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In this article we examine the competitive equilibria of a dynamic stochastic economy with complete
markets and collateral constraints. We show that, provided the sets of asset pay-offs and of collateral
levels are sufficiently rich, the equilibrium allocations with sequential trades and collateral constraints
are equivalent to those obtained in Arrow–Debreu markets subject to a series of limited pledgeability
constraints. We provide both necessary and sufficient conditions for equilibria to be Pareto efficient and
show that when collateral is scarce equilibria are not only Pareto inefficient but also often constrained
inefficient, in the sense that imposing tighter borrowing restrictions can make everybody in the economy
better off. We derive sufficient conditions for the existence of Markov equilibria and, for the case of two
agents, for the existence of equilibria that have finite support. These equilibria can be computed with
arbitrary accuracy and the model is very tractable.
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1. INTRODUCTION

We examine the competitive equilibria of an infinite-horizon exchange economy where the
only limit to risk sharing comes from the presence of a collateral constraint. Consumers face
a borrowing limit, determined by the fact that all loans must be collateralized, as e.g. in
Kiyotaki and Moore (1997) or Geanakoplos (1997), but otherwise financial markets are complete.
Only part of the consumers’ future endowment can be pledged as collateral, hence the borrowing
constraint may be binding and limit risk sharing opportunities in the economy. More specifically,
we consider an environment where consumers are unable to commit to repaying their debt
obligations and the seizure of the collateral by lenders is the only loss an agent faces for his
default. There is no additional punishment, for instance in the form of exclusion from trade
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in financial markets as in the model considered by Kehoe and Levine (1993, 2001). However,
like in that model, and in contrast to Bewley (1977) and the literature which followed it,1 the
borrowing (and collateral) constraint is endogenously determined in equilibrium by the agents’
limited commitment problem. The analysis is carried out in a heterogeneous agents version of
Lucas’s (1978) asset pricing model. The part of a consumer’s endowment that can be pledged as
collateral can be naturally interpreted as the agent’s initial share of the Lucas tree—a long-lived
asset in positive supply that pays dividends at each date event.

We show in this article that this is a tractable model of dynamic economies under uncertainty,
analyse the welfare properties of competitive equilibria, and establish the existence of simple
dynamic equilibria. More specifically, we first show the equivalence between the competitive
equilibria when trade occurs in a complete set of contingent commodity markets at the initial
date, as in Arrow–Debreu, subject to a series of appropriate limited-pledgeability constraints, and
the equilibria when trade is sequential, in a sufficiently rich set of financial markets where short
positions must be backed by collateral. This allows us to clearly identify market structures, and
in particular the specification of asset pay-offs and of the associated collateral requirements, such
that the only financial friction is the limited commitment requiring all loans to be collateralized.
Secondly, we provide necessary and sufficient conditions for competitive equilibria to be fully
Pareto efficient—i.e., for the amount of available collateral to be sufficiently large that the
collateral constraint never binds. We then show that, whenever the constraint binds, competitive
equilibria in this model are not only Pareto inefficient but are also often constrained inefficient, in
the sense that introducing tighter restrictions on borrowing from some date t >0 makes all agents
better off. Thirdly, we derive sufficient conditions for the existence of a Markov equilibrium in this
model and show that Markov equilibria often have “finite support” in the sense that individuals’
consumption only takes finitely many values. A unique Markov equilibrium exists whenever each
agent’s coefficient of relative risk aversion is bounded above by one. Under the same assumption,
or alternatively when all agents have identical, constant relative risk aversion (CRRA) utility
functions, or when there is no aggregate uncertainty, equilibria have finite support if there are
only two types of agent.

Several papers (the quoted work of Kiyotaki and Moore (1997), Geanakoplos (1997), and
various others) have formalized the idea that borrowing on collateral might give rise to
cyclical fluctuations in real activity and enhance the volatility of prices. They typically assume
that financial markets are incomplete, and/or that the collateral requirements are exogenously
specified, so that it is not clear if the source of the inefficiency is the missing markets or the
limited ability of the agents to use the existing collateral for their borrowing needs. Furthermore,
dynamic models with collateral constraints and incomplete markets turn out to be very difficult
to analyse (see Kubler and Schmedders (2003) for a discussion), no conditions are known that
ensure the existence of recursive equilibria, and there are therefore few quantitative results about
welfare losses due to collateral.

We show here that considering an environment where financial markets are complete and
there are no restrictions on how the existing collateral can be used to back short positions allows
matters to be simplified considerably. In our model, equilibria can often be characterized as the
solution of a finite system of equations. We show that a numerical approximation of equilibria is
fairly simple and a rigorous error analysis is possible. Moreover, we can use the implicit function
theorem to conduct local comparative statics.

As mentioned above, there is also a large literature that assumes that agents can trade in
complete financial markets, default is punished with permanent exclusion from future trades,

1. See Heathcote, Storesletten, and Violante (2009) for a survey.
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and loans are not collateralized. We refer for convenience in what follows to these models as
“limited enforcement models”. As shown in Kehoe and Levine (2001), Ligon et al. (2002), and
Alvarez and Jermann (2000), these models are quite tractable since competitive equilibria can be
written as the solution to a planner’s problem subject to appropriate constraints. Even though this
is not true in the environment considered here—the limited commitment constraint has a different
nature and we show that competitive equilibria may be constrained inefficient—tractability is still
obtained.

Chien and Lustig (2010) (also Lustig (2000) in an earlier, similar work) examine a version of
the model in this article with a continuum of agents and growth. The main focus of their analysis
is on a quantitative assessment of the asset pricing implications of the model and their similarities
with Alvarez and Jermann (2000). Their notion of recursive equilibrium also uses instantaneous
weights (Chien and Lustig call them “stochastic Pareto-Negishi weights”) as an endogenous
state variable and is essentially identical to ours. However, our results on the existence of such
recursive equilibria and of finite-support equilibria are rather different, as explained in more detail
in Section 4. Also, they do not examine how the allocation can be decentralized in asset markets
with collateral constraints, nor they discuss the constrained inefficiency of competitive equilibria.

Cordoba (2008) considers an economy with production, no aggregate uncertainty, and a
continuum of ex ante identical agents and derives sufficient conditions for Pareto efficiency
that are similar to ours.

Lorenzoni (2008), Kilenthong and Townsend (2011), and Gromb, and Vayanos (2002) also
show that collateral constraints can lead to constrained inefficient equilibrium allocations.
However, the analyses by Lorenzoni and by Kilenthong and Townsend are different as they
consider a production economy where capital accumulation links different periods and the
reallocation is induced by a change in the level of investment that modifies available resources. In
our pure exchange setup resources are fixed, only their distribution can vary, and the reallocation
is induced by tightening the borrowing constraints with respect to their level endogenously
determined in equilibrium. Gromb and Vayanos consider a model with segmented markets and
competitive arbitrageurs who need to collateralize separately their positions in each asset, giving
conditions under which reducing the arbitrageurs’ short positions in the initial period leads to
a Pareto improvement. They also consider a pure exchange economy but the segmentation of
markets is a key ingredient in their analysis.

Geanakoplos and Zame (2002, and, in a later version, 2009) are the first to formally introduce
collateral constraints and default into general equilibrium models. They consider a two-period
model with incomplete markets where a durable good needs to be used as collateral. They are the
first to point out that, even if markets are complete and the amount of collateral in the economy
is large, the Pareto-efficient Arrow–Debreu allocation may not be obtained unless one allows for
collateralized financial securities to be used as collateral in addition to the durable good (they
refer to this as “pyramiding”). Our equivalence result in Section 2 below makes crucial use of
this insight.

The remainder of this article is organized as follows. In Section 2, we describe the environment,
and define an Arrow–Debreu equilibrium with limited pledgeability and a financial markets
equilibrium with collateral constraints. We establish the equivalence of equilibrium allocations
in these two concepts when there are sufficiently many assets available for trade. In Section 3,
we analyse the welfare properties of equilibria. We derive conditions on the level of collateral
under which equilibria are Pareto efficient and show that if these conditions are not satisfied they
may be constrained inefficient. In Section 4, we study the existence of Markov equilibria and
derive conditions under which they can be described by a finite system of equations. Proofs are
collected in the Appendix.
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2. THE MODEL

In this section, we describe the physical economy, define a notion of Arrow–Debreu equilibrium
with limited pledgeability and of a financial markets equilibrium with collateral constraints, and
give conditions for these two concepts to be equivalent.

2.1. The physical economy

We examine an infinite-horizon stochastic exchange economy with a single perishable
consumption good available at each date t =0,1,... We represent the resolution of uncertainty
by an event tree. At each period t =1,... one of S possible exogenous shocks s∈S ={1,...,S}
occurs, with a fixed initial state s0 ∈S. Each node of the tree is characterized by a history of
shocks σ =st = (s0,...,st). The exogenous shocks follow a Markov process with transition matrix
π, where π (s,s′) denotes the probability of shock s′ given s. We assume that π (s,s′)>0 for all
s,s′ ∈S. With a slight abuse of notation we also write π (st) to denote the unconditional probability
of node st . We collect all nodes of the infinite tree in a set � and we write σ ′ �σ if node σ ′ is
either the same as node σ or a (not necessarily immediate) successor.

There are H infinitely lived agents which we collect in a set H. Agent h∈H maximizes a
time-separable expected utility function

Uh(c)=uh(c0,s0)+E

( ∞∑
t=1

β tuh(ct,st)

∣∣∣∣∣s0

)
,

where (conditional) expectations are formed with respect to the Markov transition matrix π, and
the discount factor satisfies β ∈ (0,1). We assume that the possibly state dependent Bernoulli
function uh(·,s) :R++ →R is strictly monotone, C2, strictly concave, and satisfies the Inada-

condition uh′(c,s)= ∂uh(c,s)
∂c →∞ as c→0, for all s∈S.

Each agent h’s endowment over his lifetime consists of two parts. The first part is given
by an amount of the consumption good that the agent receives at any date event, eh(st)=eh(st)
where eh :S →R++ is a time-invariant function of the shock. In addition, the agent is endowed at
period 0 with an exogenously given share θh(s−1)≥0 of a Lucas tree. The tree is an infinitely lived
physical asset that pays each period strictly positive dividends d :S →R++, which depend solely
on the current shock realization s∈S. The tree exists in unit net supply,

∑
h∈Hθh(s−1)=1, and

its shares can be traded at any node σ for a unit price q(σ ). The total endowment of the consumer
is therefore ωh(st)=eh(st)+θh(s−1)d(st).

2.2. Arrow–Debreu equilibrium with limited pledgeability

We assume that eh(st) cannot be sold in advance to finance consumption or savings at any
date before the endowment is received, it thus constitutes the non-pledgeable component of the
agent’s total endowments ωh(st). To formalize the notion of an equilibrium with non-pledgeable
endowments, we define an Arrow–Debreu equilibrium with limited pledgeability as a collection
of prices (ρ(σ ))σ∈� and a consumption allocation (ch(σ ))h∈H

σ∈� such that

∑
h∈H

(ch(σ )−ωh(σ ))=0, for all σ ∈� (1)
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and for all agents h

(ch(σ ))σ∈� ∈argmax
c≥0

Uh(c) s.t. (2)

∑
σ∈�

ρ(σ )c(σ )≤
∑
σ∈�

ρ(σ )ωh(σ )<∞ (3)

∑
σ�st

ρ(σ )c(σ )≥
∑
σ�st

ρ(σ )eh(σ ) for all st . (4)

The definition is the same as that of an Arrow–Debreu competitive equilibrium, where agents
are able to trade at the initial date t =0 in a complete set of contingent commodity markets,
except for the additional constraints (4). These constraints express precisely the condition that
eh(σ ) is unalienable—that is to say this component of the endowment can only be used to finance
consumption in the node σ in which it is received or in any successor node. Note that these
additional constraints are likely to be binding whenever the eh-part of the agent’s endowments is
large relative to the part given by the tree’s dividends—that is when there is only a small amount
of future endowments that can be traded at earlier nodes of the event tree.

2.3. Financial markets with collateral constraints

We will show that the abstract equilibrium notion proposed above allows us to capture the
allocations attained as competitive equilibria in a standard setting where agents trade sequentially
in financial markets and short positions must be backed by collateral, provided markets are
“complete” in a sense made precise below.

We consider an environment where at each node st any agent h can trade the tree as well as J
financial assets (in zero net supply), collected in a set J . These assets are one-period securities:
asset j traded at node st promises a pay-off bj(st+1)=bj(st+1)≥0 at the S successor nodes
(st+1). The agent can hold any amount θ (st)≥0 of shares of the tree, which trade at the price
q(st). In addition, for each security j∈J , with price pj(st), the agent can hold any long position
φj+ (st)≥0 as well as a short position φj− (st)≤0. The net position in security j is denoted by
φj(st)=φj+ (st)+φj− (st). We assume that all loans are non-recourse—i.e., consumers can default
at no cost on the prescribed payments. To ensure that some payments are made, each short position
in a security must be backed by an appropriate amount of the tree or of long positions in other
financial securities that are admissible as collateral. The specification of a financial security j∈J
is then given not only by its promised pay-off bj(.) but also by its collateral requirement, described

by the vector2 kj ∈R
J+1+ . For each unit of security j sold short by a consumer, he is required to

hold kj
J+1 units of the tree as well as kj

i units of each security i∈J as collateral.
Since all loans are non-recourse, the consumer will find it optimal to default on his promise

to deliver bj(st+1) per unit sold whenever bj(st+1) is higher than the value of the collateral
associated with the short position. In this case, the buyer of the financial security gets the collateral
associated with the promise. Hence, the actual pay-off of any security j∈J at any node st+1 is
endogenously determined by the agents’ incentives to default and the collateral requirements, as
in Geanakoplos and Zame (2002) and Kubler and Schmedders (2003). It is given by the values

2. In principle this collateral requirement could vary with the exogenous shock, but for our purposes it suffices to
assume that it is fixed.
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fj(st+1) satisfying the following system of equations, for all j∈J :

fj(s
t+1)=min

{
bj(st+1),

J∑
i=1

kj
i fi(s

t+1)+kj
J+1(q(st+1)+d(st+1))

}
. (5)

For this equation to have a non-trivial solution, we assume that the tree is used as collateral for
each security j, either directly or indirectly. If the tree is not used as collateral for security j—i.e.,
kj

J+1 =0—it must be used as collateral for some other security, in turn used as collateral for
another security and so on until we reach one of the securities used as collateral for j. In this way,
the tree backs, indirectly, the claims of all securities along the chain. This construction will be
made precise in the proof of Theorem 1.

A collateral-constrained financial market equilibrium is defined as a collection of choices
(ch(σ ),θh(σ ),(φh+(σ ),φh−(σ )))σ∈� for all agents h∈H, prices, (p(σ ),q(σ ))σ∈� , and pay-offs
(f(σ ))σ∈� satisfying (5) such that the following conditions hold.

(CC1) Market clearing:

∑
h∈H

θh(σ )=1 and
∑
h∈H

φh+(σ )+
∑
h∈H

φh−(σ )=0 for all σ ∈�.

(CC2) Individual optimization: for each agent h

(θh(σ ),φh+(σ ),φh−(σ ),ch(σ ))σ∈� ∈arg max
θ≥0,φ+≥0,φ−≤0,c≥0

Uh(c) s.t.

c(st)=eh(st)+φ(st−1)·f(st)+θ (st−1)(q(st)+d(st))−θ (st)q(st)−φ(st)·p(st), ∀st

θ (st)+
∑
j∈J

kj
J+1(st)φj− (st)≥0, ∀st

φj+ (st)+
∑
i∈J

ki
j (s

t)φi− (st)≥0, ∀st , ∀j∈J .

Condition (CC1) is the standard market clearing condition for the tree and the financial assets,
where long (φ+) and short (φ−) positions of securities are separated. Condition (CC2) requires
that each agent chooses asset holdings and consumption at each node to maximize utility subject
to a standard budget constraint and additional constraints requiring the agent to hold sufficient
amounts of the tree (the first inequality constraint) and of long positions in financial securities
(the second inequality constraint) so as to satisfy the collateral requirements for these assets. The
existence of a collateral-constrained financial markets equilibrium follows by the argument in
Kubler and Schmedders (2003).

Although our assumptions on the rules governing collateral are obviously abstracting from
many important issues arising in practice, we try to model two key aspects of collateral contracts.
First, we assume that margins are asset specific in that an asset cannot be used for two different
short positions at the same time even if these two positions require payment in mutually exclusive
states. It is important to point out that in this case no information over all the trades carried out
by an agent is required to enforce these collateral constraints—it suffices to post the required
collateral for each short position; hence we can say that the financial contracts traded in the
markets are non-exclusive. This is in contrast to other limited commitment models, such as
Kehoe and Levine (1993, 2001) or Alvarez and Jermann (2000) where observability of all trades
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in financial markets is assumed. It is also in contrast to Chien and Lustig (2010) who assume
that margins are portfolio-specific. They analyse a model with collateral requirements where, in
addition to the tree, a complete set of S Arrow securities is available for trade at each node and
the tree must be used as collateral for short positions in these Arrow securities. Chien and Lustig
assume that each unit of the tree can be used to secure short positions in several Arrow securities
at the same time, i.e. the collateral constraint only has to hold for the whole portfolio of securities
held. These “portfolio margins” clearly allow economizing on the use of the tree as collateral
but they generally also require a stronger enforcement and coordination ability among lenders,
or the full observability of agents’ trades, not needed in the environment considered here. The
specification adopted here, based on asset specific margins, is closer to trading practices used in
financial markets (see, e.g., Appendix A in Brunnermeier and Pedersen (2009) for details).

Secondly, the fact that margins are asset specific requires other channels to economize
on collateral. This is done via our assumption that not only the tree but also financial
securities can be used as collateral. Geanakoplos and Zame (2002) refer to this assumption as
“pyramiding”. In practice, financial securities are routinely used for collateralized borrowing
(e.g., in repo agreements, see Bottazzi et al. (2012), but also in other transactions)—however,
as Brunnermeier and Pedersen (2009) point out, to take short positions in more complicated
securities such as derivatives brokers typically require cash-collateral.

Our assumption of pyramiding implies an implicit reuse of collateral that is somewhat similar
to “rehypothecation”, but there are some important differences. Rehypothecation refers to the
common practice in financial trades that allows a lender to use the collateral received on a loan as
collateral he pledges to enter a short position with a third party. In many collateralized trades, the
borrower remains the owner of the asset used as collateral but the lender gains broad rights to use
the collateral; in some trades the borrower loses ownership over the pledged asset altogether (see,
e.g., Monnet (2011) for a description of institutional details). We assume instead that a lender
can reuse only indirectly the collateral backing his loan, by using the long position in the loan as
collateral. Since agents can default on their debt obligations, at the cost only of losing the posted
collateral, it is clear that the tree is ultimately backing all financial claims, directly or indirectly.
But the lender can never profit from a situation where the value of the collateral exceeds that
of the borrower’s obligations, by not returning the collateral. One possible reason why in
practice one sees rehypothecation rather than pyramiding is that financial securities are only
good collateral if they are traded on liquid markets, which might make it difficult to build a large
pyramid of financial securities with possibly different pay-offs, backed by a single physical asset.

2.4. Equivalence of Arrow–Debreu and financial market equilibrium

We will show that any Arrow–Debreu equilibrium allocation with limited pledgeability can also
be attained at a collateral-constrained financial market equilibrium, provided the financial markets
are complete. As we will see, in this environment the notion of “complete markets” is a little
subtler than usual, since it requires the presence of a sufficiently rich set of financial assets not only
in terms of the specification of their pay-off but also of their collateral requirement. To illustrate
what sufficiently rich means here, it is useful to first consider a simple two-period example.

Suppose there are three agents with identical preferences trading in period 1 to insure against
uncertainty in the second period. There are three equiprobable states in the second period (which
in a slight abuse of notation we refer to as s=1,2,3) and the tree pays 1 unit in each of these
states. Each agent has initial holdings of the tree equal to 4 units3 while the non-pledgeable second

3. It simplifies the exposition to assume that there are 12 trees in the economy. Alternatively, we could take the
tree to be in unit supply and assume that it pays 12 units of dividends.
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period endowment of the three agents is

e1 = (0,6,9), e2 = (6,9,0) and e3 = (9,0,6).

In this environment, it is easy verify that theArrow–Debreu equilibrium with limited pledgeability
features a constant level of consumption in the three states:

c1 =c2 =c3 = (9,9,9).

This equilibrium is Pareto efficient and coincides with the standard Arrow–Debreu equilibrium.
It is also easy to see that a complete set of Arrow securities, each of them collateralized by the

tree, does not suffice to complete the market. To implement the above allocation, in fact agent
1 would need to hold his endowment of the tree, buy 5 units of the Arrow security for state 1,
and sell short, respectively, 1 and 4 units of the Arrow securities for states 2 and 3. However, this
violates his collateral constraint since he needs a total of 5 units of the tree as collateral while he
only holds 4 units.

More interestingly, if in addition to the Arrow securities there were also three assets paying
zero in one state and 1 unit in the two others, each agent could achieve his Arrow–Debreu
consumption level without violating his collateral constraints by selling 1 unit of the asset that
pays in the states where he has positive endowments (in addition to selling 3 units of the Arrow
security that pays in the state where his endowment is 9). However, no other agent would buy
this asset since any agent needs to buy only one Arrow security to achieve his Arrow-Debreu
consumption. Market clearing would not be possible. The same argument applies to all other
specifications of the asset pay-offs.4 In this example it is, therefore, not possible to achieve the
Arrow–Debreu equilibrium outcome if all promises are only backed by the tree.

In contrast, once one allows for pyramiding—that is to say, for the presence of promises backed
by financial securities and not the tree, one can easily find asset trades that satisfy the collateral
constraints and implement the Arrow–Debreu consumption allocation with limited pledgeability.
Suppose there are two financial securities with promises b1 = (0,1,1), b2 = (0,0,1). One unit of
the tree needs to be used as collateral for each short position in security j=1, whereas (only) one
unit of financial security 1 is used as collateral for each short position in j=2. Consider, then,
the following portfolios. Agent 1 holds 9 units of the tree, θ1 =9, shorts 9 units of security 1,
φ1

1− =−9 using his holdings of the tree as collateral, and, at the same time, buys 3 units of this

security back, φ1
1+ =3. Finally, he shorts 3 units of security 2, φ1

2− =−3, using the long position
in security 1 as collateral. Agent 2 holds 3 units of the tree, shorts 3 units of security 1 and buys 9
units of security 2, θ2 =3, φ2

1− =−3, φ2
2+ =9. Agent 3 holds no tree, buys 9 units of security 1 and

shorts 6 units of security 2, backed by his holdings of security 1, i.e. θ3 =0, φ3
1+ =9, φ3

2− =−6.
Note that given the above specification of asset pay-offs and collateral requirements, it is

obviously crucial that agent 3 can use a long position in security 1 as collateral to back his short
sales of security 2. The need for agent 1 to go at the same time long and short in the same security
on the contrary is not essential and depends on our assumption that only security 1 can be used
as collateral for short positions in a security with pay-off (0,0,1). Alternatively, we could have
assumed that there are two distinct securities with pay-off (0,0,1), one of which is collateralized
by financial security j=1, as above, the other by the tree, in which case agent 1 could just short
6 units of security 1 and 3 units of the second security with pay-off (0,0,1), both collateralized
by the tree.

4. Kilenthong (2011) makes this point in a slightly different environment with capital.
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The previous example illustrates the basic intuition of how to construct a set of assets that
allows one to attain the Arrow–Debreu equilibrium allocations with limited pledgeability in a set-
up with sequential trading of financial securities and collateral constraints. Our main result in this
section generalizes this construction and the above argument to the infinite-horizon, stochastic
economy under consideration with any number of states and consumers. To prove the result, it
is convenient to introduce an alternative equilibrium notion with sequential trading, where each
period intermediaries purchase the tree from consumers and issue a complete set of one period,
state-contingent claims (options) on the tree, which are bought by consumers. This specification,
although slightly artificial, allows us to simplify the proof and turns out to be useful for analysing
the properties of collateral constrained equilibria when markets are complete.

More precisely, at each node st intermediaries purchase the tree from the consumers and issue
J =S “tree options”, where option j promises the delivery of one unit of the tree the subsequent
period if, and only if, shock s= j realizes. At each date event st households can trade the tree
and, in addition, can only take long positions θs(st)≥0, s=1,...,S in these S tree options at the
prices qs(st)>0, s=1,...,S. The intermediaries’ holdings of the tree ensure that all due dividend
payments can be made.

An equilibrium with intermediaries is defined as a collection of individual consumption
levels (ch(σ ))h∈H

σ∈�, portfolios (θh
s (σ ))h∈H

σ∈�,s∈S , and prices (q(σ ),qs(σ ))σ∈�,s∈S , such that markets
clear and agents maximize their utility—i.e.

(IE1) at all nodes st , ∑
h∈H

θh
s (st)=1 for all s∈S.

(IE2) for all agents h∈H

(ch,θh)∈arg max
θ,c≥0

Uh(c) s.t.

c(st)=eh(st)+θst (s
t−1)

(
q(st)+d(st)

)− S∑
s′=1

θs′ (st)qs′ (st) for all st,

θs(st)≥0, for all st,s.

(IE3) at all nodes st ,

q(st)=
S∑

s=1

qs(st).

Condition (IE3) ensures that intermediaries make zero profit in equilibrium, since the
intermediation technology, with zero costs, exhibits constant returns to scale.

As mentioned above, the concept of equilibrium with intermediaries is used to show under
which conditions Arrow–Debreu equilibria can be implemented as financial markets equilibria.
The following theorem formalizes this.

Theorem 1. For any Arrow–Debreu equilibrium with limited pledgeability there exists an
equilibrium with intermediaries with the same consumption allocation. Moreover, one can
construct the pay-offs and collateral requirements of S−1 financial securities such that there exists
a collateral-constrained financial markets equilibrium with the same consumption allocation.
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It is relatively easy to show that any Arrow–Debreu equilibrium allocation with limited
pledgeability can also be attained as an equilibrium with intermediaries. To show that this
equilibrium can be attained as an equilibrium with collateral constraints, one needs to construct
a rich enough asset structure that ensures that the pay-offs achieved with the tree options can be
replicated by trading in the asset market, subject to collateral constraints. The basic construction
is to set the pay-off of each security j=1,...,S−1, equal to zero in states s=1,...,j and equal to 1
in states j+1,...,S. One unit of security j must be used as collateral for each unit short position in
security j+1, for j=2,..,S−1, while a unit of the tree is used as collateral for unit short positions
in security 1. This specification generalizes that of the simple example above. It suffices to verify
that we can always find portfolios that allow us to replicate the consumption allocation of the
equilibrium with intermediaries. The details of the proof are in the Appendix.

Note that the reverse implication of that stated in Theorem 1 also holds for collateral
constrained equilibria without bubbles.5 Given the equivalence established in the theorem above,
in most of the article we will consider the notion that turns out to be more convenient, depending
on the issue—that one of equilibrium with intermediaries or that of Arrow–Debreu equilibrium
with limited pledgeability.

Our collateral-constrained equilibrium concept with complete financial markets has some
interesting similarities to both Kehoe and Levine (1993) and Golosov and Tsyvinski (2007).6

Kehoe and Levine (1993) differs from most of the other papers in the literature on limited
enforcement models by the fact that an environment with several physical commodities is
considered. In the event of default only part of the agents’ endowment can be seized and agents
also face the punishment of permanent exclusion from trade in financial markets, but their trades
in the spot commodity markets are not observable and cannot be prevented. In addition to the
inter-temporal budget constraint agents then face at each node a constraint on their continuation
utility level, which in this case depends on (spot market) prices. Golosov and Tsyvinski (2007)
consider an environment where insurance contracts are offered in the presence of moral hazard,
but hidden trades by the agents in some markets cannot be prevented and hence prices (together
with agents’ utilities) again enter the agents’ incentive constraints. Prices also enter the additional
constraint given by equation (4) above, which has, however, the form of a budget constraint
(agents’ utilities do not appear), and reflects the fact that no exclusion from trade in any market is
possible. Agents’ incentives are captured by the specification of asset pay-offs in equation (5) and
trades at each node are always restricted by the collateral constraint. A possible interpretation of
this is that agents can always hide all their trades: as argued in the previous section, no information
on agents’ trades is needed to enforce the collateral constraints.

3. WELFARE PROPERTIES OF EQUILIBRIA

In this section we investigate the welfare properties of competitive equilibria with collateral
constraints. We first examine the case where there are Pareto-efficient competitive equilibria
since the amount of available collateral is “sufficiently large” to satisfy the collateral needs of
the economy and the collateral constraints never bind. We derive both necessary and sufficient
conditions for the existence of Pareto-efficient equilibria in general economies with no aggregate
uncertainty as well as those with aggregate uncertainty when consumers have identical CRRA
utility.

5. Since the existence proof in Kubler and Schmedders (2003) shows that collateral-constrained financial markets
equilibria without bubbles exist, Theorem 1 implies the existence also of Arrow–Debreu equilibria with limited
pledgeability.

6. We thank an anonymous referee for pointing out this connection to us.
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We then consider the case where collateral is scarce and no competitive equilibrium is Pareto
efficient. We study an example where there is an equilibrium that is inefficient and characterize
its properties. The main result of this section shows that in this case equilibria are not only
Pareto inefficient, but may also be constrained inefficient. That is, even by taking the borrowing
restrictions imposed by the collateral constraints into account, a welfare improvement can still
be obtained with respect to the competitive equilibrium.

3.1. When do Pareto-efficient equilibria exist?

It is useful to begin the analysis by examining the issue in the framework of the following simple
example, which will also be used in other parts of the article. There are two types of agents, two
possible realizations of the shocks each period, and no aggregate uncertainty. The shocks are i.i.d.
with probabilities π (1,1)=π (2,1)=π (1,2)=π (2,2)= 1

2 . We assume the tree has a deterministic
dividend d and the endowments of agent 1 are e1(1)=h,e1(2)=0, the endowments of agent 2
are e2(1)=0,e2(2)=h, where 0<h, and the agents’ Bernoulli utility function is state invariant,
uh(c,s)=uh(c) for h=1,2. Although we assumed above that endowments are strictly positive,
it is useful to consider the example with e1(2)=e2(1)=0 since this simplifies computations
considerably. Our results carry over to an example where endowments are strictly positive.

Since there is no aggregate uncertainty, at a Pareto-efficient allocation agents’ consumption is
constant, i.e. ch(st)=ch for all st , for h=1,2, and the same is true at anArrow–Debreu equilibrium,
with supporting prices given by ρ(st)=(β/2)t . For this allocation to be also an equilibrium
in the present environment, the collateral constraints, or equivalently the limited pledgeability
constraints (4), must all be satisfied. The latter reduce to

ch −h+ch β

1−β
−h

β/2

1−β
≥0, for h=1,2. (6)

In addition, by feasibility we have c1 +c2 =h+d. If the initial distribution of the tree among
agents is such that c1 =c2 at the Arrow–Debreu equilibrium, it is easy to see that equation (6) is
satisfied if, and only if,

d

1−β
≥h (7)

i.e., if the total discounted flow of dividends paid by the tree are larger than the variability of
agents’ non-pledgeable endowments.

To generalize the simple example, first note that in the stationary environment considered
in this article Pareto-efficient allocations are always such that agents’ consumption only
depends (at most) on the current realization of the shock (see, e.g., Judd et al. (2003)).

Consider a Pareto-efficient allocation
{
ch(s)

}h∈H
s∈S . For this allocation to be supported as an

Arrow–Debreu equilibrium with limited pledgeability the supporting prices, given by ρ(st)=
uh′(ch(st),st)β tπ (st) for all st and any h, must be such that the limited pledgeability constraints
are satisfied for all agents h∈H and all shocks s∈S:

uh′(ch(s),s)(ch(s)−eh(s))+E

( ∞∑
t=1

β tuh′(ch(st),st)(c
h(st)−eh(st))

∣∣∣∣∣s0 =s

)
≥0. (8)

Moreover, the initial distribution of the tree at t =0 (i.e., the initial conditions) must ensure
that the inter-temporal budget constraint (3) holds. In what follows we will say that Pareto-
efficient equilibria exist for an economy if there are initial distributions for which the competitive
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equilibrium is Pareto efficient. We discuss in Subsection 4.2.2 below what happens if Pareto
efficient equilibria exist but initial conditions are such that collateral constraints bind initially. We
provide conditions that guarantee that in the long run the equilibrium allocation will converge to
that of a Pareto efficient equilibrium.

For general utility functions and endowments, there are no simple conditions on fundamentals
that ensure equation (8) holds since equilibrium allocations cannot be derived analytically.
However, for the case of no aggregate uncertainty and for the case of identical CRRA utility
equilibrium allocations can be determined easily.

3.1.1. No aggregate uncertainty. When there is no aggregate uncertainty—that is to
say

∑
h∈Hωh(s) is equal to a constant ω for all shock realizations s∈S, and agents’ Bernoulli

functions are state independent, all Pareto-efficient allocations must satisfy ch(s)=ch for all s,h.
Hence condition (8) simplifies to

max
s∈S

[
eh(s)+E

( ∞∑
t=1

β teh(st)

∣∣∣∣∣s0 =s

)]
≤ ch

1−β
for all h∈H (9)

and using the feasibility of the allocation we obtain the following7:

Theorem 2. A necessary and sufficient condition for the existence of a Pareto-efficient
equilibrium with no aggregate uncertainty is

(1−β)
∑
h∈H

max
s∈S

[
eh(s)+E

( ∞∑
t=1

β teh(st)

∣∣∣∣∣s0 =s

)]
≤ω. (10)

Recalling that ω−∑h∈Heh(s)=d(s), condition (10) requires the amount of collateral in every
state, measured by d(s), to be sufficiently large relative to the variability of the present discounted
value of the agents’ non-pledgeable endowment, captured by the term on the left-hand side of
equation (10).

If in addition shocks are i.i.d. and d(s)=d for all s, condition (10) simplifies to8

∑
h∈H

max
s∈S

eh(s)≤ ω−βe

1−β
= d

1−β
+e, (11)

where e=∑h∈Heh(s) for any s.

3.1.2. Identical CRRA preferences. Consider next the case where all agents have
identical CRRA preferences with coefficient of relative risk aversion r. In this case, all Pareto-
efficient allocations satisfy the property that, for all h,s, ch(s)=λhω(s) for some λh ≥0 and∑

h∈Hλh =1, where ω(s)=∑h∈Hωh(s). We can therefore write condition (8) as

λh

ω(s)r−1
+E

( ∞∑
t=1

β t λh

ω(st)r−1

∣∣∣∣∣s0 =s

)
≥ eh(s)

ω(s)r
+E

( ∞∑
t=1

β t eh(st)

ω(st)r

∣∣∣∣∣s0 =s

)
for all s∈S,h∈H.

7. Necessity is obvious given condition (9). Sufficiency follows from the observation that under condition (10) it

is always possible to find a Pareto-efficient allocation
{
ch
}h∈H

that satisfies condition (9).
8. This condition is a clear generalization of equation (7) obtained for the example.
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As in the previous section, feasibility allows us to obtain from the above inequality the
following necessary and sufficient condition for the existence of an efficient equilibrium:

1≥
∑
h∈H

max
s∈S

eh(s)
ω(s)r +E

(∑∞
t=1β t eh(st)

ω(st)r

∣∣∣s0 =s
)

1
ω(s)r−1 +E

(∑∞
t=1β t 1

ω(st)r−1

∣∣∣s0 =s
) (12)

When all agents have log-utility, i.e. r=1, condition (12) greatly simplifies and reduces to

1

1−β
≥
∑
h∈H

max
s∈S

[
eh(s)

ω(s)
+E

( ∞∑
t=1

β t eh(st)

ω(st)

∣∣∣∣∣s0 =s

)]
,

analogous to condition (10).
Condition (12), though not very intuitive, can obviously be verified numerically for given

processes of individual endowments and dividends. It is obviously beyond the scope of this article
to take a stand on which values should be considered as realistic for the level of persistence and
the size of the idiosyncratic shocks as well as for the amount of available collateral. It might be
interesting, however, to consider an example of a calibrated economy from the applied literature.
Heaton and Lucas (1996) calibrate a Lucas-style economy with two types of agents to match key
facts about the U.S. economy. They take the dividend share to be earnings to stock-market capital
and estimate this number to be around 15% of total income. They assume that aggregate growth
rates follow an eight-state Markov chain and calibrate their model using the PSID (Panel Study
of Income Dynamics) and NIPA (National Income and Product Accounts). We consider their
calibration for the “Cyclical Distribution Case” but de-trend the economy to ensure we remain in
our stationary environment. We find that for their specification of the economy the competitive
equilibrium is Pareto-efficient (i.e., condition (12) holds). This shows that, if one considers the
specification of idiosyncratic risks in Heaton and Lucas (1996) to be somewhat realistic, Pareto-
efficient equilibria exist (in the sense that there are initial conditions for which equilibria are
Pareto efficient) for all realistic levels of collateral.

3.2. Constrained inefficiency of equilibria

If the collateral in the economy is too scarce to support a Pareto-efficient allocation, it could
still be the case that the equilibrium allocation is constrained Pareto efficient in the sense that
no reallocation of the resources that is feasible and satisfies the collateral constraints can make
everybody better off. We show here that this may not be true by presenting a robust example
for which a welfare improvement can indeed be found subject to these constraints. We consider,
in particular, the reallocation obtained when agents are subject to constraints on trades that are
tighter than the collateral constraints.

3.2.1. Pareto-inefficient equilibria. Consider again the simple environment of the
example of Section 3.1. When

h>
d

1−β
, (13)

as we showed, a Pareto-efficient competitive equilibrium does not exist, so the only possible
equilibrium is one where the collateral constraints bind (at least in some state). We show next
that when condition (13) holds, an inefficient equilibrium exists where agents’ consumption and
prices are time invariant functions of the shock s alone. We will refer to equilibria satisfying this
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property as steady-state equilibria. We will show below that this steady-state equilibrium might
be constrained inefficient.

It turns out to be simpler to carry out this analysis in terms of the notion of equilibrium with
intermediaries. Given the symmetry of the environment, it is natural to conjecture that the steady-
state equilibrium is symmetric with c1(1)=c2(2) and θ1 = (0,1), θ2 = (1,0). In the following
we will verify this conjecture. Letting q1(s) and q2(s) denote the equilibrium prices of the tree
options (with the price of the tree satisfying the zero profit condition q(s)=q1(s)+q2(s) stated
above), the consumption values of agent 1 supported by the above portfolios readily obtain from
the budget constraints:

c1(1) = h−q2(1),

c1(2) = d+q1(2)+q2(2)−q2(2)=d+q1(2)

The values of the equilibrium prices must satisfy the first-order conditions of agent 1 for the
security paying in state 2 (since agent 1 is always unconstrained in his holdings of this asset)

q2(1)u′(c1(1)) = β
1

2
(q1(2)+q2(2)+d)u′(c1(2))

q2(2)u′(c1(2)) = β
1

2
(q1(2)+q2(2)+d)u′(c1(2))

and the corresponding conditions of agent 2 for the security paying in state 1. From the second
condition above we obtain:

q2(2)= β

2−β
(q1(2)+d).

By symmetry we also have q1(1)=q2(2) and q1(2)=q2(1).
To prove the existence of a steady state it suffices to show that the first-order conditions

have a solution in prices that support an allocation with c1(1)>c1(2), i.e. that satisfy h−q2(1)>
d+q2(1).

To do so we can reduce the system to a single equation in q2(1) and obtain the following.

q2(1)u′(h−q2(1))= β

2−β
(q2(1)+d)u′(d+q2(1))

The existence of a positive solution q2(1)>0 follows directly from the intermediate value
theorem. To see that the solution must satisfy h−q2(1)>d+q2(1), suppose to the contrary that
h−q2(1)≤d+q2(1). By concavity of u(.) this must imply q2(1)≤ β

2−β
(q2(1)+d) or 2q2(1)≤

β d
1−β

. But then we would obtain h≤d+2q2(1)≤ d
1−β

, which contradicts condition (13) above.
We have thus shown that under condition (13) a symmetric steady-state equilibrium exists. If

the initial conditions of the economy are such that s0 =1 and θ1(s−)=0, there is a competitive
equilibrium that is identical to this steady state at each date t. Since c1(1)>c1(2) the equilibrium
is clearly inefficient. In the rest of this section we will focus on this equilibrium.9 When the
initial conditions are different from those stated above—similarly to what has already been stated
in Section 3.1—the analysis in Subsection 4.2.2 shows that there always exists a competitive
equilibrium that converges to this steady state.

9. For the case of general preferences we cannot rule out the possibility that other equilibria exist. In the following
Subsection 3.2.3 we assume that all agents have log utility, in which case it follows from Theorem 5 in Section 4 that the
equilibrium is unique (and hence our argument shows that all equilibria are constrained inefficient).
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3.2.2. Pareto-improving intervention. Suppose the economy is at a steady-state
equilibrium as described in the previous subsection, where θ1 = (0,1), θ2 = (1,0) at each date
t, and consider the welfare effect of tightening the portfolio restriction to θh

s (st)≥ε, for ε>0
and all s∈S. This tighter restriction is assumed to be introduced at t =1 and to hold for all
t ≥1. The intervention is announced at t =0 after all trades have taken place. In the light of the
equivalence established in Section 2.4, this is equivalent to increasing the collateral requirements
in a collateral-constrained financial market equilibrium. We consider the equilibrium obtained
as a result of this intervention, where agents optimize subject to these tighter constraints and
markets clear, and evaluate agents’ welfare ex ante, at date 0, at the new equilibrium allocation.
This allocation clearly satisfies the collateral constraints. At the same time, since the tighter
constraints modify agents’ trades and hence securities’ prices, it may not be budget feasible at the
original prices. We show the intervention is Pareto improving, for an open set of the parameter
values describing the economy. Thus, inefficient steady-state equilibria (as characterized in the
previous subsection) are also constrained inefficient: making the collateral constraint tighter in
some date events improves welfare.

Given the nature of the intervention and the fact that the economy is initially in a steady state,
there is a transition phase of one period before the economy settles to a new steady state (at t =2):
the new equilibrium prices and consumption levels depend on time (whether it is t =1 or t >1),
and on the realization of the current shock. It is thus convenient to use the notation qs′ (s;t) to
indicate the price at time t and state s of the tree option that pays in state s′. The new equilibrium
portfolios are, at all dates t ≥1, θ1 = (ε,1−ε), θ2 = (1−ε,ε)—i.e., the short-sale constraint always
binds. The consumption level of type 1 consumers at the date of the intervention, t =1, is

c1(s1 =1) = h−q1(1;1)ε−q2(1;1)(1−ε)

c1(s1 =2) = d+q1(2;1)+q2(2;1)−q1(2;1)ε−q2(2;1)(1−ε)

= d+q1(2;1)(1−ε)+q2(2;1)ε

and, at all subsequent dates t >1,

c1(st =1) = h+ε(q1(1)+q2(1)+d)−q1(1)ε−q2(1)(1−ε)

= h+εd−q2(1)(1−2ε)

c1(st =2) = (d+q1(2)+q2(2))(1−ε)−q1(2)ε−q2(2)(1−ε)

= d(1−ε)+q1(2)(1−2ε)

where qs′ (s)=qs′ (s;t) for all t >1, s,s′.
The above expressions allow us to gain some intuition for the effects of the intervention

considered. Consider first the direct effect, ignoring the price changes: we see that the intervention
unambiguously increases the variability of consumption across states, not only at all dates t >1
but also at t =1.10 Next, turning our attention to the price changes, we show in what follows that
the equilibrium price of the tree options unambiguously increases, as a result of the intervention,
since their effective supply (the amount that can be traded in the market) decreases, from 1 to
1−2ε. From the above expressions we see that an increase in prices reduces the variability of
consumption across states, since consumers are net buyers of assets when they are rich and net

10. This last property follows from the fact that the consumers’ optimality conditions imply that, at an initial
steady-state equilibrium, we have q2(1)> q1(1) and q1(2)> q2(2).
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sellers when they are poor. Hence, the price effect improves risk sharing, in contrast to the direct
effect. We also show that for an open set of parameter values the price effect prevails over the
direct effect.

We have eight new equilibrium prices to determine. By symmetry (of consumers’preferences,
endowments, and shocks), however, these reduce to four, since q1(1;1)=q2(2;1), q2(1;1)=
q1(2;1), as well as q1(1)=q2(2) and q2(1)=q1(2) for all t =2,.... Using the above expressions
of the budget constraints, the equilibrium prices can be obtained from the first-order conditions
for the consumers’ optimal choices. After some substitutions, we obtain11 the following equation
that can be solved for q2(1)=q1(2):

q1(2)u′(h+εd−q1(2)(1−2ε))− β(q1(2)+d)

2−β
u′(d(1−ε)+q1(2)(1−2ε))=0. (14)

It is useful to denote by q0
1(2) the solution of this equation when ε=0 (that is, at the initial steady

state).
Differentiating equation (14) with respect to ε and evaluating it at ε=0 yields the following

expression for the change in equilibrium prices in the new steady state:

dq1(2)

dε

∣∣∣∣
ε=0

=
−
[
β

d+q0
1(2)

2−β
u′′
d +q0

1(2)u′′
h

]
(d+2q0

1(2))

u′
h− β

2−β
u′
d−β

d+q0
1(2)

2−β
u′′
d −q0

1(2)u′′
h

(15)

where u′
h =u′(h−q0

1(2)) and u′
d =u′(d+q0

1(2)) with u′′
h and u′′

d defined analogously. In the above
expression the numerator is clearly positive, and so is the denominator, since equation (14)

evaluated at ε=0 yields u′
h = d+q0

1(2)
q0

1(2)
β

2−β
u′
d >

β
2−β

u′
d. Turning our attention to the effect on

equilibrium consumption, from the above expressions of the budget constraints and the symmetry
of equilibrium prices we obtain

dc1(st =1)

dε

∣∣∣∣∣
ε=0

=− dc1(st =2)

dε

∣∣∣∣∣
ε=0

=2q0
1(2)+d− dq1(2)

dε

∣∣∣∣
ε=0

. (16)

From equation (15) we immediately see that

0<
dq1(2)

dε

∣∣∣∣
ε=0

<d+2q0
1(2),

so that dc1(st=1)
dε

∣∣∣
ε=0

>0. Hence, in the new steady state for all t >1, the equilibrium price of the

tree options unambiguously increases, as claimed, as a result of the intervention, but the change
in prices is not enough to overturn the direct effect of the intervention, and so the variability in
consumption across states increases too.

We can similarly proceed to determine the effect on consumption at the transition date t =1 :
dc1(s1 =1)

dε

∣∣∣∣∣
ε=0

=− dc1(s1 =2)

dε

∣∣∣∣∣
ε=0

=q0
1(2)− β(q0

1(2)+d)

2−β
− dq2(1;1)

dε

∣∣∣∣
ε=0

,

where we used the fact that q1(1;1), evaluated at ε=0, is equal to q1(1), which is in turn equal

to the steady-state value before the intervention,
β(q0

1(2)+d)
2−β

.

11. The details for this as well as the similar derivation of equation (19) below can be found in the Appendix.
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The effect on the discounted expected utility of consumer 1 of an infinitesimal tightening of
the portfolio restriction—i.e., from ε=0 to dε>0— is given by

dU

dε

∣∣∣∣
ε=0

= 1

2

(
u′
h−u′

d

) dc1(s1 =1)

dε

∣∣∣∣∣
ε=0

+ β

2(1−β)

(
u′
h−u′

d

) dc1(st =1)

dε

∣∣∣∣∣
ε=0

. (17)

By symmetry, the expression for the change in consumer 2’s expected utility has the same value.
Hence the welfare effect of the intervention considered is determined by the sign of the expression
in equation (17).

Since u′
h <u′

d, our finding on the sign of equation (16) implies that the effect of the intervention
considered on agents’ steady-state welfare, given by the second term in equation (17), is always
negative. For the intervention to be welfare improving we therefore, need to have a welfare
improvement in the initial period that is sufficiently large to compensate for the negative effect

after that period. More precisely, from equation (17) it follows that dU
dε

∣∣∣
ε=0

>0 if, and only if,

dc1(s1 =1)

dε

∣∣∣∣∣
ε=0

<− β

1−β

dc1(st =1)

dε

∣∣∣∣∣
ε=0

,

or equivalently, substituting the expressions obtained above for the consumption changes and
rearranging terms,

dq2(1;1)

dε

∣∣∣∣
ε=0

>
2q0

1(2)+dβ

(2−β)(1−β)
− β

1−β

dq2(1)

dε

∣∣∣∣
ε=0

(18)

That is, for an improvement to obtain the price change in the first period, dq2(1;1)
dε

∣∣∣
ε=0

, has to

be sufficiently large that c1(s1 =1) decreases, increasing risk sharing in this intermediate period,
and by a sufficiently large amount.

Again by differentiating the consumers’ first-order conditions with respect to ε we obtain the
following expression for the price effect at the intermediate date:

dq2(1;1)
dε

∣∣∣
ε=0

=
q0

1(2)

(
β(q0

1(2)+d)
2−β

−q0
1(2)

)
u′′

h−
β(q0

1(2)+d)
2−β

u′′
d

(
d+2q0

1(2)− dq1(2)
dε

∣∣∣
ε=0

)
+ β

2−β
u′

d
dq1(2)

dε

∣∣∣
ε=0

u′
h−q0

1(2)u′′
h

(19)

Substituting this expression into the condition obtained above for the intervention to be improving,
(18), and rearranging terms we get:

q0
1(2)(1−β)

[
βd−2(1−β)q0

1(2)
]
u′′
h−(1−β)β(q0

1(2)+d)u′′
d

(
d+2q0

1(2)
)

−(2q0
1(2)+dβ

)(
u′
h−q0

1(2)u′′
h

)
+
[
β(2−β)

(
u′
h−q0

1(2)u′′
h

)
+β(1−β)u′

d+(1−β)β(q0
1(2)+d)u′′

d

]
dq1(2)

dε

∣∣∣
ε=0

>0

(20)

Condition (20) is stated in terms of endogenous variables, which obviously raises the question if
there are economies for which the equilibrium values satisfy it. We have the following result.
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Theorem 3. There are specifications of economies in the environment under consideration that
are robust with respect to perturbations in (h,d,β), and to perturbations of preferences, for
which condition (20) holds and hence there exists a steady-state equilibrium that is constrained
inefficient.

To prove the theorem, we show (in the Appendix) that for sufficiently small β condition (20)
is satisfied if

1+d
u′′(d+q0

1(2))

u′(d+q0
1(2))

+ u′(h−q0
1(2))

u′(d+q0
1(2))

<0. (21)

As shown in the previous Subsection 3.2.1, when h(1−β)>d a Pareto-inefficient steady-

state equilibrium exists with
u′(h−q0

1(2))
u′(d+q0

1(2))
<1. It then follows that the inequality − u′′(d+q0

1(2))
u′(d+q0

1(2))
>(

1+ u′(h−q0
1(2))

u′(d+q0
1(2))

)
/d is satisfied when the absolute risk-aversion is sufficiently high. Therefore,

condition (20) holds and the steady-state equilibrium is constrained inefficient whenever the
agents’ absolute risk aversion is uniformly above 2/d and β is sufficiently small. It is clear that
this is true for an open set of parameters and utility functions.

3.2.3. Logarithmic preferences. Although Theorem 3 above is all one can say in
general, it is useful to illustrate, for a given specification of the agents’ utility function, how
large the set of parameter values is for which one obtains constrained inefficient equilibria. We
consider here the case where u(c)= log(c). It can be verified that in this case an explicit solution
of equation (14) for the equilibrium price can be found, given by

q0
1(2)=β

h

2
.

Since the utility is homothetic it is without loss of generality to normalize d=1. Direct
computations show that

dq2(1;1)

dε

∣∣∣∣
ε=0

= β(1+h)(1+βh)

2+βh

and

dq1(2)

dε

∣∣∣∣
ε=0

= β(−4h+β2h(2+3h)+2β(1+h−2h2)

2(β−2)(2+βh)
.

According to equation (18) an improvement is possible if

β
dq2(1)

dε

∣∣∣∣
ε=0

+(1−β)
dq2(1;1)

dε

∣∣∣∣
ε=0

− 2q2(1)+dβ

(2−β)
>0

Substituting these expressions into equation (18) we find that, in the case of logarithmic
preferences, the intervention considered is welfare improving if, and only if,

2−β(h−2)h+β2h2 <0.
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Figure 1

Constrained inefficient region

Figure 1 shows, in the space h,β, the region of values of these parameters for which
competitive equilibria are constrained inefficient as well as the region where equilibria are Pareto
efficient. We see that the region where constrained inefficiency holds is quite large, whereas the
region where full Pareto efficiency cannot be attained but still the intervention considered is not
welfare improving is very small.

4. STATIONARITY PROPERTIES OF EQUILIBRIA

In this section, we give conditions for the existence of a (stationary) Markov equilibrium and,
for the case of two agents, we give conditions that ensure that this Markov equilibrium has finite
support.

The example in Section 3.2.1 demonstrates that even when the constraints bind there can
exist equilibria where consumption and prices only depend on the current realization of the
exogenous shock. Since the stochastic process of the exogenous variables has finite support,
these equilibria have finite support. While equilibria of this type generally exist for pure
exchange economies with Pareto-efficient equilibria, in models with incomplete markets, or
with overlapping generations, equilibrium prices and consumption levels typically take infinitely
many values along an equilibrium path. It is obviously an important question whether along the
equilibrium path the endogenous variables take finitely many or infinitely many values. If they
take finitely many values, the equilibrium can be characterized by a finite system of equations, it
can typically be computed easily and one can conduct local comparative statics using the implicit
function theorem. Ligon et al. (2002) show that in limited enforcement models finite-support
equilibria always exist if there are two agents. However, in those models equilibrium allocations
are constrained efficient and can be obtained as the solution of a convex programming problem.
As we have demonstrated, competitive equilibrium in our model may be constrained inefficient
and it is not possible to derive equilibrium allocations as the solution to a planner’s problem—the
argument in Ligon et al. (2002) crucially depends on this property. In this respect, our model is
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closer to models with incomplete financial markets and in these models finite-support equilibria
typically do not exist.

Even if equilibria have infinite support, they might still be tractable if they are Markov for
some simple, endogenous state variable (as, e.g., is the case in the stochastic growth model). In
many models with heterogenous agents and market imperfections, however, it is an open problem
under which conditions Markov equilibria exist (see, e.g., Kubler and Schmedders (2002) or
Santos (2002)).

In this section we investigate the conditions under which there exist Markov equilibria, and
equilibria where individuals’consumption follow a Markov process with finite support.As argued
above, the existence of equilibria with these properties is important, as such equilibria are simpler
to study and to compute. We begin by providing some sufficient conditions for the existence of
Markov equilibria. This analysis becomes simpler if we consider the Arrow–Debreu equilibrium
notion with limited pledgeability and use as endogenous state variable the instantaneous Negishi
weights, yielding current consumption levels (as in Chien and Lustig (2010)), rather than the
beginning-of-period distribution of the tree. The intuition for why this simplifies the analysis
is that, as we will see below, if at some node an agent’s limited pledgeability constraint does
not bind, the agent’s instantaneous Negishi weight remains constant—hence one only needs to
analyse the evolution of the weight for nodes where the constraints are binding. In the remainder
of the section we show that, for economies with only two types of agents, finite-support equilibria
exist under more general conditions, and then conclude with a brief discussion of the existence
of finite-support equilibria with more than two agents.

4.1. Existence of Markov equilibria

We take the endogenous state at some node st to be the Negishi consumption weights λ(st)∈R
H++

where
(c1(st),...,cH (st))∈arg max

c∈R
H+

∑
h∈H

λh(st)uh(ch,st) s.t.
∑
h∈H

(ch −ωh(st))=0.

Negishi’s (1960) approach to proving the existence of a competitive equilibrium, instead of
solving for consumption values that clear markets, solves for weights that enforce budget balance
(see also Dana (1993)). Judd et al. (2003) show how to use this approach to compute equilibria in
Lucas-style models with complete markets (and without collateral constraints). Chien and Lustig
(2010) (see also Chien et al. (2011)) consider a Markov equilibrium notion that features individual
multipliers—interpretable as the inverse of our consumption weights—as the endogenous state
variable in a model analogous to ours, though for a slightly different economy with a continuum
of agents.

The state, then, consists of the current shock and all agents’ current Negishi weights, (s,λ). To
define a competitive equilibrium satisfying the Markov property (in short, a Markov equilibrium),
we need to rewrite the equilibrium conditions in a recursive form, specifying a policy function that
determines how the endogenous variables depend on the state and a transition map that associates
to the current state a probability distribution over next period’s states. The consumption policy
function, C :S×R

H++ →R
H+ is obviously given by

C(s,λ)=arg max
c∈R

H+

∑
h∈H

λhuh(ch,s) s.t.
∑
h∈H

(ch −ωh(s))=0. (22)

To understand how λ evolves across time periods and shock realizations, consider an Arrow–
Debreu equilibrium with limited pledgeability, with prices (ρ(σ ))σ∈� , and a consumption
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allocation (ch(σ ))h∈H
σ∈� . If for an agent h and a node st the limited pledgeability constraint does

not bind, i.e. ∑
σ�st

ρ(σ )ch(σ )>
∑
σ�st

ρ(σ )eh(σ ),

from the agent’s first-order conditions it follows that his marginal rate of substitution between

st−1 and st must equal the price ratio, ρ(st)
ρ(st−1)

and, as we show formally below, we have λh(st)=
λh(st−1). If, on the contrary, the constraint binds∑

σ�st

ρ(σ )ch(σ )=
∑
σ�st

ρ(σ )eh(σ ),

his marginal rate of substitution must be higher than ρ(st)
ρ(st−1)

and we have λh(st)>λh(st−1). A key

determinant for the transition of λ is thus the value of an agent’s future lifetime consumption
in excess of his non-pledgeable endowments at any date event. We write this recursively as a
function of the state (s,λ) denoting it agent h’s “excess expenditure function” Vh(s,λ), for each
h. In what follows, it is useful to write (in a slight abuse of notation)

uh′(s,λ)=uh′(Ch(s,λ),s
)
.

A Markov equilibrium consists of a policy function C :S×R
H++ →R

H+, together with a
transition function L :S×R

H++ →R
H++, and excess expenditure functions Vh :S×R

H++ →R for
all agents h∈H, such that for all h∈H, all s∈S, and all λ∈R

H++ :

Vh(s,λ) = uh′(s,λ)
(

Ch(s,λ)−eh(s)
)
+β

∑
s′

π (s,s′)Vh(s′,L(s′,λ)) (23)

and for all s′ ∈S,

V(s′,L(s′,λ)) ≥ 0 (24)

L(s′,λ)−λ ≥ 0 (25)

V(s′,L(s′,λ))·(L(s′,λ)−λ
) = 0 (26)

Note that since consumption is homogenous of degree zero in the Negishi weights we could
normalize λ to lie in the H −1 dimensional unit simplex, 
H−1 ={λ∈R

H+ :∑H
h=1λh =1}. At this

point, it simplifies the exposition and the notation not to do so, since without this normalization
condition (25) implies that we always have L(s′,λ)≥λ while the relative Negishi weight of an
agent actually decreases if he is unconstrained and some other agents are constrained.

With λ normalized to lie in the simplex, the conditions defining a Markov equilibrium become
a little messier. Since in parts of the argument in Section 4.2 it will turn out to be convenient
to adopt this normalization, it is useful to briefly illustrate here how the definition of a Markov
equilibrium changes with such a normalization. The functions C(.),V(.), and L(.) become maps
from S×
H−1 and we need to introduce an auxiliary function γ :S×
H−1 →R

H+. While the
definition of Vh is as in equations (23) and (24) is unchanged, equations (25)–(26) become:

Lh(s′,λ)= λh +γ h(s′,λ)∑H
i=1(λi +γ i(s′,λ))

and γ h(s′,λ)Vh(s′,L(s′,λ))=0 for all h∈H (27)

To show that a Markov equilibrium, as defined above, indeed satisfies all the properties of
an Arrow–Debreu equilibrium with limited pledgeability, we compare the first-order conditions
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for the latter equilibrium with conditions (23)–(26) above. To get some understanding of the
expression of the excess expenditure function in condition (23), note that we proceeded as in the
Negishi approach, by taking an agent’s marginal utility to value his net consumption. Intuitively
this is possible because, as argued above, whenever the agent is unconstrained at some state s, his
marginal rate of substitution between s and the predecessor state s′ equals the prices while, when
he is constrained, we have Vh(s′,λ)=0 and it is irrelevant whether this term is multiplied by the
agents’ marginal rate of substitution between s and s′ or by actual market prices since the product
is always zero. With regard to the remaining conditions, note that the first-order conditions for
the optimality of consumption of agent h at some node st can be written as follows:

β tπ (st)uh′(ch(st),st)−ηhρ(st)+
∑

σ :st�σ

μh(σ )ρ(st)=0

μh(st)
∑
σ�st

ρ(σ )(ch(σ )−eh(σ ))=0,

for multipliers ηh ≥0 (associated with the inter-temporal budget constraint (3)) and μh(σ )≥0
(associated with the collateral constraint (4) at node σ ). Taking 1

λh(σ )
=ηh −∑σ :st�σ μh(σ ) for

all h,σ, we see that conditions (24)–(26) follow from the above first-order conditions and that
the evolution of λh(σ ) is determined by that of the Lagrange multipliers μh(σ ).

Theorem 4. Given a Markov equilibrium (C,V,L) and any λ0 ∈RH++ with Vh(s0,λ0)≥0 for all
h, there exist initial tree-holdings (θh(s−1))h∈H and an Arrow–Debreu equilibrium with limited
pledgeability with ch(st)=Ch(st,λ(st)) and λ(st)=L(st,λ(st−1)) for all st , t >0.

Note that if there is a competitive equilibrium with λ(st)=λ∗ for all st , this must be an
unconstrained Arrow–Debreu equilibrium. The fact that λ(st) does not change over time implies
that the additional constraint (4) is never binding in equilibrium and the allocation is identical
to the unconstrained Arrow–Debreu equilibrium allocation and is Pareto efficient. Therefore, if
for a given Markov equilibrium a vector of weights λ∗ exists with Vh(s,λ∗)≥0 for all s∈S and
all h∈H, there exist initial conditions (corresponding to the weights λ∗) for which the Markov
equilibrium is identical to an unconstrained Arrow–Debreu equilibrium.

It is well known that in models where the equilibrium may be constrained inefficient Markov
equilibria might not always exist. For the model with collateral constraints, when financial
markets are incomplete no sufficient conditions are known that ensure the existence of a Markov
equilibrium (see Kubler and Schmedders (2003)). In contrast, in the environment considered
here, with complete markets, as shown in the next theorem, the assumption that all agents’
preferences satisfy the gross substitute property implies that Markov equilibria always exist.
Dana (1993) shows that this assumption guarantees the uniqueness of Arrow–Debreu equilibria
in infinite horizon exchange economies without constraints. We show that her argument extends
to our model and guarantees the existence of a Markov equilibrium through the uniqueness of
the “continuation-equilibrium”. As pointed out by Dana (1993), in our context the assumption of
gross substitutes is equivalent to assuming that for all agents h and all shocks s, the term c uh′(c,s)

is increasing in c; or equivalently, that the coefficient of relative risk aversion −c uh′′(c,s)
uh′(c,s)

is always

less than or equal to one. Although in applied work it is often assumed that relative risk aversion
is significantly above one it is also sometimes argued (see, e.g., Boldrin and Levine (2001)) that
a value below one might be the empirically more relevant case.

We have the following result.
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Theorem 5. Suppose that for all agents h and all shocks s, c uh′(c,s) is increasing in c for all
c>0. Then a Markov equilibrium exists and it is unique.

To establish the result, we prove first that for each initial value of λ a unique equilibrium
exists. The proof proceeds by contradiction and is similar to the standard proof of uniqueness
of equilibrium when demand functions exhibit the gross substitute property. Suppose two
equilibrium allocations existed, with two distinct processes for the associated Negishi weights.
Define a new process as the (pointwise) minimum of these two. At the allocation implied by
this process all agents violate their budget constraints, which must violate feasibility since in
our economy prices are summable. The uniqueness of the equilibrium for each λ, then, directly
implies the existence—and uniqueness—of a Markov equilibrium.

4.2. Markov equilibria with finite support

The main difficulty in determining whether Markov equilibria with finite support exist lies in
specifying the support. We show that for the case of two agent types, H =2, there is a natural
characterization of the support. These equilibria constitute a generalization of the steady-state
equilibrium obtained in the example considered in Section 3.2.1. We also demonstrate how these
finite-support equilibria are always reached at an equilibrium when the economy starts with
arbitrary initial conditions.

Finally, we discuss briefly the case of more than two agents and show that in this case there
are examples of equilibria with finite support but there are also examples where all equilibria
have infinite support.

4.2.1. Finite-support Markov equilibria in economies with two types of agents.
When there are only two types of agents finite-support equilibria exist under rather general
conditions and are very easy to characterize. It is convenient here to normalize (λ1,λ2) to
always lie in the unit interval. This allows us to denote by λ=λ1 the value of the consumption
weight for agent 1 and to take this as a state variable. In a slight abuse of notation, we write
Ch(s,λ)=Ch(s,(λ,1−λ)), Vh(s,λ)=Vh(s,(λ,1−λ)) etc.

To fix ideas, suppose that a Markov equilibrium exists and that, for all agents h=1,2 and all s∈
S, the excess expenditure function Vh(s,.), has a unique zero. Denote by λ∗(s) the zero of V1(s,.)
and by λ

∗
(s)>λ∗(s) the zero of V2(s,.).12 Figure 2 illustrates a possible form of these functions

and their zeros in the simple case where there are two possible shocks, s=1,2. By equations
(24) and (27), for each (s,λ)∈S×(0,1) we must have L(s,λ)=λ or L(s,λ)∈{λ∗(s),λ

∗
(s)}. To

see this, note that if Vh(s,λ)>0 for h=1,2 then L(s,λ)=λ, while if V1(s,λ)<0 equation (27)
implies that λ must “jump” to λ∗(s), and if V2(s,λ)<0 it implies that λ must jump to λ

∗
(s). If

Vh(s,λ)=0 for some h=1,2 we must have λ∈{λ∗(s),λ
∗
(s)} and since we assumed that there is a

unique zero of each Vh(s,.) we have L(s,λ)=λ. Therefore, if each Vh(s,.) has a unique zero the
entire equilibrium transition can be described by the 2S numbers λ∗(1),λ

∗
(1),...,λ∗(S),λ

∗
(S) :

either λ stays constant or it jumps to one of these 2S values. In Figure 2, if we start with λ=λ
∗
(1)

when the current state is s=1, the endogenous state has to move to λ∗(2) when state 2 occurs
and will alternate (as in Ligon, Thomas and Worrall (2002)) between the values λ

∗
(1) and λ∗(2).

12. The Inada condition on agents’ utility functions together with the fact that Vh(s,.) must be bounded above
ensure that V1(s,λ)<0 for λ sufficiently small and V2(s,λ)<0 for λ sufficiently close to 1. Moreover, since d(s)>0,
λ

∗
(s) must always be larger than λ∗(s).



[14:02 12/6/2015 rdv002.tex] RESTUD: The Review of Economic Studies Page: 1142 1119–1153

1142 REVIEW OF ECONOMIC STUDIES

Agent 1

Agent 1

Agent 2

Agent 2

Lambda

Lambda

V

V

State 1

State 2

Figure 2

Finite support equilibrium

Unfortunately, it is not straightforward to identify conditions under which, when a Markov
equilibrium exists, each excess expenditure function Vh(s,.) has a unique zero. Our main result
of this section gives sufficient conditions.13

Theorem 6. Suppose there are two types of agents. A finite-support Markov equilibrium exists
for all initial conditions if any one of the following three conditions is satisfied:

1. The coefficient of relative risk aversion satisfies −cuh′′(c,s)/uh′(c,s)≤1 for all c,s,h.

2. All agents have identical, CRRA Bernoulli utility functions.
3. uh(c,s) is state independent for all h and there is no aggregate uncertainty.

To prove the result we adopt a constructive approach and conjecture that a competitive
equilibrium with finite support exists. We then derive a finite system of equations and inequalities
that characterize the competitive equilibrium in this case and find conditions under which this
system has a solution and one can construct monotone functions Vh(s,.) for all h=1,2.

As in the simple case of Figure 2, we want to prove that a Markov equilibrium exists where
at most 2S points are visited in the endogenous state space. To characterise these points as
the solution to a system of inequalities, we define for any λ∈ (0,1)S and λ∈ (0,1)S a function
L :S×[0,1]→[0,1] by

L(λ,λ)(s,λ)=
⎧⎨
⎩

λ if λ(s)≤λ≤λ(s)
λ(s) if λ<λ(s)
λ(s) if λ>λ(s).

This function L(λ,λ)(.,.) describes a law of motion for λ.

13. In an earlier working paper version of their published paper, Chien and Lustig also characterize equilibria with
finite support for the case of two shocks and two agents with identical CRRA utility. Our result holds for any number of
shocks under more general conditions.
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To characterize when the values (λ,λ) induce the transition function of a finite-support Markov
equilibrium we define, for each h=1,2, 2S2 numbers Vh(s,λ(s̃)), Vh(s,λ(s̃)) for s,s̃∈S to be the
solution of the following linear system of 2S2 equations:

Vh(s,λ(s̃))=uh′(s,λ(s̃))
(

Ch(s,λ(s̃))−eh(s)
)
+β

∑
s′

π (s,s′)Vh(s′,L(λ,λ)(s
′,λ(s̃))), (28)

Vh(s,λ(s̃))=uh′(s,λ(s̃))
(

Ch(s,λ(s̃))−eh(s)
)
+β

∑
s′

π (s,s′)Vh(s′,L(λ,λ)(s
′,λ(s̃))). (29)

The values (λ(s),λ(s))s∈S induce an equilibrium, and are denoted as (λ∗(s),λ
∗
(s))s∈S if they

satisfy the following conditions:

V1(s,λ∗(s))=V2(s,λ
∗
(s))=0 for all s∈S, (30)

and, for all s,s′

L(λ∗,λ∗
)(s

′,λ∗(s))=λ∗(s)⇒Vh(s′,λ∗(s)) ≥0 for h=1,2 (31)

L(λ∗,λ∗
)(s

′,λ∗
(s))=λ

∗
(s)⇒Vh(s′,λ∗

(s)) ≥0 for h=1,2 (32)

When the above conditions are satisfied, by construction, L(λ∗,λ∗
)(.) describes a transition function

that ensures that Vh(s,L(s,λ))≥0 for all λ∈{λ∗(s),λ
∗
(s), s=1,...,S} so that conditions (24) holds

and (27) holds. This constitutes a competitive equilibrium for economies with initial conditions
in {λ∗(s),λ

∗
(s), s=1,...,S}. The advantage of this formulation is that the computation of an

equilibrium reduces to solving a non-linear system of equations and verifying finitely many
inequalities. In the above theorem, however, we claim a stronger result since we want the finite-
support equilibrium to exist for all initial conditions. The stated conditions on preferences and
endowments guarantee that each Vh(s,.) function has a unique zero.

In the proof we first show that there always exist S pairs (λ∗(s),λ
∗
(s)) such that the solutions

to conditions (28) and (29) satisfy condition (30). This turns out to be always true under the
general conditions on endowments and preferences considered in this article and follows from a
standard, fixed-point argument. However, we need rather restrictive conditions as those stated in
the proposition to make sure that conditions (31) and (32) also hold. These conditions turn out to
ensure that the functions Vh(s,.) have unique zeros.

Note that in the above construction the intervals ([λ∗(s),λ
∗
(s)])s∈S uniquely define the values

(Vh(s,λ(s̃)),Vh(s,λ(s̃)))h∈H
s,s̃∈S ) and characterize the equilibrium. The equilibrium dynamics of

these equilibria are straightforward. If one starts at an initial condition that corresponds to a
welfare weight on the boundary of the interval [λ∗(s),λ

∗
(s)] for the initial state s=s0, only

finitely many different welfare weights are visited along the equilibrium. If the initial condition
corresponds to a different value, λ stays constant until we reach a state s′ where one of the
constraint binds in which case λ jumps to λ∗(s) or λ

∗
(s) and the dynamics proceeds as above.

Ligon, Thomas and Worrall (2002) establish an analogous result for two-agent economies
with limited enforcement, where equilibria are solutions of a constrained planner’s problem.
In that model, because the planner’s problem can be formulated as a stationary programming
problem, Markov equilibria always exist and to establish the finite support result it suffices to
ensure the monotonicity of the agents’ indirect utility function. In our model the existence of a
Markov equilibrium is not guaranteed and even if Markov equilibria exist we need to ensure the
monotonicity of the expenditure function. Hence the conditions in Ligon, Thomas and Worrall
(2002) are much weaker than those in Theorem 6.
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4.2.2. An example. To illustrate the construction of Theorem 6 it is useful to consider
again the example considered in Sections 3.1 and 3.2.1. In that example we showed that when
condition (7) holds, a Pareto-efficient equilibrium exists with constant consumption for some
initial conditions. However, we did not discuss if and how that steady state could be reached for
arbitrary initial conditions. Applying the results of the previous section, we can show that there
always exists an equilibrium where the steady state is reached, but that it might take arbitrarily long
to reach it. This equilibrium is clearly Pareto inefficient since, along the transition to the steady
state, risk sharing is imperfect as the collateral constraints will frequently bind. Nevertheless, the
competitive equilibrium always has finite support. The endogenous state variable, λ, never takes
more than three different values.

Suppose for simplicity that h= d
1−β

, u1(c)=u2(c)= log(c). Denote aggregate endowments by

ω=h+d. It is easy to check that with log utility we have C1(s,λ)=λω for both s=1,2. Also, it
is easy to see that under these parameter values there exists a unique efficient steady state where
each agent’s consumption is given by ω

2 .14 As pointed out after Theorem 4, a Pareto-efficient
Markov equilibrium exists if, for some λ∗, we have Vh(s,λ∗)≥0 for all h and all s. If we start
with this initial condition, the economy will be immediately at the efficient steady state.

In the environment considered here, since agent 1 has a high endowment in shock 1, we must
have λ∗(1)>λ∗(2) and, for an efficient steady state to exist, we must also have λ∗(1)≤λ

∗
(2).

In fact, we show now that for h= d
1−β

we have λ∗(1)=λ
∗
(2)= 1

2 . To do so, let us conjecture

this property holds, λ∗(1)=λ
∗
(2)= 1

2 , and that L(s,λ∗(1))=λ∗(1) for s=1,2. With log utility,
equations (28) and (29) become

V1(1,λ∗(1)) = 1− h

λ∗(1)ω
+ β

2

(
V1(1,λ∗(1))+V1(2,λ∗(1))

)
and

V1(2,λ∗(1)) = 1+ β

2

(
V1(1,λ∗(1))+V1(2,λ∗(1))

)
.

To verify that our conjecture is correct we need to show that these two equations have a solution
for V1(1,λ∗(1)) and V1(2,λ∗(1)) that satisfies V1(1,λ∗(1))=0 and V1(2,λ∗(1))>0. It is easy to
see that if V1(1,0.5)=0 a solution of the second equation is given by V1(2,0.5)= 1

1−β/2 , which
is always positive. Substituting this value into the first equation yields

V1(1,0.5)=1− h

0.5ω
+ β

2
V1(2,0.5)= d−h

ω
+ β(h+d)

(2−β)ω
=0,

which holds whenever (2−β)(d−h)+β(h+d)=0, equivalent to our assumption that h= d
1−β

.

By symmetry, λ
∗
(2)= 1

2 solves the corresponding system for V2(s,λ
∗
(2)), s=1,2.

Since endowments in the low state are zero, it is easy to verify that V1(2,λ)≥0 and V2(1,λ)≥0
for all λ∈ (0,1). Therefore, in this example the values λ∗(1),λ

∗
(2) completely characterize the

Markov equilibrium. If the initial conditions are such that the initial Negishi weight λ(s0)=1/2,

the Markov equilibrium coincides with the efficient steady state. On the contrary, if—e.g.—
λ(s0)< 1

2 , the state variable remains unchanged at the initial value λ(s0) as long as only shock
2 occurs, since Vh(2,λ(s0))≥0 for both h=1,2. Agent 1 will consume an amount less than 1/2.

14. When h< d
1−β

there is a continuum of efficient steady states. The same logic of the argument applies in that
case though calculations are a little more complex.
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When shock 1 occurs, we have V1(1,λ(s0))<0 since λ(s0)<λ∗(1) and V1(1,.) is increasing.
Therefore, λ must jump to λ∗(1) where it will stay from there on. Hence, the steady state will be
reached after each shock has realized at least once.

The same argument can also be used to analyse the case where the steady state is inefficient.
It is easy to see that when h> d

1−β
we have λ∗(1)>λ

∗
(2). There is no efficient steady state and

along the equilibrium path, after an initial transition similar to the one above, the instantaneous
Negishi weight λ oscillates between the two values λ

∗
(2) and λ∗(1).

4.2.3. Existence and non-existence of finite-support equilibria when H >2. Unfortu-
nately, for the general case with more than two agent types we do not know of general conditions
that ensure the existence of finite-support Markov equilibria. The problem is that the dynamics
of the Negishi weights, which as we saw have a simple pattern when H =2, can be much more
complex when H >2. In fact, even for limited enforcement models no existence results of finite-
support equilibria are available when H >2. Nevertheless, it is useful to show by example that
finite-support equilibria might exist and to give an example where finite-support equilibria do not
exist.

Suppose there are three types of agents and three equiprobable i.i.d. shocks. Assume again the
agents have identical log-utility functions, uh(c)= log(c) for all h, endowments are e1 = (0,h,h),
e2 = (h,0,h), and e3 = (h,h,0) for some h>0, while the tree pays constant dividends d>0. The
aggregate endowment is deterministic and equal to ω=2h+d. As in the case of two agents, we
again normalize instantaneous Negishi weights to lie in the unit simplex—that is to say, we have
λ3 =1−λ2 −λ1. This allows us to write Ch(s,λ)=λhω for all h and s.

Using symmetry, we show in what follows that under the condition

h>
d

1−β

there exists a finite-support equilibrium where agents 2 and 3 are constrained in state 1, agents
1 and 3 in state 2, and agents 1 and 2 in state 3. Denoting by λ(s,h) the value of the Negishi
weights in state s where only type h is unconstrained, we need to find the values of the vectors
λ(1,1), λ(2,2), and λ(3,3) constituting the support of the equilibrium. By symmetry, the weights
of all agents when constrained are identical across all states, i.e. λ1(2,2)=λ1(3,3)=λ2(1,1)=
λ2(3,3)=λ3(1,1)=λ3(2,2)=λh for some λh. Similarly, λ1(1,1)=λ2(2,2)=λ3(3,3)=λl =1−
2λh. In this situation, the transition function must therefore satisfy the following property

L(s,λ)=λ(s,s) whenever λ∈{λ(1,1),λ(2,2),λ(3,3)}.
Given this property of the transition function and the above specification of the states where

each agent is constrained, proceeding analogously to the previous section we obtain

V1(1,λ(1,1))=1+ β

3
V1(1,λ(1,1))= 1

1− β
3

V1(s,λ(s,s))=0=1− h

λ1(s,s)ω
+ β

3
V1(1,λ(1,1)), s=2,3

where the equality V1(s,λ(s,s))=0 holds in the states where agent 1 is constrained. Hence, we
must have

1− h

λhω
+ β

3−β
=0,
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or

λh = (3−β)h

3(d+2h)
,

and 1>λh >1/3>λl given the assumption h> d
1−β

.Afinite-support equilibrium exists if we start
with initial conditions s0 =1 and λ(s0)=λ(1,1)—along the equilibrium path the instantaneous
Negishi weights will only take values in {λ(1,1),λ(2,2),λ(3,3)}.

To illustrate why it is difficult to find general conditions that ensure the existence of a finite-
support equilibrium when H >2, consider the following small modification of the example above.
Instead of assuming that each agent’s individual endowments are high in two out of the three
states, suppose they are high only in one out of the three states. That is e1 = (h,0,0), e2 = (0,h,0),
and e3 = (0,0,h) for some h>0. Under the maintained assumption of logarithmic utility, Theorem
5 ensures the existence of a unique Markov equilibrium. However, we will show that under the
following assumption on fundamentals the unique Markov equilibrium has infinite support (and
hence there exists no finite-support equilibrium).

β <
3

4
, h>

3d

3−4β
(33)

To do so, note that whenever agents have zero endowments they must be unconstrained. We
conjecture that in equilibrium each agent h is always constrained in state s=h and denotes his
relative instantaneous Negishi weight in this case by λh. We conjecture that in any equilibrium
we have

λh = h

ω

3−2β

3
,

that the instantaneous Negishi weights λ lie in the set


ε ={λ∈R
3+ :
∑

h

λh =1,λh ≤λh for all h=1,2,3},

and that the transition L(s,.) takes the following form for any s∈S and any λ∈
ε

L(s,λ)=
{(

λ1′,λ2′
,λ3′) :

λj′ =λh if j=s

λj′ =λj 1−λh∑
h �=sλ

h otherwise.

To verify this conjecture and confirm that this transition describes a competitive equilibrium,
by symmetry, it suffices to verify equations (24) and (27) only for agent 1. In state s=1, for any
λ∈
ε with λ= (λh,λ2,λ3) we obtain

V1(1,λ)=0=1− h

λhω
+ β

3

3∑
s′=2

V1(s′,L(s′,λ)),

whereas in the other two states for any λ∈
ε we have

V1(2,λ) = 1+ β

3

3∑
s′=2

V1(s′,L(s′,λ)),

V1(3,λ) = 1+ β

3

3∑
s′=2

V1(s′,L(s′,λ)).
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From the last two equations we see that V1(2,λ)=V1(3,λ)= 1
1− 2β

3

for all λ∈
ε. By substituting

this value into the first equation we obtain that V1(1,λ)=0 is equivalent to the following.

1− h

λhω
+ 2β

3−2β
=0⇔λh = h

ω

3−2β

3
.

Under assumption (33) we have 1>λh > 1
2 and therefore equation (27) is satisfied. In

equilibrium, for all admissible initial conditions, we have λ(st)∈
ε for all st .
To illustrate the construction suppose initial conditions are s0 =1 and θ2(s−1)=θ3(s−1)=1/2.

The initial value of the welfare weights is given by λ(s0)= (λh,
1−λh

2 ,
1−λh

2 ). Since Vh(s,λ)>0
whenever s �=h and, by construction, for all λ(st) along the equilibrium path Vh(h,λ(st))=0,

the constructed transition function describes a Markov equilibrium. It is easy to check that this
equilibrium does not have finite support. To see this, consider for instance a sequence of shocks
for t =1,2,... with st =1 if t is odd and st =2 if t is even. It is easy to see that we must have

λ3(st+1)=λ3(st)
1−λh

λh+λ3(st)
and hence

1

λ3(st+1)
= 1

1−λh
+ λh

1−λh

1

λ3(st)
,

which always diverges since λh > 1
2 . In the process, as λ3 →0 it takes infinitely many values.

The economic reason for the non-existence of finite-support equilibria in this example is as
follows. Consider a sequence of shocks where shocks 1 and 2 alternate but shock 3 never occurs.
Agent 3 has positive endowments only in shock 3 but he will obviously have savings. However,
along that sequence of shocks agent 3’s consumption will converge asymptotically to zero. Since
in each period a new “rich” agent is present, the returns to savings will be so low that agent
3 cannot guarantee a non-decreasing consumption stream. Along this sequence, his individual
consumption will take infinitely many values. Note that the fact that shocks alternate is crucial
for this argument. Instantaneous Negishi weights remain constant along a path where shock 2 is
occurs every period.

APPENDIX

A. PROOFS

A.1. Proof of Theorem 1

We first show that each Arrow–Debreu equilibrium allocation with limited pledgeability is also an equilibrium allocation
with intermediaries. Given the equilibrium Arrow–Debreu prices (ρ(σ ))σ∈� , set the prices of the tree equal to q(st)=

1
ρ(st )

∑
σ�st ρ(σ )d(σ ) and the prices of the tree options as

qst+1 (st)= 1

ρ(st)
ρ(st+1)

(
q(st+1)+d(st+1)

)
(A.1)

for every st,st+1. It is then easy to see that the set of budget-feasible consumption levels is the same for the budget set in
(IE2) and for the budget set defined by equations (3) and (4). For any h∈H, given an arbitrary consumption sequence
(c(σ ))σ∈� that satisfies (IE2), using equation (A.1) we get

ρ(st)θst (s
t−1)(q(st)+d(st))=ρ(st)(c(st)−eh(st))+ρ(st)

∑
st+1∈S

θst+1 (st)
ρ(st+1)

ρ(st)
(q(st+1)+d(st+1))

for each st with t ≥1. Substituting recursively for the second term on the right-hand side we obtain

ρ(st)θst (s
t−1)(q(st)+d(st))=

∑
σ�st

ρ(σ )(c(σ )−eh(σ ))≥0,
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that is, condition (4) holds. At the root node s0 we have

θh(s−)(q(s0)+d(s0))=
∑
σ�s0

ρ(σ )(c(σ )−eh(σ )),

which is equivalent to condition (3). The reverse implication can be similarly shown.
We show next that an equilibrium allocation with intermediaries is a collateral-constrained financial markets

equilibrium allocation for a sufficiently rich asset structure J , constructed as follows. In addition to the tree, at each node
there are S−1 financial securities. Security j=1,..,S−1 promises a zero payment in all states s=1,...,j and a payment
equal to 1 in the other states j+1,...,S.

Given any equilibrium with intermediaries, with consumption allocation (c̄h(st))h∈H, prices q̄s(st), and portfolios
(θ̄h

s (st))h∈H of the tree options, for all s,st , let

k̄ ≡sup
st

(
∑

s

q̄s(st)+d(st))<∞.

Consider the following specification of the collateral requirements of the J =S−1 financial securities:

k1
J+1 = 1

k̄
, k1

j =0 for all j=1,...,J

kj
j−1 =1, kj

i =0 for all i �= j−1, for all j=2,...,J

It suffices to show that a collateral-constrained financial markets equilibrium exists with the same consumption
allocation (c̄h(st))h∈H

st∈�
and tree prices q(st)=∑s q̄s(st). At this equilibrium, the pay-offs of the financial securities are:

fj(s
t)=

{
q(st )+d(st )

k̄
if st > j

0 otherwise.

and the securities’ prices

pj(s
t)= 1

k̄

S∑
s=j+1

q̄s(st), j=1,...,S−1.

Consider then the following portfolio holdings for each agent h, and each node st : set θh(st)= θ̄h
1 (st), φh

1− (st)=−k̄θ̄h
1 (st),

φh
1+ (st)= k̄θ̄h

2 (st), φh
S−1+ (st)= k̄θ̄h

S (st) and for all other j=2,...,J −1

φh
j+ (st)= k̄θ̄h

j+1(st), φh
j+1− (st)=−k̄θ̄h

j+1(st).

It is easy to verify that these portfolio holdings, together with the above prices of the tree and the securities, satisfy the
collateral constraints, yield the consumption allocation (c̄h(st))h∈H

st∈�
and are so the consumers’ optimal choices. �

A.2. Proof of Theorem 4

To construct equilibrium prices, set ρ(s0)=1 and

ρ(st)=ρ(st−1)βπ (st−1,st)max
h∈H

uh′(st,λ(st))

uh′(st−1,λ(st−1))
.

Agent h’s first-order conditions for optimal consumption at some node st can be written as follows:

β tπ (st)uh′(ch(st),st)−ηhρ(st)+
∑

σ :st�σ

μh(σ )ρ(st)=0

μh(st)
∑
σ�st

ρ(σ )(ch(σ )−eh(σ ))=0,

for multipliers ηh ≥0 (associated with the inter-temporal budget constraint (3)) and μh(σ )≥0 (associated with the
collateral constraint (4) at node σ ). It is standard to show that for summable and positive prices these conditions, together
with the budget inequalities (3) and (4), are necessary and sufficient for a maximum (see, e.g., Dechert (1982)). But then
at each st and for all agents h=2,...,H we have

u1′(c1(st),st)

uh′(ch(st),st)
= η1 −∑σ :st�σ μ1(σ )

ηh −∑σ :st�σ μh(σ )
,

which is equivalent to the first-order conditions of (22) if 1/λh(σ )=ηh −∑σ :st�σ μh(σ ) for all h,σ . It remains to be shown
that the budget inequalities (4) as well as the market-clearing conditions are satisfied. The latter is obvious, given condition
(22). Regarding the budget inequalities we need to show that Vh(st,λ(st))=0 if, and only if,

∑
σ�st ρ(σ )(ch(σ )−eh(σ ))=

0. Since for any agent h∈H, ρ(st+1)
ρ(st ) = uh′(st+1,λ(st+1))

uh′(st ,λ(st ))
whenever Vh(st+1,λ(st+1)) �=0, this follows from the definition of

Vh. �
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A.3. Proof of Theorem 5

To prove the result we need the following lemma.

Lemma 1. Suppose that for all s,h, uh(c,s) satisfies the property that cuh′(c,s) is (weakly) increasing in c. For any
λ1,λ2 ∈R

H++, let λh =min[λh
1,λ

h
2], h=1,...,H; if λ �=λ1 and λ �=λ2, we have for all agents h that

uh′(s,λ)(Ch(s,λ)−eh(s))> (A.2)

min
[
uh′(s,λ1)(Ch(s,λ1)−eh(s)),uh′(s,λ2)(Ch(s,λ2)−eh(s))

]
,

and
λhuh′(s,λ)<min

[
λh

1uh′(s,λ1),λh
2uh′(s,λ2)

]
. (A.3)

Proof. Assume without loss of generality that λh =λh
1 ≤λh

2. Since λ<λ1 we must have Ch(s,λ)>Ch(s,λ1) and so
equation (A.2) follows from the assumption made on uh(.). Concavity of uh(.) implies that λhuh′(s,λ)<λh

1uh′(s,λ1). To
prove that λhuh′(s,λ)≤λh

2uh′(s,λ2) and therefore equation (A.3) holds, define λ̃ by λ̃h =λh ≤λh
2 and λ̃i =λi

2 for all i �=h.
Since λ̃huh′(s,λ̃)= λ̃iui′(s,λ̃), we must have λ̃huh′(s,λ̃)≤λh

2uh′(s,λ2). Furthermore, we have λhuh′(s,λ)≤ λ̃huh′(s,λ̃).Also
one of the last two inequalities must hold strictly, so that (A.3) follows. �

Proof of the theorem. Given anArrow–Debreu equilibrium with limited pledgeability we can describe the equilibrium
consumption allocation by the associated instantaneous weights λ(st), which are uniquely determined if we normalize
the initial weights

∑
h∈Hλh(s0)=1 and for all t >0, all st , require that λ(st)≥λ(st−1) and λh(st)=λh(st−1) for at least

one agent h∈H.
It is a standard argument15 to show that for each l∈R

H++,
∑

h lh =1 there exists an Arrow–Debreu equilibrium with
limited pledgeability with λ(s0)= l and some transfers at t =0. To prove the existence of a Markov equilibrium it suffices
to show that the equilibrium associated with any given, initial λ(s0) is unique. Suppose, to the contrary, that there exist
two equilibria with instantaneous weights λ1,λ2 with λ1(s0)=λ2(s0) but λ1(st) �=λ2(st) for some st . Define for each st

and all h∈H, λh(st)=min(λh
1(st),λh

2(st)). Since both λ1(st) and λ2(st) describe equilibria we must have λ(st) �=λ1(st)
and λ(st) �=λ2(st) for some st . Define recursively

vh(st)=uh′(st,λ)(Ch(st,λ)−eh(st))+β
∑

s′
π (st,s

′)vh(st+1).

By Lemma 1 we have, for each st ,

uh′(st,λ(st))(Ch(st,λ(st))−eh(st))≥
min

[
uh′(st,λ1(st))(Ch(st,λ1(st))−eh(st)),u

h′(st,λ2(st))(Ch(st,λ2(st))−eh(st))
]

and therefore vh(s0)≥0. By the first-order conditions of the Negishi maximization problem the terms λhuh′(s,λ) are
identical across all agents h, for all s and λ, hence the Arrow–Debreu prices in the two equilibria are given by ρi(st)=
β tπ (st)λ1

i (st)u1′(st,λi(st)) for i=1,2. Since the price of the tree is finite, prices are summable, each (β tπ (st)λh
i (st)) is

also summable and so is (β tπ (st)λh(st)). Define ρ(st)=β tπ (st)λ1(st)u1′(st,λ(st)) for all st .

Lemma 1 also implies λh(st)uh′(λ(st),st)≤min
[
λh

1(st)uh′(st,λ1(st)),λh
2(st)uh′(st,λ2(st))

]
for all st, with the inequality

holding strict for some st . Therefore the allocation c(st)=C(st,λ(st)) would have to satisfy

∑
st

ρ(st)

(∑
h∈H

(ch(st)−eh(st))−d(st)

)
>0.

Since ρ is summable this contradicts feasibility and the equilibrium must be unique. �

A.4. Proof of Theorem 6

To prove existence we first show first show that there always exist S pairs (λ∗(s),λ
∗
(s)) such that the solution to conditions

(28) and (29) satisfy conditions (30).

15. Kubler and Schmedders (2003) show existence for all initial levels of tree-holdings, the same technique can
then be applied to all initial Negishi-weights.
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Lemma 2. There always exists λ∗(1),...,λ
∗
(S)∈ (0,1)2S solving conditons (28), (29), and (30).

To prove the lemma we need the following version of Brouwer’s fixed-point theorem (see e.g. Zeidler (1986),
Proposition 2.8).

Lemma 3. Let f :Rn →R
n be a continuous function such that

inf‖x‖=r

n∑
i=1

xifi(x)≥0, for some r >0.

Then f has at least one zero, i.e. there is a x with ‖x‖≤r and f (x)=0.

Proof of Lemma 2. To show the existence of a solution of (28)–(30), we can substitute out all V1(s,λ(s̃)) and
V2(s,λ(s̃)) as well as all V1(s,λ(s̃)) and V2(s,λ(s̃)) for s �= s̃. We obtain a function f : (0,1)2S →R

2S , where each fi,
i=1,...,S is the weighted sum of terms of the form

u1′(s,λ(s̃))
(

C1(s,λ(s̃))−e1(s)
)

and u1′(s,λ(s̃))
(

C1(s,λ(s̃))−e1(s)
)
, (A.4)

where the weights on the terms involving λ(s) are positive (bounded away from zero) if, and only if, there is an s′ with
λ(s′)>λ(s) (recall that π (s,s′)>0 for all s,s′). Similarly each fi with i=S+1,...,2S is a weighted sum of terms

u2′(s,λ(s̃))
(

C2(s,λ(s̃))−e2(s)
)

and u2′(s,λ(s̃))
(

C2(s,λ(s̃))−e2(s)
)
, (A.5)

where the weights on the terms involving λ(s) are positive if, and only if, there is an s′ with λ(s′)<λ(s). We obtain that
f (λ(1),λ(1),...,λ(S),λ(S))=0 precisely when there exists a solution to conditions (28) and (29) with

V1(s,λ(s))=V2(s,λ(s))=0 for all s∈S.

To prove the lemma, it therefore suffices to show that for sufficiently small ε>0, there exist x∈[ε,1−ε]2S with
f (x)=0. This result follows directly by applying Lemma 3 above to a slight modification of the function f (.). For
x∈[ε,1−ε]2S , set gi(x)= fi(x) for i=1,...,S and gi(x)=−fi(x) for i=S+1,...,2S and extend the function g to the whole
domain R

2S by setting it to a constant outside of [ε,1−ε]2S which is chosen to ensure continuity. All one needs to prove
is the appropriate boundary behaviour. Clearly, as some λ(s) is sufficiently large or some λ(s) is sufficiently small, we
have that

∑
i xigi(x)<0 since each fi(x) is bounded above. The key is to show that if λ(s) is sufficiently small, or if λ(s)

is sufficiently large, we also have that some |gi(x)| becomes arbitrarily large. To show this, note that in equation (A.5)
the terms involving λ(s) have positive (and bounded away from zero) weight whenever there is an s′ with λ(s′)<λ(s).
If this is the case, clearly some fi(x), i=1,...,S can be made arbitrarily small; if it is not the case, some λ(s′) becomes
arbitrarily close to 1 and we are in the case above. The argument for λ(s) is analogous. �

Proof of the theorem. To prove the theorem it suffices to show that given λ∗,λ∗
we can construct functions Vh(s,.)

that have a unique zero.
If all agents’ relative risk aversion is <1, the utility satisfies the gross substitute property and the result follows from

the proof of Theorem 5, since we showed uniqueness of Markov equilibria. To prove the sufficiency of conditions 2. and
3., it is useful to define the following functions Ṽ h(s,λ)= 1

uh′(s,λ)
Vh(s,λ) for h=1,2. Clearly, Vh(s,.) has a unique zero

if, and only if, Ṽ h(s,.) does. We have

Ṽ1(s,λ) = C1(s,λ)−e1(s)+β
∑

s′ :λ∈[λ∗(s′),λ∗
(s′)]

π (s,s′)
u1′(s′,λ)

u1′(s,λ)
Ṽ1(s′,λ)

+β
∑

s′ :λ>λ
∗

(s′)
π (s,s′)

u1′(s′,λ∗
(s′))

u1′(s,λ)
Ṽ1(s′,λ∗

(s′)) (A.6)

Ṽ2(s,λ) = C2(s,λ)−e2(s)+β
∑

s′ :λ∈[λ∗(s′),λ∗
(s′)]

π (s,s′)
u2′(s′,λ)

u2′(s,λ)
Ṽ2(s′,λ)

+β
∑

s′ :λ<λ∗(s′)
π (s,s′)

u2′(s′,λ∗(s′))
u2′(s,λ)

Ṽ2(s′,λ∗(s′)) (A.7)

for all s with λ∈[λ∗(s′),λ∗
(s′)].
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Assume that agents have identical CRRA preferences. Then the term uh′(s′,λ)/uh′(s,λ) is independent of λ.
Therefore λ only enters Ṽ1(s,λ) through the term C1(s,λ), which is clearly increasing in λ, and through the term

π (s,s′) u1′(s′,λ∗
(s′))

u1′(s,λ)
Ṽ1(s′,λ∗

(s′)), which is also increasing in λ since u1′(s,λ) is decreasing in λ. Therefore the function

Ṽ1 must be monotonically increasing and has a unique zero. Finally, if there is no aggregate uncertainty, the term
uh′(s′,λ)/uh′(s,λ) is simply equal to 1 and the same argument as for identical CRRA preferences shows the monotonicity
of Ṽ h(s,.). �

B. FURTHER DETAILS ON SECTION 3.3

B.1. Derivation of equation (14).

At each date t ≥2 in state 1 the price q2(1) of the tree option paying in state 2 is determined by agent 1’s first-order
condition, since agent 2 is constrained in that state in his holdings of that asset. On the contrary, in state 2 the consumption
of both agents is the same as in the subsequent date in state 2, hence both agents are not constrained in their holdings of
the tree options paying in state 2 and its price is determined by the first-order conditions of any of them. We obtain

q2(1)u′(h+εd−q2(1)(1−2ε)) = β

2
(q1(2)+q2(2)+d)u′(d(1−ε)+q1(2)(1−2ε)) (A.8)

q2(2)u′(d(1−ε)+q1(2)(1−2ε)) = β

2
(q1(2)+q2(2)+d)u′(d(1−ε)+q1(2)(1−2ε)) (A.9)

From equation (A.9) we obtain for t >1 that

q1(1)=q2(2)= β(q1(2)+d)

2−β
(A.10)

and therefore

q1(2)+q2(2)+d=2(q1(2)+d)

2−β
.

Substituting this expression into equation (A.8) we obtain equation (14).

B.2. Derivation of equation (19).

At t =1 agent 1’s first-order conditions with respect to the tree option paying in state 2 still determine its
price in state 1 since agent 2 is constrained in that state

q2(1;1)u′(h−q1(1;1)ε−q2(1;1)(1−ε))= β

2
(q1(2)+q2(2)+d)u′(d(1−ε)+q1(2)(1−2ε)). (A.11)

The expression for the price change in equation (19) is obtained by differentiating equation (A.11) with
respect to ε, evaluated at ε=0, when q2(1;1), q1(2), and q1(1;1),q2(2) are at their steady-state values

before the intervention, given respectively by q0
1(2) for the first two and by

β(q0
1(2)+d)
2−β

for the last two.

Noting that dq1(1;1)
dε

ε

∣∣∣
ε=0

=0, since the price q1(1;1) also changes with ε but the expression is evaluated

at ε=0, we get equation (19).

B.3. Derivation of condition (21).

From equation (14) we find that q0
1(2) can be written in terms of u′

h and u′
d,

q0
1(2)=

βd
2−β

u′
d

u′
h− β

2−β
u′
d

.
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Substituting this expression and equation (15) into condition (20) we obtain that this condition is equivalent
to A

B >0, where

A=

4
u′
h

u′
d

[
1+d

u′′
d

u′
d
+ u′

h

u′
d

]
−2β

[
2+(4+3d

u′′
d

u′
d

)
u′
h

u′
d
+2

(
u′
h

u′
d

)2
+d

u′′
h

u′
d

]
+

β2

⎡
⎢⎢⎢⎣ u′

d

u′
h
+(3+2d

u′′
d

u′
d

)
u′
h

u′
d
+
(

u′
h

u′
d

)2
+d

u′′
h

u′
d(

u′
h

u′
d

)2 +(3+d
u′′
h

u′
d

)

⎤
⎥⎥⎥⎦

and

B=

[
−2

(
u′
h

u′
d

)2
+β

(
u′
h

u′
d
+
(

u′
h

u′
d

)2
+d

u′′
h

u′
d

)]
[4
(

u′
h

u′
d

)2
+β2(1+(2+d

u′′
d

u′
d

)
u′
h

u′
d

+
(

u′
h

u′
d

)2
+d

u′′
h

u′
d

)−2β((2+d
u′′
d

u′
d

)
u′
h

u′
d
+2

(
u′
h

u′
d

)2
+d

u′′
h

u′
d

)]
It can then be easily seen that, since all marginal utilities are evaluated at positive numbers, which remain
bounded away from zero as β →0, for sufficiently small β we have A

B >0 if

1+d
u′′(d+q0

1(2))

u′(d+q0
1(2))

+ u′(h−q0
1(2))

u′(d+q0
1(2))

<0.
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