of stroke patients.

Experiments in rats have suggested that axonal sprouting

is associated with widespread synchronous neural activity

at low oscillation frequencies on the first days after ther-

mal-ischaemic lesions (Carmichael and Chesselet, 2002).

In human stroke patients, correlations between different

kinds of network interactions before therapy and clinical

improvement during therapy periods have been observed at

various time points after stroke (Wang et al., 2010; Buch

et al., 2012; Westlake et al., 2012; Várkuti et al., 2013). In

particular, nodes associated with deficient neurological

functions were found to enhance their overall importance

in the brain network during recovery by increasing their

functional connectivity with other areas (Wang et al.,

2010; Buch et al., 2012; Westlake et al., 2012). However,

it remains unknown whether these observations are robust

across different populations and whether they are predict-

ive for improvement of different neurological functions.

Furthermore, the time course of adaptive network changes

after stroke is unclear.

The present study aimed to identify EEG network

changes occurring within the first 2–3 weeks after stroke

indicative of subsequent clinical language and motor

improvement. Based on current concepts of plasticity after

stroke, we hypothesized that functional connectivity

changes relevant for repair would involve primarily ipsile-

sional areas adjacent to the region normally responsible for

the deficient function as well as homologous contralateral

areas. Furthermore, we supposed that preserved or even

enhanced functional connectivity between these areas and

the rest of the brain should help reshape network inter-

actions towards functional brain tissue and lead to more

clinical improvement. Conversely, a functional disconnec-

tion of these critical areas from the rest of the brain would

impede plasticity and lead to less clinical improvements. To

test this, we calculated a global index of functional con-

nectivity between critical brain areas and the rest of the

brain: the graph theoretical measure of node degree in

weighted networks (weighted node degree, WND)

(Newman, 2004). We then investigated the association of

WND with future clinical improvement in motor and lan-

guage functions in two independent patient populations

with acute to subacute stroke.

Materials and methods

Patients and subjects

The study comprised two independent groups of human stroke
patients as well as a group of age-matched healthy control
subjects. All participants gave written informed consent to par-
ticipate in this study. Procedures were approved by the Geneva
Ethics Committee and conducted according to the Declaration
of Helsinki.

Stroke Population 1 was used for main analyses and for an
exploration of network correlates of clinical improvement. It
was composed of 24 stroke patients (mean age 60.7 years,
range 37–81, nine females, 15 had left hemispheric stroke).
Mean National Institute Stroke Scale (NIHSS) was 13, range
3–27. Inclusion criteria were: (i) clinical diagnosis of first ever,
territorial ischaemic stroke; (ii) unilateral ischaemic lesion in
the territory of the middle cerebral artery as demonstrated by
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structural MRI; and (iii) at least mild motor or language
impairment at the beginning of rehabilitation. Excluded were
patients with neurological or psychiatric comorbidities, history
of seizures, presence of metallic objects in the brain, or skull
breach. Patients’ demographic and clinical characteristics are
listed in Supplementary Table 1. The lesion distribution is
shown in Supplementary Fig. 1. All patients received standard
therapy at the stroke unit during the acute phase and an indi-
vidually tailored multidisciplinary rehabilitation programme in
the sub-acute and chronic phases. Two patients took short-
acting benzodiazepines exclusively at bedtime (412 h before
EEG recordings), three patients received serotonin-reuptake
inhibitors (Supplementary Table 1). These drugs were treated
as confounding covariates in statistical analyses. High-density
EEG and standardized clinical assessments were obtained at
two time-points: 2–3 weeks (T0) and three months (T1) after
stroke onset.

The second group of stroke patients was used for cross-
validation of the findings in an independent group. It was
composed of 18 patients satisfying the same inclusion criteria
and exclusion criteria as Population 1, with the following
exceptions: not only ischaemic but also haemorrhagic strokes
were accepted, and only motor recovery was examined. For
this reason, patients with severe language comprehension def-
icits were excluded, and patients needed to have at least mild
motor impairment at the beginning of rehabilitation. Mean age
was 67 years (range 32–85), mean NIHSS 13.8 (range 3–22),
eight were female, and seven had left hemispheric lesions.
Patient’s demographic and clinical characteristics are listed in
Supplementary Table 2. Three patients received benzodiazep-
ines at bedtime, one of whom also during the day, four pa-
tients took serotonin-reuptake inhibitors and one a low-dose
neuroleptic at bedtime. Standardized clinical assessments of
motor function were obtained at 3 weeks (T0) and 3 months
(T1) after stroke and high-density EEG at 3 weeks after stroke.

As a control group, 26 age-matched volunteers without
neurological or psychiatric disease were included. Their mean
age was 62.4 years, range 32–88, 12 females. Age
[F(2,62) = 1.0, P = 0.38] and gender (P4 0.58, Fisher’s exact
test) were not significantly different between patient and con-
trol populations.

Clinical assessments

Motor function was assessed with the following standardized
measures: the Jamar dynamometer (Mathiowetz et al., 1985),
the Fugl-Meyer motor assessment of the upper extremity (Fugl-
Meyer et al., 1975), the Nine Hole Peg Test (Oxford Grice
et al., 2003), and the stroke rehabilitation assessment of move-
ment (STREAM) instrument (Wang et al., 2002). The Nine
Hole Peg Test was expressed in pegs/s. All scores were normal-
ized to values of the unaffected arm of each patient. Since the
four motor scores were highly correlated (r4 0.7), we used the
average of all items in our analyses as compound motor score.

Language function was quantified with the Geneva Bedside
Aphasia Score (GeBAS) (Boukrid and Laganaro, 2013). It was
developed for quantification of overall performance in language
comprehension and production in acute and subacute phases of
neurological disease. The subtests assess spontaneous language
production, orientation, production of automatic series, denom-
ination, repetition, verbal fluency, comprehension, writing,

reading and calculating. The score for maximum performance
is 100, minimum score is 0.

Clinical improvement of patients was quantified by subtract-
ing their corresponding scores at T1 from T0. Henceforth, we
use the term ‘recovery’ in reference to this measure.

EEG acquisition

EEG data were collected with a 128-channel Biosemi
ActiveTwo EEG-system (Biosemi B.V). Spontaneous activity
in a task-free state was recorded with a sampling rate of
512 Hz. Participants were instructed to keep their eyes closed
and to remain relaxed but awake. Data segments with arte-
facts or signs of reduced vigilance were excluded by visual
inspection of the data. Five-minutes of artefact-free data
were recalculated against the average reference.

Connectivity analysis

Source functional connectivity was calculated in Matlab (The
MathWorks Inc) with the open-source toolbox NUTMEG
(http://nutmeg.berkeley.edu) (Dalal et al., 2011) and its func-
tional connectivity mapping (FCM) toolbox (Guggisberg et al.,
2011). The lead-potential with 10 mm grid spacing was com-
puted using a spherical head model with anatomical con-
straints (SMAC) (Spinelli et al., 2000) in stroke Population 1
and in healthy control subjects, and a boundary element model
(BEM) in stroke Population 2. The BEM model was created
with the Helsinki BEM library (http://peili.hut.fi/BEM/)
(Stenroos et al., 2007). Artefact-free EEG segments were band-
pass filtered between 1 and 20 Hz and projected to grey matter
voxels with an adaptive spatial filter (scalar minimum variance
beamformer) (Sekihara et al., 2004). The absolute imaginary
component of coherence I (Nolte et al., 2004; Sekihara et al.,
2011) between estimated source time series at each voxel x
and all other voxels y was subsequently calculated as index
of functional connectivity. From this, we computed the WND
k at each voxel x as the sum of its coherence with all other
cortical voxels (Newman, 2004):

kx ¼
X

y

Ixy ð1Þ

WND can be seen as an index of the overall importance of an
area in the brain network (Stam and van Straaten, 2012; De
Vico Fallani et al., 2014).

Separate values were obtained at each of seven frequency
bands: delta (1–3 Hz), low theta (4–5 Hz), high theta
(6–7 Hz), low alpha (8–10 Hz), high alpha (11–12 Hz), low
beta (13–16 Hz), and high beta (17–20 Hz). Between-subject
variation in synchronization magnitude (and hence WND)
can be due to variations in signal-to-noise ratios of the record-
ings. To avoid this potential confound in our analyses of the
association between variations in WND and clinical improve-
ment, we normalized WND maps. This was achieved by sub-
tracting, for each subject, the mean WND across all voxels of
the subject and by dividing by the standard deviation, hence
yielding z-scores. Z-score maps were spatially normalized to
canonical Montreal Neurological Institute (MNI) space using
functions of the toolbox SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). Ischaemic lesions were masked during
spatial normalization to avoid distortions (Brett et al., 2001).
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Regions of interest

Ipsilesional and contralesional regions of interest were defined a
priori for each clinical function with anatomical templates. They
comprised the areas supposed to be responsible for the respect-
ive function and their homologous contralateral areas. For
motor function, we used the ipsilesional and contralesional pri-
mary motor cortex (M1). Language region of interest was the
left posterior inferior frontal gyrus (Broca’s area) and its right
homologue. Motor regions of interest were defined with the
human motor area template (Mayka et al., 2006), language re-
gions of interest using the automated anatomical labelling tem-
plate (Tzourio-Mazoyer et al., 2002). WND at each region of
interest was calculated as the average of its voxels.

Statistical analyses

Our hypothesis postulated that greater WND should help
reshape network interactions towards more clinical improve-
ment while functional disconnection of critical areas would
lead to less clinical improvements. Accordingly, we tested
WND at T0 for positive correlations with changes in motor
and language performance from T0 to T1 using a Pearson
correlation analysis. All variables were normally distributed
and parametric tests were therefore used. Only patients show-
ing at least mild motor impairment at T0 (590% of max-
imum compound motor score) were included for the
correlation analysis of motor improvement (n = 21). Left
and right hemispheric lesions were re-labelled as ipsilesional
and contralesional and combined for analysis, but we verified
that results hold true for both lesion sides. For correlation
analysis of language improvement, only patients with left
hemispheric stroke and with at least mild language impairment
at T0 were included (n = 14). In Population 1, correlations
were performed at each of the seven frequency bands and at
both regions of interest of each function, using a Bonferroni
correction to correct for multiple testing. In Population 2, cor-
relations were performed only at frequency bands found to be
significant in Population 1, and Bonferroni corrected for test-
ing two regions of interest.

Next, we characterized the evolution over time of network
predictors by analysing their association with clinical variables
at different time points. In 21 out of the 24 patients of
Population 1, EEG recordings could also be obtained at T1.
These patients were separated into two groups according to
their clinical improvement, using a median split of their change
in behavioural score from T0 to T1. WND values at frequency
bands with significant correlations were tested for differences
between good and bad recovery groups, both at T0 and T1,
with unpaired t-tests. To further investigate the impact of
changes in network predictors over time with clinical improve-
ment, we also correlated change in WND from T0 to T1 with
clinical changes from T0 to T1.

To assess the spatial specificity of region of interest correl-
ations, we performed voxel-wise correlations between WND
and clinical recovery and reproduced voxel maps without cor-
rection for multiple testing to visualize the full spatial extent of
network predictors. Furthermore, we verified whether correl-
ations with recovery were different between language and
motor regions of interest using permutation tests. At each of
2000 permutation loops, we shuffled the order of the clinical
scores across patients and recalculated the Pearson correlations

between WND at each region of interest and the clinical vari-
able. The correlation coefficient difference between the two
regions of interest was then compared to the distribution of
correlation coefficient differences obtained with permutation.
Permutation tests were also performed on pairs of correlations
at different frequency bands of the same region of interest, in
order to verify the frequency specificity of the associations.

We verified that bivariate correlations were independent of
initial motor/language score, initial NIHSS, age, lesion size,
and CNS-active medication with a multivariate linear regres-
sion model using forward stepwise selection as well as with
partial correlation analyses. In addition, WND at T0 was cor-
related with clinical scores at T0 and WND values at T1 with
clinical scores at T1.

In addition, we also compared WND of good and bad
recovery groups to values of the age-matched healthy control
population.

Results
In accordance with our hypothesis, we observed areas with

high WND in patients with good subsequent clinical im-

provement. This concerned ipsilesional as well as homolo-

gous contralateral areas. Figure 1 shows two typical

examples.

The correlation analysis across all patients of Population 1

showed that higher WND values in ipsilesional and contrale-

sional regions of interest were indeed linearly associated with

better clinical improvement. In ipsilesional regions of inter-

est, correlations could be observed exclusively in the beta

frequency band. The more beta oscillations in the ipsilesional

motor areas were coherent with the rest of the cortex at T0,

the more patients improved in motor function between T0

and T1 (r = 0.57, P = 0.047, Bonferroni corrected, Fig. 2A

and C). Similarly, the more left inferior frontal regions were

coherent with the rest of the cortex, the better patients im-

proved in language function (r = 0.69, P = 0.042, Bonferroni

corrected, Fig. 2B and D).

Associations between WND and clinical scores were then

followed over time in order to characterize their temporal

evolution. When patients were segregated into two groups

according to their clinical recovery, we found a trend for

greater WND at T0 in the group with good compared to

the group with bad corresponding improvement (t41.9,

P5 0.084, Fig. 2E and F). This difference was not

observed at T1. On the contrary, a delayed increase in

WND from T0 to T1 was significantly negatively correlated

with the corresponding clinical recovery during the same

period (r5�0.56, P5 0.040, Fig. 2G and H). Hence,

whereas high WND at 2–3 weeks after stroke was posi-

tively associated with recovery, the opposite was the case

for later increases.

A similar pattern was found in contralesional regions of

interest, but for theta oscillations. Language recovery was

associated with larger WND in the right Broca homologue

at T0 (r = 0.70, P = 0.039, Bonferroni corrected, Fig. 3B, D

and F). In the case of motor improvement, no correlation
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was at first observed in any frequency band. However,

when we used a more fine graded template of motor

areas and defined motor regions of interest covering more

exclusively upper extremity representations [area 4p of the

Jülich Anatomy Toolbox (Eickhoff et al., 2005)], we also

found an association of theta-band WND with motor re-

covery, although it did not survive corrections for multiple

testing (r = 0.52, P = 0.008, uncorrected, Fig. 3 A and C).

Again, the association tended to be inversed for later

increases occurring between 2–3 weeks and 3 months

post-stroke onset (r5�0.4, P5 0.110, Fig. 3G and H).

Correlations were spatially specific: WND at motor areas

did not correlate with language improvement (r5 0.38,

P4 0.18), and language WND not with motor improve-

ment (r5 0.36, P4 0.10). Correlation between motor

region of interest WND and motor improvement was sig-

nificantly greater than the correlation between WND at

Broca’s area and motor improvement (ipsilesional

Figure 1 Examples of hyperconnectivity after stroke resulting in increased WND in contralesional (A) and ipsilesional (B)

hemispheres. Stroke lesions are marked with dark grey cubes, regions with increased WND with yellow and red colours. (A) Patient with

paresis of the left arm resulting from a lesion involving the right internal capsule. EEG network imaging revealed hyperconnectivity of the

contralesional motor cortex at 2–3 weeks after stroke onset. The patient improved from 7 points at 2 weeks to 21 points at 3 months in the

upper extremity Fugl Meyer score. (B) Patient with Broca aphasia due to stroke in the territory of the left anterior middle cerebral artery.

Hyperconnectivity was present in the perilesional tissue at 2–3 weeks and associated with an improvement in language performance from 40 to 78

out of 100 points in the subsequent weeks. Coronal slices are in neurological orientation.
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Figure 2 Ipsilesional network correlates of clinical recovery. Global functional connectivity (FC) of the affected primary motor cortex

(A) or of Broca’s area (B) with other areas (i.e. their WND) correlated with future clinical improvement at beta oscillation frequencies. Double

asterisks indicate frequency bands with significant correlations (P5 0.05, Bonferroni corrected). (C and D) Scatter plots illustrating the asso-

ciation between beta-band WND at T0 and subsequent clinical recovery. (E and F) Patients with good recovery tended to show greater WND at

2–3 weeks after stroke, but not at 3 months. White circles denote marginally significant differences (P5 0.09). (G and H) In contrast to the

situation at T0, an increase of WND between T0 and T1 was associated with worse clinical improvement in the corresponding function.

Network plasticity after stroke BRAIN 2015: 138; 3048–3060 | 3053



P50.0001, contralesional P5 0.06), and correlation

between WND at language regions of interest and language

recovery tended to be greater than the correlation between

motor WND and language improvement (ipsi- and contale-

sional P5 0.06). Furthermore, a voxel-wise analysis

showed that the correlations were regionally specific in

that only voxels around motor areas correlated with

motor improvement and only voxels around language

areas correlated with language improvement (Fig. 4).

Correlations were also frequency-specific. In ipsilesional

regions of interest, correlation with recovery was signifi-

cantly greater at the beta than at the theta frequency

band (P5 0.02), while the opposite was the case for con-

tralesional regions of interest (P5 0.06).

In contrast to coherence, local oscillation power at the

same regions of interest and frequency bands was not cor-

related with recovery (r5 0.28, P4 0.17), thus confirming

that our findings reflect interregional coherence, not local

oscillation amplitude.

In a multiple stepwise regression, only ipsi- and contrale-

sional WND, but not initial motor/language scores, initial

NIHSS, age, lesion size, and medication were retained as

independent predictors of motor and language improve-

ment [final model for motor improvement: F(2,18) = 11,

R2 = 0.55, P = 0.0007; language improvement F(2,11) = 9,

R2 = 0.61, P = 0.005]. Similarly, a partial correlation ana-

lysis including these factors as confounding covariates

remained significant (r4 0.56, P5 0.03). No significant

correlations were found between WND values at T0 and

clinical scores at T0 (r5 0.36, P4 0.19) or between WND

at T1 and clinical scores at T1 (r5 0.21, P40.49), con-

firming that the association with recovery was not merely

due to severity at baseline or follow-up.

We verified the robustness of these findings in a second

stroke population (in whom only motor assessments were

obtained). When using the same motor regions of interest

and frequency bands as in Population 1, we reproduced

similar positive correlations between WND at T0 and sub-

sequent motor improvement (r40.47, P50.05, Fig. 5).

Next, we compared ipsilesional beta-band WND and

contralesional theta-band WND of stroke Population 1 to

an age-matched healthy control population. The bad recov-

ery group had lower WND in contralesional M1 (t = �2.1,

P = 0.045), as well as in the ipsilesional Broca area

(t = �2.6, P = 0.015) and its contralesional homologue

(t = �1.9, P = 0.071) than healthy controls. The good lan-

guage recovery group had significantly greater WND in

Broca’s area than healthy controls (t = 3.2, P = 0.003).

The difference in the remaining regions of interest was

not significant (P40.16).

Discussion
Brain repair after stroke depends on a cascade of a growth-

promoting molecular and cellular events (reviewed in

Carmichael, 2006; Nudo, 2007; Murphy and Corbett,

2009), on a transient recruitment of perilesional as well

as contralesional brain areas (Nudo et al., 1996; Feydy

et al., 2002; Ward et al., 2003; Gerloff et al., 2006; Saur

et al., 2006), as well as on early, intensive, and task-specific

exercise (Kwakkel et al., 1999; Kleim and Jones, 2008;

Dancause and Nudo, 2011; Langhorne et al., 2011). Our

study provides evidence that plasticity is further associated

with a synchronization of spontaneous neural oscillations

between brain areas. The more neural oscillations in lan-

guage and motor areas were coherent with the rest of the

cortex at 2–3 weeks after stroke, the better patients

improved in corresponding clinical functions during the

subsequent weeks. This association was robust as it was

reproduced in two different patient populations and two

key neurological functions. Network interactions therefore

seem to be relevant for brain plasticity. This might be a

consequence of processes taking place on cellular and

molecular levels. For instance, the creation of new synaptic

connections might be associated with a transient increase in

synchronous beta oscillations between the involved brain

areas. In this case, EEG connectivity could be useful as

non-invasive biomarker of cellular processes. In addition,

oscillation synchrony might also contribute actively to plas-

ticity. For instance, it might help preserve and strengthen

newly-formed projections. A better understanding of these

network processes could then eventually result in new or

improved therapy procedures.

We will first characterize connectivity changes associated

with future recovery and then consider possible confounds

and limitations. Finally, we will compare network markers

of stroke recovery with previously described predictors.

Characteristics of network plasticity

Network analyses begin to reveal characteristics of stroke

plasticity which have been hidden to local analyses. They

show that critical brain areas enhance their overall import-

ance and interactions in the brain network, probably to

promote their reintegration. This is suggested not only by

our finding of larger WND in patients with good recovery,

but also by similar observations made in previous studies

which have used functional MRI (Wang et al., 2010), MEG

(Buch et al., 2012), or EEG during motor tasks (De Vico

Fallani et al., 2013) to reconstruct comparable graph the-

oretical measures of node degree or node centrality. This

increase in overall interactions is therefore remarkably

reproducible and observable during tasks and at rest, and

in several recording techniques.

Our study further suggests that specific oscillation fre-

quencies are preferred for recovery-related neural inter-

actions in the first weeks after stroke. Thereby, ipsi- and

contralesional hemispheres use different rhythms. This

might reflect distinct molecular environments after unilat-

eral stroke. Animal models of stroke have shown that two

main synaptic signalling systems are implicated in stroke

plasticity, but with opposing effects. Gamma-aminobutyric

acid (GABA) mediated inhibition of the peri-infarct tissue
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Figure 3 Contralesional network correlates of clinical recovery. WND of the contralesional primary motor cortex (A) and the right

Broca homologue (B) was correlated with corresponding future clinical improvement at theta oscillation frequencies. Asterisks indicate frequency

bands with significant correlations: **P5 0.05, Bonferroni corrected; *P5 0.05, uncorrected. (C and D) Scatter plots illustrating the association

between theta-band WND at T0 and subsequent clinical recovery. (E and F) Patients with good language recovery tended to show greater WND

at 2–3 weeks after stroke, but not at 3 months. The asterisk indicates significant differences (P5 0.05). (G and H) In contrast to the situation at

T0, an increase of WND between T0 and T1 was associated with worse clinical improvement in language function. FC = functional connectivity.
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reduces recovery, while glutamatergic excitation mediated by

alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

(AMPA) receptors promotes plasticity (Clarkson et al.,

2010; Carmichael, 2012; Kim et al., 2014). These neuro-

transmitters also modulate the amplitude and phases of

EEG rhythms at specific frequencies. GABA influences

beta rhythms in the motor cortex (Jensen et al., 2005;

Yamawaki et al., 2008; Farzan et al., 2013; Ronnqvist

et al., 2013) and seems to influence spike timing of indi-

vidual neurons during theta oscillations (Kohl and Paulsen,

2010). AMPA agonists have been reported to induce long-

term theta oscillations (Li et al., 2014). The association of

ipsilesional beta coherence with clinical improvement might

therefore reflect a GABAergic processes. The preference of

the contralesional hemisphere for theta rhythms might also

be related to neurotransmitter changes (Schiene et al.,

1996; Kim et al., 2014). If such associations between

neurotransmitters and coherence frequencies can be con-

firmed in future studies, they might enable us to link clin-

ical observations with synaptic processes using non-invasive

and convenient EEG recordings.

In addition to the frequencies observed here, synchronous

neural activity at delta and infra-delta frequencies

(0.1–2 Hz) have been reported during the first days after

stroke in rats (Carmichael and Chesselet, 2002). It is un-

known whether such slow frequency synchronization also

occurs in humans. The fact that the we did not observe it in

our study may be due to later times of recordings,

Figure 4 Associations between network interactions and clinical improvement were regionally specific. A voxel-wise correlation

between WND and clinical recovery shows that only voxels around motor areas correlated with motor improvement and only voxels around

language areas correlated with language improvement. Functional maps are thresholded at P5 0.05, uncorrected, to visualize the full extent of

network predictors.

Figure 5 Correlations in an independent population.

Significant associations between functional connectivity (FC) at T0

and subsequent recovery were reproduced in the second stroke

population, using the same regions of interest and the same fre-

quency bands.
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difficulties in obtaining artefact-free recordings of very slow

rhythms at the skull, and our measure of functional con-

nectivity which masks zero-lag synchrony.

In healthy humans, alpha rhythms are the main carrier

for phase synchronization during the task-free state. The

healthy human brain has a prominent peak of resting-

state oscillation coherence in the alpha frequency range

(�7–13 Hz) (Guggisberg et al., 2008; Hillebrand et al.,

2012) corresponding to the prominence of the alpha

rhythm in the human EEG. Moreover, the magnitude of

resting-state alpha-band coherence is linearly associated

with performance in subsequent tasks (Dubovik et al.,
2013; Rizk et al., 2013; Guggisberg et al., 2015). The pre-

sent study provides evidence that recent stroke lesions

induce an adaptive deviation from the usual alpha frequen-

cies towards beta and theta frequencies. This deviation is

transient and limited to the first weeks after stroke. A

return to usual alpha interactions has to occur during the

period between 4 to 12 weeks after stroke. The negative

correlation between changes in coherence and clinical

improvement indicates that theta and beta coherence

become maladaptive at these later stages. Moreover, previ-

ous studies have shown that, 3 months after stroke, motor

and cognitive performance of stroke patients is again cor-

related with alpha-band connectivity of critical nodes, as in

healthy subjects (Dubovik et al., 2012). A study investigat-

ing mostly chronic stroke patients found also predictors of

future recovery when focusing on alpha-band coherence

(Westlake et al., 2012). In summary, EEG and MEG net-

work analyses suggest that the brain uses several commu-

nication frequencies in order to adapt to stroke lesions, and

that the involved frequencies evolve dynamically over time.

The time course of adaptive network changes observed here

corresponds to the time window of opportunity known

from repair-related genetic, molecular, and cellular events

which also peak during the first weeks after stroke onset

(Carmichael, 2006; Cramer, 2008; Murphy and Corbett,

2009). This provides further evidence that EEG network

markers are linked to molecular repair processes.

Network changes associated with recovery also follow

several principles of plasticity known from local processes.

Increases in functional connectivity are functionally and

regionally specific, such that nodes mediating a particular

function are also specifically associated with recovery of the

same function. Moreover, they involve ipsilesional and

homologous contralesional brain areas, in accordance

with findings from studies of local activity changes (Feydy

et al., 2002; Ward et al., 2003; Gerloff et al., 2006; Saur

et al., 2006).

It is noteworthy that network plasticity takes place not

only after stroke but also in other conditions such as trau-

matic brain injury, multiple sclerosis, and early Alzheimer’s

disease. Some of the mechanisms observed in stroke seem

to generalize to other pathologies. For instance, the hyper-

connectivity of critical areas seems to be a general response

to brain affections occurring also in traumatic brain injury

and multiple sclerosis (Hillary et al., 2015). An adaptive

shift of neural interaction frequency occurs also after trau-

matic brain injury (Castellanos et al., 2010, 2011) and in

patients with early Alzheimer’s disease (Dubovik et al.,

2013). Yet, the involved frequencies seem to differ among

conditions. This opens the interesting possibility that net-

work imaging with EEG or MEG might provide a finger-

print of frequency responses which are characteristic to

particular conditions.

Potential confounds

We verified that the correlations observed here were not

merely due to the presence of lesions, which might have

led to a general suppression of oscillations and hence to

trivially low coherence in patients with worse recovery.

When ipsilesional regions of interest were defined individu-

ally for each patient by masking voxels that were affected

by anatomical lesions, this did not change our findings of

correlations with clinical recovery (r4 0.50, P5 0.035).

One may argue that the limited spatial resolution of EEG

source reconstruction leads to spread of reduced oscilla-

tions around lesions which would be difficult to control.

However, this possibility is unlikely for several reasons.

First, we used a measure of functional connectivity which

is robust to artefacts resulting from the limited spatial reso-

lution of source imaging (Sekihara et al., 2011). Second, a

general suppression of neural activity would likely concern

all oscillation frequencies, whereas we observed selective

correlations only at particular frequency bands. Third, the

presence of lesions could not explain the fact that we found

similar correlations in the contralesional hemisphere.

Fourth, many patients with good recovery had increased

functional connectivity (Fig. 1), which cannot be explained

by a lesion-induced absence of neural oscillations.

Our study reports the largest sample of stroke patients so

far investigated for network plasticity and is the first to

cross-validate the findings in an independent population.

Yet, the sample size remains moderate with variable

lesions, clinical co-factors, and analyses procedures, which

might partially influence some of the findings.

Predictors of recovery

Multiple parameters have been proposed as predictors of

functional outcome after stroke (i.e. of the severity of def-

icits in the chronic stage), including initial clinical severity

(Kwakkel et al., 2003; Nijland et al., 2010), lesion location

(Shelton and Reding, 2001; Hope et al., 2013), diffusion

tensor imaging of white matter tracts (Stinear et al., 2007;

Liu et al., 2010; Marchina et al., 2011; Riley et al., 2011),

magnetic resonance spectroscopy (Cirstea et al., 2011),

functional MRI (Saur et al., 2010), motor and somatosen-

sory evoked potentials (Feys et al., 2000; Hendricks et al.,

2002; Stinear et al., 2007), and EEG/MEG spectral power

(Tecchio et al., 2007; Finnigan and van Putten, 2013). In

the case of motor outcome, best prediction accuracy has

been reported by a combination of clinical examinations
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and assessments of the cortico-spinal tract with diffusion

tensor imaging and motor evoked potentials (Coupar

et al., 2012; Stinear et al., 2012).

In contrast, the prediction of clinical improvement from

the acute/subacute to the chronic stage has proven more

difficult. It seems to rely less on the severity of initial clin-

ical deficits and local neural damage, and more on repar-

ation processes in distributed areas. Functional MRI can

help identify patients with good likelihood of improvement

if multivariate analyses of activation changes at multiple

brain regions are used (Cramer et al., 2007; Marshall

et al., 2009; Saur et al., 2010). Our and previous studies

underscore the relevance of network interactions. Future

studies will need to compare the reliability of different mar-

kers and assess whether a combination can result in clinical

applications.
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