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Groupe de Statistique, Université de Neucha@tel, Espace de l’Europe 4, Case postale 805,
2002 Neucha@tel, Switzerland

yves.tille@unine.ch

 ANNE-CATHERINE FAVRE
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S

The cube method allows the selection of balanced samples on several auxiliary variables
with equal or unequal inclusion probabilities. Practical implementation of the cube method
has raised questions concerning the selection of a multi-phase balanced sampling design,
the rebalancing of an unbalanced sampling design by completing it with another sample,
the selection of a balanced sample from an unbalanced sample and the coordination of
balanced samples. This paper provides a complete solution of all these problems.

Some key words: Cube method; Multi-phase sampling; Rotation; Sample coordination; Unequal probability
sampling.

1. I

Balanced sampling is a method of sample selection that preserves a given set of sample
inclusion probabilities and satisfies that the Horvitz–Thompson estimators of known
auxiliary variables are the same or nearly the same as the corresponding true totals.
Interest in balanced sampling was already pointed out more than 50 years ago by Yates
(1946). Several partial solutions of the balanced sampling problem have been proposed
by Yates (1946), Thionet (1953), Deville et al. (1988), Ardilly (1991), Deville (1992),
Hedayat & Majumdar (1995) and Valliant et al. (2000). A general solution, the cube
method, that allows the selection of balanced samples on several auxiliary variables, with
equal or unequal inclusion probabilities, has been proposed by Deville & Tillé (2004a);
see also Tillé (2001, Ch. 8). This method is based on a geometric representation of a
sampling design, and preserves exactly a set of given inclusion probabilities.

Since the implementation of the technique by A. Bousabaa, J. Lieber, R. Sirolli and
F. Tardieu, it has been applied many times. An SAS macro allows the selection of balanced
samples with up to several tens of auxiliary variables and several tens of thousands of
population units. Applications have raised a lot of questions which are discussed in this
paper.

A first problem is the selection of several nonoverlapping balanced samples from the
same population. In some cases, the samples can be selected together, and in some other
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cases not. A simple examination of the problem reveals unexpected difficulties. We show
that, with unequal inclusion probabilities, the complement of a balanced sample is in
general not balanced. Nevertheless, we propose a way of balancing simultaneously the
sample and its complement. We also show that multi-phase balanced sampling is possible
if we modify the auxiliary variables.

Balancing an unbalanced sample using a supplementary sample is the second problem
addressed in this paper. The supplementary sample can come from the same population,
from another population, such as births, or from a changing population. Along the lines
of Kish & Scott (1971), a modification to the auxiliary variables, a suitable choice of the
balancing variables and the use of inclusion probability conditional on the first draw
provide solutions to this problem. Finally, we show how to select a balanced sample from
another sample that is not balanced.

2. N

The units in the study population are designated by a label k=1, . . . , N. For a popu-
lation that changes in time the set of labels of the units is denoted by U

t
during a finite

set of time points t=1, . . . , T . The size of U
t
is denoted by N

t
. As time passes, new units

can appear and others disappear. The set of birth labels at time t is given by U
t
cU
t−1

,
while the set of death labels is U

t−1
cU
t
. For simplicity, we assume that each unit has a

label k which does not change with time, so that at any time we can identify without
ambiguity the units of U

t
and pair them with the corresponding units of U

t+1
. The unit

identified by k is not necessarily present in each population U
t
(t=1, . . . , T ).

We also have auxiliary variables xj
t
( j=1, . . . , p) which are known for every unit at any

time t. As units are born and die, the values of the jth auxiliary variable at time t on unit
k are denoted by xj

kt
( j=1, . . . , p, kµU); in general, they change with time. The values

taken by the variable of interest y
kt

also evolve. Since the auxiliary variables are assumed
to be known for all the population units, the vector of totals,

X
t
= ∑
kµU
t

x
kt
,

is known, where x
kt
= (x1
kt
, . . . , xj

kt
, . . . , xp

kt
)∞. The elements of the vector x

kt
can be the

values of any variables known for the whole population. For instance, if the aim is to
select a sample of municipalities, the x-variables might be the area of the municipality,
the number of inhabitants, the proportion of foreigners or the number of accommodations.
The x-variables can also depend on the inclusion probabilities, or can be a constant, for
example xj

kt
=1 (kµU

t
), or an indicator variable of a stratum.

The objective is to estimate the total of the variable of interest given by

Y
t
= ∑
kµU
t

y
kt
.

In the paper, we consider for simplicity that y
kt

is scalar, although the multivariate
generalisation follows directly.

A sample s
t
is a subset of U

t
. Let p

t
(s
t
) denote the probability of selecting the sample s

t
at time t. We denote by S

t
the random sample, such that

p
t
(s
t
)=pr(S

t
=s
t
),

and by n(S
t
) the size of sample S

t
. The random samples have a joint distribution given by

pr (S
1
=s
1
, . . . , S

t
=s
t
, . . . , S

T
=s
T
)=p(s

1
, . . . , s

t
, . . . , s

T
).
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Further notation is p
kt
=pr(kµS

t
), the inclusion probability of unit k at time t, for all

kµU
t
, and p

k(t−1)t
=pr(kµS

t−1
mS
t
), the inclusion probability of unit k at both instants

t−1 and t, for all kµU
t−1
mU
t
.

At each time t, we consider the Horvitz–Thompson estimators given by

YC
t
= ∑
kµS
t

y
kt
p
kt

, XC
t
= ∑
kµS
t

x
kt
p
kt

.

Theoretically the joint inclusion probabilities are p
klt
=pr(k and lµS

t
), and p

kl(t−1)t
=

pr(kµS
t−1

and lµS
t
). Note that the quantity p

kl(t−1)t
is not symmetrical in k and l.

Indeed, we have

p
lk(t−1)t

=pr(lµS
t−1

and kµS
t
).

The variances of the Horvitz–Thompson estimator are

var(YC
t
)= ∑
kµU
t

∑
lµU

y
kt
p
kt
D
klt

y
lt
p
lt

, var(XC
t
)= ∑
kµU
t

∑
lµU
t

x
kt
p
k
D
klt

x∞
lt
p
lt

, (1)

where

D
klt
=p
klt
−p
kt
p
lt

(k, lµU
t
).

However, unless these inclusion probabilities can be expressed analytically, for simple
random sampling, the second-order inclusion probabilities are of limited interest. We will
outline in § 3 that estimation of the variances of the totals is possible in balanced sampling
using only the first-order inclusion probabilities p

kt
. In most of the cases, we will consider

only two waves, that is t=1, 2.

3. B 

At a given time, the objective is to select a sample with given selection probabilities
that is assumed to be of one stage and balanced on the available auxiliary variables xj

kt
.

A family of algorithms is available (Deville & Tillé, 2004a) for selecting a balanced random
sample. It is thus possible to select a sample at time t, so that the identities

XC
t
= ∑
kµS
t

xj
kt
p
kt
= ∑
kµU
t

xj
kt

( j=1, . . . , p) (2)

hold exactly or nearly exactly; since sample sizes are integers one cannot always satisfy
(2) exactly (Deville & Tillé, 2004a).

If a sample is balanced then XC
t
is not random. Thus, a necessary and sufficient condition

for a sampling design to be balanced is that

var(XC
t
)= ∑
kµU
t

∑
lµU
t

x
kt
p
kt
D
klt

x∞
lt
p
lt
=0. (3)

An approximation of the variance of YC
t
in (1) of the Horvitz–Thompson estimator has

been proposed for a balanced sampling design by Deville & Tillé (2004b). The ideas
developed in this paper are the following. Let

YC
t,Poiss= ∑

kµS
t,Poiss

y
k
p
k
, XC
t,Poiss= ∑

kµS
t,Poiss

x
k
p
k
,
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where S
t,Poiss is a sample selected by a Poisson sampling design of inclusion probabilities

p̌
kt
. If we assume that the balanced sampling design maximises or nearly maximises

entropy, the variance can be approximated by the variance of a conditional Poisson
sampling design, which can be written

var(YC
t
)=var(YC

t,Poiss |XC t,Poiss=X
t
).

If we suppose that, under Poisson sampling, (YC
t,Poiss XC ∞

t,Poiss )∞ approximately has a multi-
normal distribution, which is asymptotically true, we obtain

var(YC
t,Poiss |XC t=X

t
)=var[YC

t,Poiss+ (X
t
−XC
t,Poiss ){var(XC

t,Poiss )}−1 cov(XC
t,Poiss , YCt,Poiss )]

=var(YC
t,Poiss−XC ∞

t,PoissBt,Poiss )

= ∑
kµU
t

(y
kt
−x∞
kt
B
t,Poiss )2

p2
kt

p̌
kt
(1−p̌

kt
),

where

B
t,Poiss=q ∑

kµU
t

x
kt
x∞
kt

p2
kt
p̌
kt
(1−p̌

kt
)r−1 ∑

kµU
t

x
kt
y
kt

p2
kt
p̌
kt
(1−p̌

kt
).

The p̌
kt
’s are the inclusion probabilities of the Poisson sampling design, and are not equal

to the p
kt
’s. The p̌

kt
’s cannot be computed exactly, but Deville & Tillé (2004b) have

proposed using

p̌
kt
(1−p̌

kt
)=

N

N−p
p
kt
(1−p

kt
),

which allows us to construct the approximation

N

N−p
∑
kµU
t

E2
kt
p2
kt
p
kt
(1−p

kt
), (4)

where E
kt
=y
kt
−x∞
kt
B
t,Poiss . Deville & Tillé (2004b) used a substantial simulation study to

validate this approximation. They also proposed three slightly different approximations
for the variance, but approximation (4) has the advantage of depending only on the p

kt
’s.

4. S    

4·1. Nonoverlapping samples with unequal probabilities

Before showing how to coordinate balanced samples, we consider the problem of
selecting several nonoverlapping samples with fixed unequal probabilities, first when the
samples are selected together and secondly when the samples are selected sequentially at
two different times. The difficulties that are already present for the case of unequal
probability sampling will become even more complicated for balanced samples.

When the samples must be selected together, Deville & Tillé (2000, p. 219), used Cox’s
controlled rounding method (Cox, 1987) to show that it is possible to split a population
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randomly into I parts, with inclusion probabilities p
k,i

(kµU, i=1, . . . , I ), where

∑
I

i=1
p
k,i
=1, ∑

kµU
p
k,i
=n
i
, ∑
I

i=1
n
i
=N.

Using this method one can select nonoverlapping samples with unequal probabilities.
However, the samples must be selected together, not sequentially.

If the samples must be selected sequentially from a population U that does not change
with time, the problem becomes more intricate. We first select a sample S1 with unequal
probabilities p

k1
in U. Suppose that a second sample S2 with no unit in common with S1

is needed and must have unconditional inclusion probabilities p
k2

, where p
k1
+p
k2
∏1,

for all kµU. The second sample S2 must be drawn with conditional probabilities p
kb

from the complement of S1 , that is S91=UcS1 . Note that, if unit k is selected from the
random sample S91 , we must assume that p

kb
can be a function of S1 and thus random. In

order to ensure that the global inclusion probabilities p
k2

are fixed for the second sample,
the selection probabilities p

kb
have to satisfy

p
k2
= (1−p

k1
)E(p
kb

) (kµU).

Two alternative strategies can be explored. In the first strategy we select the sample S1
according to p

k1
and then compute

p
kb
=qpk2/(1−pk1 ) (k1S

1
),

0 (kµS
1
).

A sample S
2

is selected from UcS1 with inclusion probabilities p
kb

. A remaining problem
is that W

kµUcS
1

p
kb
=n
2
(S
1
) is a random variable which depends on the sample selected

at the first stage. The size of the sample of the second wave is then necessarily random.
In the second strategy we select the sample S1 according to p

k1
; then we compute

pA kb|S
1

=G n
2
{p
k2

/(1−p
k1

)}

W

lµUcS
1

{p
l2

/(1−p
l1

)}
(k1S

1
),

0 (kµS
1
),

(5)

where n
2
=W
kµU
p
k2

is the fixed size of the sample. In this case pA kb|S
1

is a random variable
depending on S1 , but the sample has a fixed size. The inclusion probabilities of the second
sample are not exactly p

k2
but can be expressed as

E{(1−p
k1

)pA kb|S
1

}=EC(1−pk1 ) n
2
{p
k2

/(1−p
k1

)}

W

lµUcS
1

{p
l2

/(1−p
l1

)}D
=n
2
p
k2

EC 1

W

lµUcS
1

{p
l2

/(1−p
l1

)}D .
Each method has a disadvantage which we can easily circumvent by selecting the sample

of the first wave S1 so that W
UcS
1

p
kb

is fixed; that is

∑
kµUcS

1

p
kb
=EA ∑

kµUcS
1

p
kbB= ∑

kµU
(1−p

k1
)p
kb

, (6)
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which can be expressed as

∑
kµU
p
kb
− ∑
kµS
1

p
kb
= ∑
kµU

(1−p
k1

)p
kb

,

or

∑
kµS
1

p
kb
= ∑
kµU
p
kb
p
k1

,

or

∑
kµS
1

p
k1
p
kb

p
k1
= ∑
kµU
p
kb
p
k1

.

The last expression amounts to selecting a first-wave sample S1 balanced on the variable
x
k
=p
k1
p
kb

. The inclusion probabilities are thus unchanged.
If the balancing condition (6) is verified, then we combine the advantages of both

methods. Indeed the size of the second sample is fixed and the probabilities of the second
wave are not random. However this result is limited because, if the inclusion probabilities
of the second sample are known during the first sample as is assumed in (6), then we can
simply select both samples by means of the method described in Deville & Tillé (2000).
This simple application shows that using fixed-size multi-phase sampling techniques in
the case of unequal probabilities is much more complex than for simple random sampling.

4·2. Nonoverlapping balanced samples

The selection of several balanced samples with unequal probabilities is even more
difficult. First, it is easy to show that, if a sample S is balanced on the variables x1 . . . , xp ,
then its complement UcS is not necessarily balanced.

P 1. T he complement of S is balanced on x1 , . . . , xp if and only if S is balanced
on p
k
x
k
/(1−p

k
).

Proof. The random sample S and its complement UcS have the same variance-
covariance operators, namely D= (D

kl
), where D

kl
=p
kl
−p
k
p
l
. As we have seen in (3),

a sample S is balanced if

∑
kµU

∑
lµU

x
k
p
k
D
kl

x∞
l

p
l

=0.

As pr(kµUcS)=1−p
k
, the sample UcS is balanced if

∑
kµU

∑
lµU

x
k

1−p
k
D
kl

x∞
l

1−p
l

=0.

The proof follows directly from these two expressions of variances. %

The following corollary is obvious.

C 1. If S is selected with equal probabilities, then UcS is balanced on the same
variables as S.

Proposition 1 illustrates the limits of the notion of balanced samples. However the
method works well in the case of sampling with equal probabilities and has been success-
fully implemented for the redeveloped census of the INSEE.
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The problem becomes even more awkward when we want to split a population into
q samples S1 , . . . , Sq , which do not overlap, with unequal probabilities p

k,i
, for i=1, . . . , q

and k=1, . . . , N.

P 2. If two nonoverlapping samples S
i

and S
j

are selected with inclusion
probabilities p

k,i
and p

k,j
, respectively, and are both balanced on x

k
, then their union is not

necessarily balanced on x
k
.

Proposition 2 follows from the nonlinearity of the Horvitz–Thompson estimator.
Indeed, if

YC
i
= ∑
kµS
i

y
k
p
k,i

, YC
j
= ∑
kµS
j

y
k
p
k,j

, YC
ij
= ∑
kµS
i
nS
j

y
k

p
k,i
+p
k,j

,

then YC
ij

is not a linear combination of YC
i
and YC

j
. Thus, the balancing property is lost

by the reunion of the samples. Nevertheless, the balancing properties remain unchanged
when the designs have equal inclusion probabilities. Moreover, it is easy to show that, if
p
k,i
3p
k,j

for all kµU, then the union of two balanced samples is balanced.

4·3. Multi-phase balanced sampling

It is possible to select a balanced sample S2 from a balanced sample S1 in such a way
that the subsample remains balanced on the same variables. If S1 is a balanced sample
on the variables x1 , . . . , xp , with probabilities p

k1
then

∑
kµS
1

x
k
p
k1
= ∑
kµU

x
k
.

If

z
k
=x
k
/p
k1

, (7)

and if we select a sample S2 from S1 that is balanced on the variables z
k

with inclusion
probabilities p

k2
then we have

∑
kµS
2

z
k
p
k2
= ∑
kµS
1

z
k
= ∑
kµU

x
k
.

Multi-phase sampling is thus possible while keeping the balancing property.

5. R      

5·1. Conditional balanced design with conditional inclusion probabilities

Initially this problem arose in the French redeveloped census. In the larger municipalities
five nonoverlapping samples of addresses must be selected. These samples are balanced
on demographic variables, and each one of them will be used for a year. The French
census therefore has five ongoing samples and all of them must remain balanced.

The question is how to incorporate the new constructions into the rotation groups with
minimal distortion to equilibrium. The set of new constructions can be considered as a
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new population, a population of births, in which five new samples must be selected to
complete the existing samples. A first question is therefore how to select a sample in a
new population in order that the union of the old and new samples remains balanced.

If only one sample must be selected in the old and new populations, the problem can
be formalised in the following way. Consider two nonoverlapping populations U1 and U2
of sizes N1 and N2 respectively. A random sample S1 has been drawn from U1 with
inclusion probabilities p

k1
(kµU1 ). The sample S1 is in general not balanced because of

the drift of the sample caused by the deaths and the evolution of the balancing variables.
The Horvitz–Thompson estimator for the auxiliary variables,

XC
1
= ∑
kµS
1

x
k
p
k1

,

is therefore not equal to the population total X
1
=W
kµU
1

x
k
. The problem consists of

selecting a random sample S2 from U2 with given inclusion probabilities p
k2

. In the French
census, for instance, all the p

k2
are equal to 1

5
, but in another problem p

k2
can be computed

so as to optimise the variance. Sample S2 must be selected in such a way that

XC
1
+XC
2
=X
1
+X
2
, (8)

where

XC
2
= ∑
kµS
2

x
k
p
k2

, X
2
= ∑
kµU
2

x
k
.

In other words, we want to choose S2 so as to rebalance S1 . In order for relationship (8)
to be realised, sample S2 must satisfy the balancing equation

XC
2
=T (S

1
), (9)

where T (S1 )=X1+X2−XC 1 . Note that S2 must be balanced on a random value T (S1 )
which depends on the S1 selected from U1 . In order to satisfy equality (9), S2 will be
selected with conditional inclusion probabilities pA k2|S

1

that depend on S1 and not on S2 .
In order to extract the probabilities pA k2|S

1

we note first that, if we compute the conditional
expectation of equation (9) conditional on S1 , we obtain E(XC 2 |S1 )=T (S1 ). Thus the
pA k2|S
1

’s must satisfy

E(XC
2
|S
1
)=T (S

1
), E(pA k2|S

1

)=p
k2

,

which can be written

∑
kµU
2

x
k
p
k2
pA k2|S
1

=T (S
1
), E(pA k2|S

1

)=p
k2

. (10)

A solution can be found by looking for the pA k2|S
1

’s that minimise the chi-squared distance

∑
kµU
2

(pA k2|S
1

−p
k2

)2

p
k2

w
k

,

under the constraints

∑
kµU
2

x
k
pA k2|S
1p

k2
=T (S

1
).
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The w
k
’s are weights that can be chosen arbitrarily. The solution of this optimisation

problem is given by

pA k2|S
1

=p
k2
+{T (S

1
)−X

2
}∞A ∑

lµU
2

x
l
x∞
l
w
l

p2
l2
B−1 xkwkp

k2
. (11)

It is easy to see that equation (11) satisfies (10). Unfortunately, in some cases, equation
(11) may yield probabilities pA k2|S

1

>1 or pA k2|S
1

<0. Nevertheless, this problem can be
avoided with a good choice of the w

k
’s. For instance, by taking w

k
=p
k2

(1−p
k2

), the
difference between pA k2|S

1

and p
k2

will be small when p
k2

is close to 0 or 1.

Example 1. An illustrative example is the case where the only auxiliary variable is
x
k
=p
k1

if kµU1 and x
k
=p
k2

if kµU2 , which corresponds to the fixed sample size problem.
In this case, if n(S1 ) is the size of S1 , and n(S2 ) is the size of S2 , we obtain

pA k2|S
1

=p
k2
+[E{n(S

1
)}−n(S

1
)]

w
k

W

kµU
2

w
k
. (12)

Thus, if w
k
=1, we obtain

pA k2|S
1

=p
k2
+

E{n(S
1
)}−n(S

1
)

N
2

,

and, if w
k
=p
k2

(1−p
k2

),

pA k2|S
1

=p
k2
×A1+ 1−p

k2
W

kµU
2

p
k2

(1−p
k2

)
×[E{n(S

1
)}−n(S

1
)]B .

In either case, the p
k2

’s are adjusted so that

∑
kµU
2

pA k2|S
1

=E{n(S
2
)}+E{n(S

1
)}−n(S

1
).

In practice, the problem can be solved using a single balanced sample selection program.
The sample must be selected with inclusion probabilities pA k2|S

1

and the balancing variables
must be redefined as

z
k
=x
k
pA k2|S
1

/p
k2

.

Indeed, the balancing equations,

∑
kµS
2

z
k

pA k2|S
1

= ∑
kµU
2

z
k
,

imply (9) and thus S1nS2 is a balanced sample from U1nU2 .

Note that the problem of the French census is more complex, because five non-
overlapping samples must be selected together in the old and new populations. However
this operation is not too difficult because the units are selected with equal inclusion
probabilities. In this case, the complement of a balanced design is also balanced. The five
new samples can thus be selected successively in such a way that the balancing conditions
are satisfied.
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5·2. Variance of a rebalanced sample

The variance of a rebalanced sample can be deduced by using the same methodology
as for the variance of a two-phase sampling design (Särndal & Swensson, 1987). The
variance of the total estimator YC is calculated by conditioning on S1 :

var(YC )=var(YC
1
+YC
2
)

=E{var(YC
1
+YC
2
|S
1
)}+var{E(YC

1
+YC
2
|S
1
)}

=E{var(YC
2
|S
1
)}+var{YC

1
+E(YC

2
|S
1
)}. (13)

The first term of (13) is an expectation of the variance under balanced sampling. We
can thus use the same methodology as for expression (4). The variance is approximated
by the variance of a conditional Poisson sampling design, which can be written

var (YC
2
|S
1
)=var{YC

2,Poiss |S1 , XC 2,Poiss=T (S
1
)},

where YC2,Poiss and XC 2,Poiss are the estimators when the sample is selected by means of
a Poisson sampling. Again, if we suppose that, under Poisson sampling, the vector
(YC
2,Poiss , XC ∞2,Poiss )∞ approximately has a multinormal distribution, we obtain

E[var{YC
2,Poiss |S1 , XC 2,Poiss=T (S1 )}]

=E(var[YC
2,Poiss+{T (S

1
)−XC

2,Poiss}{var(XC
2,Poiss )}−1 cov(XC

2,Poiss , YC2,Poiss ) |S1])

=E[var{YC
2,Poiss+ (X

1
+X
2
−XC
1
−XC
2,Poiss )∞B2,Poiss |S1}]

=E{var(YC
2,Poiss−XC ∞

2,PoissB2,Poiss |S1 )}

j
N

N−p
Eq ∑
kµU
2

(y
k
−x∞
k
B
2,Poiss )2

p2
k

pA k2|S
1

(1−pA k2|S
1

)r ,
where

B
2,Poiss=q ∑

kµU
2

x
k
x∞
k

p2
k
pA k2|S
1

(1−pA k2|S
1

)r−1 ∑
kµU
2

x
k
y
k

p2
k
pA k2|S
1

(1−pA k2|S
1

).

The expectation of the second term of (13) is

E(YC
2
|S
1
)= ∑
kµU
2

y
k
p
k2

E(I
k
|S
1
)= ∑
kµU
2

y
k
p
k2
pA k2|S
1

= ∑
kµU
2

y
k
p
k2
Cpk2+{T (S

1
)−X

2
}∞A ∑

lµU
2

x
l
x∞
l
w
l

p2
l2
B−1 xkwkp

k2
D

=Y
2
+ (X

1
−XC
1
)∞B
2
,

where

B
2
=A ∑

lµU
2

x
l
x∞
l
w
l

p2
l2
B−1 ∑
kµU
2

x
k
y
k
w
k

p2
k2

.
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We then obtain

var{YC
1
+E(YC

2
|S
1
)}=var{YC

1
+Y
2
+ (X

1
−XC
1
)∞B
2
}

=var(YC
1
−XC ∞
1
B
2
)

=varA ∑
kµS
1

y
k
−x∞
k
B
2

p
k1
B .

Finally, the variance is

var(YC )=
N

N−p
Eq ∑
kµU
2

(y
k
−x∞
k
B
2,Poiss )2

p2
k

pA k2|S
1

(1−pA k2|S
1

)r+varA ∑
kµS
1

y
k
−x∞
k
B
2

p
k1
B .

(14)

The second term of (14) depends on S1 for which the sampling design was not specified.
The expression of variance works with any sampling design for the selection of S1 .
Equation (14) shows that the variance of var(YC ) can be expressed as a variance of residuals.
The regression coefficients B2 and B2,Poiss are slightly different but are both computed
from U2 .

Based on estimators for B2,Poiss and B2 , the estimator of the variance is

va@r(YC )=
n

n−p
∑
kµS
2

(y
k
−x∞
k
BC
2,Poiss )2

p2
k

(1−pA k2|S
1

)+va@rA ∑
kµS
1

y
k
−x∞
k
BC
2

p
k1
B ,

where the second term is constructed by means of an estimator of the variance under the
sampling scheme yielding S1 .

6. R       

This problem has been posed with respect to the INSEE master sample. In each
region, the primary units, i.e. sets of municipalities, are selected with unequal inclusion
probabilities proportional to the size by using a sampling design balanced on demographic
and economic variables. Some regions have requested a supplementary sample in order
to make survey extensions. The problem is thus that of finding out if it is possible to
supplement the sample by a new nonoverlapping sample in such a way that the union of
the two samples remains balanced.

Formally, the problem consists of selecting a nonoverlapping sample in a population
in which a sample has already been selected. Suppose that a sample S1 , not necessarily
balanced, has been selected in U, with inclusion probabilities p

k1
. Note that, by

Proposition 1, even if S1 is balanced, in general UcS1 is not. The aim is thus to supplement
S1 with a nonoverlapping sample S2 in such a way that

pr{kµ(S
1
nS
2
)}=p

k
,

for all kµU, and the completed sample is balanced, that is

∑
kµ(S
1
nS
2
)

x
k
p
k
= ∑
kµU

x
k
. (15)
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The probabilities p
k

are given either by implementation of an optimisation criterion or
from practical considerations. For instance, the sampling design used to select the master
sample of the INSEE is a self-weighting multi-stage design that determines the values of
the p

k
’s.

Since (S1mS2 )=B, p
k2
=pr(kµS2 )=pk−pk1 , for kµU. To obtain (15), we must have

∑
kµS
2

x
k
p
k
=T (S

1
), (16)

where

T (S
1
)= ∑
kµU

x
k
− ∑
kµS
1

x
k
p
k
.

In order to satisfy (16), we can select a balanced sample S2 from UcS1 with conditional
inclusion probabilities pA kb|S

1

and balancing variables z
k
=x
k
pA kb|S
1

/p
k
. The probabilities

pA kb|S
1

are defined as

pA kb|S
1

=Gpkb+{T (S
1
)−V (S

1
)}∞A ∑

lµUcS
1

x
l
x∞
l
w
l

p2
l
B−1 xkwkp

k
(k1S

1
),

0 (kµS
1
),

(17)

where

p
kb
=qpk2/(1−pk1 ), if k1S

1
,

0, if kµS
1
,

V (S
1
)= ∑
kµUcS

1

x
k
p
kb
p
k

,

and the w
k
’s are weights that can be chosen arbitrarily. Again we recommend the use of

w
k
=p
kb

(1−p
kb

), which should allow us to avoid pA kb|S
1

<0 and pA kb|S
1

>1. Indeed, when
p
k

is close to 0 or 1, the weights w
k

will be very small and, from equation (17), we can
see that p

kb
will be close to pA kb .

With the conditional inclusion probabilities given in (17), we obtain

EA ∑
kµS
2

x
k
p
k
K S1B= ∑

kµUcS
1

x
k
p
k
pA kb|S
1

= ∑
kµUcS

1

x
k
p
k
p
kb
+{T (S

1
)−V (S

1
)}=T (S

1
).

Now, let us compute the expectation of pA kb . First compute

Q(S
1
)=T (S

1
)−V (S

1
)= ∑
kµS
1

x
k

1−p
k

(1−p
k1

)p
k
− ∑
kµU

x
k
p
k1

(1−p
k
)

(1−p
k1

)p
k
.

Note that E{Q(S1 )}=0, and that Q(S1 ) is a single-stage Horvitz–Thompson estimator
centred in S1 . A reasonable assumption for one-stage sampling designs is that

Q(S
1
)

N
=O
pCSqN−n(S

1
)

Nn(S
1
) rD ,
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where O
p
(1/a) is a quantity that remains bounded in probability when multiplied by a.

Moreover, if

W=A ∑
lµUcS

1

x
l
x∞
l
w
l

p2
l
B−1 , (18)

another reasonable assumption is that

NW−E(NW )=O
pCSqw: N−n(UcS

1
)

Nn(UcS
1
) rD=O

pAw:SC n(S
1
)

N{N−n(S
1
)}DB ,

where w:=N−1 W
kµU

w
k
. Since E{Q(S1 )}=0, we have E{Q(S1 )W }=E[Q(S1 ){W−E(W )}].

Now, by (17) and (18), we have, by assuming that nw
k
/(w: pkN) is close to 1,

E(pA kb|S
1

)=p
k2
+EqQ(S

1
)W

x
k
w
k

p
k
w: r=pk2+Nx

k
n

ECQ(S
1
){W−E(W )}

nw
k

Np
k
w: D

=p
k2
+

Nx
k

n
O
pA 1NB=pk2+EqOpAxkn Br . (19)

Thus, under very mild regularity conditions, we have that E(pA kb|S
1

)jp
k2

. In practice,
the problem can be solved by redefining the auxiliary variables. A balanced sample S2 is
thus selected from UcS1 with inclusion probabilities pA kb|S

1

. The balancing variables are

z
k
=

x
k
p
k
pA kb|S
1

.

Indeed, W
kµS
2

(z
k
/pA kb|S

1

)=W
kµU

z
k
, implying (16).

7. S 

Another important problem is that of sample coordination, and especially of
coordinating balanced samples. The aim is to select a balanced sample that does not
overlap with a sample, or a set of samples, already selected. Formally, the problem is the
following. A sample S1 has already been selected from a population U with inclusion
probabilities p

k1
. The aim is to select a balanced nonoverlapping sample S2 from UcS1

with inclusion probabilities p
k2

. The balancing equations are thus

∑
kµS
2

x
k
p
k2
=X.

First suppose that p
k1
+p
k2
∏1, for all kµU. The problem is that S2 must be selected

from UcS1 , and that, even if S1 is balanced, UcS1 is not necessarily balanced. Sample S2
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will be selected from UcS1 by the use of conditional inclusion probabilities p
kb|S
1

defined as

pA kb|S
1

=Gpkb+{X−V (S
1
)}∞A ∑

lµUcS
1

x
l
x
l∞
w
l

p2
l2
B−1 xkwkp

k2
(k1S

1
),

0 (kµS
1
),

(20)

where

p
kb
=qpk2/(1−pk1 ), if k1S

1
,

0, if kµS
1
,

V (S
1
)= ∑
kµUcS

1

x
k
p
kb

p
k2

,

and the w
k
’s are weights that can be chosen arbitrarily. We always recommend

w
k
=p
kb

(1−p
kb

). In practice, the problem can be solved by selecting the sample S2 from
UcS1 with the inclusion probabilities pA kb|S

1

, and the balancing variables

z
k
=

x
k
p
k2
pA kb|S
1

.

Example 2. An already treated application is the case where x
k
=p
k2

and w
k
=p
kb

. We
obtain

z
k
=pA kb|S

1

=
p
kb
W

lµU
p
l2

W

lµUcS
1

p
lb

,

which is the solution proposed in equation (5) for sampling with unequal probabilities.

In a real coordination problem, we can have p
k1
+p
k2
>1, for some kµU. The aim is

then to select a sample S2 as disconnected as possible from S1 . The following solution can
be applied. Define the conditional inclusion probabilities as follows:

pA kb|S
1

=q1 (k1S
1

and such that p
k1
+p
k2
�1),

p
kb
+{X−V (S

1
)}∞A ∑

lµA

x
l
x∞
l
w
l

p2
l2
B−1 xkwkp

k2
(kµA),

0 (kµS
1

and such that p
k1
+p
k2
<1),

where

A={[k |(p
k1
+p
k2

)�1 and kµS
1
]n[k |(p

k1
+p
k2

)<1 and k1S
1
]},

p
kb
=q1, if p

k1
+p
k2
�1 and k1S

1
,

(p
k1
+p
k2
−1)/p

k1
, if p

k1
+p
k2
�1 and kµS

1
,

p
k2

/(1−p
k1

), if p
k1
+p
k2
<1 and k1S

1
,

0 if p
k1
+p
k2
<1 and kµS

1
,

V (S
1
)= ∑
kµU

x
k
p
kb

p
k2

.

Next define new variables z
k
=x
k
pA kb|S
1

/p
k2

. The sample S2 is selected with inclusion
probabilities pA kb|S

1

balanced on z
k
.
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