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Abstract

In many industries, different technologies are used simultaneously for the production of a ho-
mogeneous good. Such diversification is socially beneficial, because it reduces the transmission
of factor price volatility, like oil-price shocks, to consumer prices. Therefore, many countries have
implemented policies aimed at increasing technological diversification. The question is whether
such policies are necessary. We use a two-stage investment model to address this question in the
setting of perfect competition and of a monopoly. We show that factor price uncertainty leads
to diversification, if capital is not too expensive, and that this diversification is due to each firm
investing in a diversified technology portfolio. An important implication of this form of diversi-
fication is that technological diversity is socially optimal, even in the case of a monopoly. Thus
policy intervention is unnecessary and might even be detrimental.
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1 Introduction
In many industries, different production technologies are used simultaneously, al-
though these technologies incur substantially differing costs. Sometimes, this di-
versity is not only due to different firms using different technologies but also to
individual firms using several technologies simultaneously.

An important example is electricity generation, where technologies based on
different fuels, like lignite, hard coal, or natural gas, are used for the production of
a homogeneous good and where individual producers often operate different types
of power plants. For example, installed capacity in Germany in 2005 consisted of
about 17% natural gas, 22% hard coal, 16% lignite, 4% oil and 17% nuclear en-
ergy (Kjärstad and Johnsson, 2007). In the UK, the figures are 37% natural gas,
35% coal, 7% oil and 14% nuclear energy (Kjärstad and Johnsson, 2007).1 This di-
versity exists despite substantial differences in the expected costs induced by these
technologies, see OECD (2005).2 To a considerable extent it is the result of a si-
multaneous use of different technologies by the same firm. The data in Kjärstad
and Johnsson (2007) shows that the firms in the electricity industry in the UK and
in Germany have invested in a diverse portfolio of technologies in each of the last
three decades, and currently planned power stations differ with regard to the tech-
nology they use (Kjärstad and Johnsson, 2007).

This type of diversification is also observable in steel production, where large
producers operate different types of steel mills (using coal, gas, or electricity as
primary energy source). Another example is logistic services, where large compa-
nies in Europe typically use several technologies simultaneously (e.g., trucks and
railways).

Such technological diversification can be socially desirable. It reduces the trans-
mission of factor price volatility, like oil-price shocks, to consumer prices and
thereby increases social welfare. Several studies have shown that the costs of re-
source price volatility can be substantial and that diversification may help to re-
duce these costs, see, for example, Ferderer (1996), Awerbuch and Sauter (2006),
and Awerbuch (2006). Indeed, many countries pursue policies aimed at increasing
technological diversity. Such policies are especially prevalent in the energy sector,
where subsidies, tax exemptions, and compensation programs are used to increase
the diversity of utilized energy sources. The question is whether such governmental

1In both countries, the remaining capacity used renewable energy sources.
2 According to the OECD (2005) data for Germany, the total costs of a MWh electricity (calcu-

lated for a 10% discount rate) range between 38 and 59 USD for a coal-fired plant, are approximately
50 USD for a gas-fired power plant, and 42 USD for a nuclear plant. Thereby fuel costs account for
30-44% of total costs in the case of coal, for 76% in the case of gas, and for 11% in the case of a
nuclear power plant.
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intervention is necessary or whether markets provide sufficient incentives to achieve
an optimal technological diversity.

Firm level incentives for diversification have been analyzed in a range of stud-
ies. Mills (1986) and Lippman et al. (1991) show that demand uncertainty com-
bined with either imperfect competition or capacity constraints can induce firms
to choose different technologies. Mills and Smith (1996) prove that strategic in-
teraction among producers can also result in firm heterogeneity. Elberfeld and Nti
(2004) show that technological diversity might stem from uncertainty with regard to
the costs of new technologies. These studies focus on technological diversity that is
due to different firms using different technologies. The case where individual firms
hold diversified technology portfolios is not addressed,3 although it is important in
sectors that are primary targets of diversification policies, such as the electricity
sector.

Another line of literature uses a mean-variance approach to characterize optimal
technological diversification from the social or the firm perspective, see, for exam-
ple, Awerbuch (2000), Awerbuch and Berger (2003), and Huang and Wu (2008).
These studies inquire which mix of technologies leads to the smallest risk while
yielding a given expected return. Awerbuch (2000) evaluates the US generation
mix with a portfolio approach based on fuel cost uncertainty. Awerbuch and Berger
(2003) extend this approach by covering other types of uncertainty and apply it to
electricity generation in the EU. Huang and Wu (2008) use a similar approach for
Taiwan and calculate the optimal portfolio for a given level of risk aversion.

In this paper, we combine aspects of both types of literature. As in the first
line of literature, we use the model of a profit-maximizing firm that has to make an
irreversible investment decision under uncertainty. But we consider cost instead of
demand uncertainty and analyze technological diversification instead of firm hetero-
geneity. Our main argument is similar to the second line of literature; diversification
is a response to factor price uncertainty. In contrast to this literature, we start with
a microeconomic model of profit maximization. That firms choose between risk
and return is not an assumption but a result of the time-structure of the investment
and production decisions. Indeed, the argument is not that firms are risk-averse and
thus balance expected returns against the volatility of returns. Rather, diversifica-
tion provides firms with higher flexibility to adjust their production to factor price
changes. They balance the gain in expected profit resulting from this flexibility
against the higher investment costs.

3Going back to Newbery and Stiglitz (1981), there is literature that covers cost uncertainty and
diversification within firms. But it assumes full flexibility in factor employment and is therefore
only distantly connected to the investment problem considered here.
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Figure 1: Prices for oil (spot price, Brent, left axis), coal (NW Europe, left axis),
and natural gas (EU, right axis), Source: BP (2009).

servable in many industries. For the above example of electricity generation, Figure
1 shows that the prices of the most important fossil fuels have been highly volatile
over the last decades. Given that these fuels are specific to particular energy conver-
sion technologies, there is technology-specific uncertainty in the electricity sector.4

Figure 1 also indicates that the price deviations from the long-term trend are in a
range where they could potentially alter the preferability of different types of power
plants, according to the data in OECD (2005).5

To analyze the diversification incentives resulting from such cost shocks, we
use a two-stage model with technology-specific cost uncertainty. We show that cost
uncertainty results in technological diversification whenever capital is not too ex-
pensive. This diversification is not due to firm heterogeneity but a result of each
firm holding a diversified technology portfolio. Furthermore, technological diver-
sity is socially optimal both for perfect competition and for a monopolistic supplier,
the latter being a rather surprising result. Consequently, at least in these cases, gov-
ernmental intervention is unnecessary for assuring a socially optimal diversity. The
reason is that diversification is solely a reaction to cost shocks in our setting. A firm
that possesses market power will produce less and will thus invest less in total. But
it reduces its investment in all technologies proportionally, which leaves the shares
of each technology (and thus diversification) unchanged.

This result stands in contrast to those of Mills and Smith (1996), who show that
profit maximizing behavior will usually not lead to a socially optimal technological

4As is apparent from Figure 1, the price movements are correlated. But as long as there is no
perfect correlation, diversification can be optimal, as we will show below.

5See Footnote 2.

The cost shocks that are the main driver of diversification in our setup are ob-
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diversity. This highlights that the type of uncertainty under consideration (cost or
demand uncertainty) and the type of diversification (diversified individual technol-
ogy portfolios versus firm heterogeneity), is of central importance to the question
of whether governments need to intervene to assure optimal diversity.

In the following section, we advance our model and characterize the social op-
timum. In Section 3, we analyze optimal firm behavior under perfect competition
as well as in a monopoly and compare this to the social optimum. In Section 4,
we consider a special case to provide more detail concerning the conditions under
which diversification occurs. Section 5 concludes the article.

2 The Model and Benchmark Cases
We use a two-stage investment model with cost uncertainty to describe a firm’s in-
vestment in different technologies. We first set up this model. Then we characterize
the social optimum as well as firm behavior under certainty to gain two benchmarks
to which we compare our later results.

2.1 The Model
We consider a setup with a fixed number of firms (n) that produce a homogeneous
good. All firms have the same technological opportunities and have access to the
same information. In stage one of our setup, each firm invests in one or several
technologies. Investment in a technology is characterized by the amount of produc-
tion equipment (based on this technology) acquired by the firm. This investment is
irreversible and technology-specific, that is, production equipment using one tech-
nology cannot be transferred to another technology (a coal-fired power plant cannot
be converted to a nuclear power plant). In stage two, the firms decide upon total
production and, if they have invested in different technologies, upon the allocation
of total production to these technologies. This stage can consist of several indepen-
dent sub-periods with differing realizations of factor prices and thus of production
costs. We will consider variants of the model that differ with regard to the compe-
tition on the output market. In all variants, there is perfect competition on all factor
markets.

With regard to the informational structure, we assume that, in stage two, all
firms have full information concerning current production costs of all technologies.
Thus, total production and the allocation of production to the technologies is chosen
under perfect information. But, in the investment stage, there is technology-specific
cost uncertainty; for example, due to uncertain future prices of technology-specific
factors. Given the long planning and construction periods in many industries, espe-
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cially in the electricity sector, and the factor price volatility discussed in the intro-
duction, this seems to be a reasonable setup.

To keep the model tractable, we consider only two technologies. Technology
s (s = 1, 2) is characterized by a cost function C̃s(qs,i, ks,i, ηs) that describes the
variable production costs and that depends on the amount produced by firm i with
this technology (qs,i ∈ R+), the amount of capital invested in this technology (ks,i ∈
R+), as well as on a technology-specific, random variable ηs ∈ R, which depicts
the cost uncertainty. These cost functions are strictly convex and strictly increasing
in qs,i. Furthermore, they are strictly decreasing in ks,i, with C̃s(0, ks,i, ηs) = 0, for
all ks,i, ηs, and with C̃s(qs,i, 0, ηs)→∞, for all qs,i > 0 and for all ηs.

We assume that these cost functions exhibit constant returns to scale, that is, if a
production facility is duplicated (by doubling the capital stock ks,i) and if the output
is doubled, then variable production costs also double. Owing to this assumption,
we can write variable costs more compactly as ks,ic̃s(us,i, ηs), where us,i := qs,i/ks,i
denotes production per unit of capital and where c̃s(us,i, ηs) is a reduced cost func-
tion that is strictly convex and strictly increasing in us,i. Our above assumptions
imply c̃s(0, ηs) = 0 and limus,i→∞ c̃s(us,i, ηs)→∞, for all ηs.

The cost shocks are technology-specific, that is, they have identical values for
all firms that use the same technology. We assume that the shocks are small, so that
they influence only the linear part of the variable costs. Thus we have

c̃s(us,i, ηs) = cs(us,i) + ηs us,i. (1)

We normalize the random variable by setting E (ηs) = 0, so that ks,i cs(us,i) are the
expected variable costs of technology s. In addition, we define σ2

s = E (η2
s) as well

as σ1,2 = E (η1η2).
Demand is characterized by the linear inverse demand function

P (Q) = a− b Q, (2)

where Q is total output, and where a, b > 0 are constant parameters.
Finally, the fixed costs of firm i are given by rKi, whereKi := k1,i+k2,i denotes

the total capital acquired by firm i, and where r is the interest rate. We characterize
the technological diversification of firm i by νi := k1,i/Ki, that is, by the fraction
of the firm’s total investment that uses technology 1.

As in Mills (1986), the above model implies that the level of investment does
not set fixed limits to production. Rather, for each technology, more investment
facilitates a higher production level at the same marginal production costs. Thus,
for any given price, a firm with more capital will produce more. Investing in some
equipment is necessary to use a technology; for ks,i → 0, marginal production costs
become infinite for all qs,i > 0.
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2.2 Benchmark 1: Socially Optimal Diversification
As a first benchmark, we derive the socially optimal technology mix. From a social
perspective, technological diversification reduces the transmission of technology-
specific cost shocks to consumer prices; the impact of a price increase of natural
gas on electricity prices is smaller, if electricity production can be shifted to tech-
nologies using other fuels, whenever natural gas becomes expensive. If the con-
sumers’ utility functions are strictly concave, such a reduction of consumer price
volatility increases expected utility. However, technological diversification might
also increase expected production costs, for example, if much capital is invested in
technologies that are used only infrequently.

To depict this trade-off, we use the following measure of social welfare.

W :=

∫ Pn
i=1(k1,iu1,i+k2,iu2,i)

0

P (q̃)dq̃ −
n∑
i=1

r(k1,i + k2,i) (3)

−
n∑
i=1

(
k1,i (c1(u1,i) + η1u1,i) + k2,i (c2(u2,i) + η2u2,i)

)
.

We maintain the information setup of the preceding section by assuming that ex-
pected social welfare is maximized in two stages: First, a social planner sets the
investment levels k1,i, k2,i under uncertainty. Second, the social planner chooses
optimal production levels u1,i, u2,i after the uncertainty is resolved.

It suffices to consider a single period of the production stage, because the ran-
dom variables are intertemporally independent. Optimizing social welfare W with
regard to (u1,i, u2,i) shows that the social optimum in the second stage is charac-
terized by P = c′1,i(u

×
1,i) + η1, whenever this implies u×1,i > 0, or by u×1,i = 0,

otherwise. Similarly, we have P = c′2,i(u
×
2,i) + η2, if u×2,i > 0, or u×2,i = 0. By

our convexity assumptions and the linear inverse demand function, these conditions
characterize the unique welfare maximum.

We calculate the optimal investment in the first stage by maximizing E (W )
with regard to total investment Ki = k1,i + k2,i and with regard to technological
diversification νi = k1,i/Ki taking into account that all u×1,j, u

×
2,j (for j = 1, . . . , n)

can depend on these variables. Carrying out this optimization yields6

E
(
Pu×1,i − (c1(u×1,i) + η1u

×
1,i)
)

= E
(
Pu×2,i − (c2(u×2,i) + η2u

×
2,i)
)

= r. (4)

6 Differentiating the expected value of W , as defined in Eq. (3), with regard to νi, we get

E
(
K×i P · (u

×
1,i − u

×
2,i)−K

×
i (c1(u×1,i) + η1u

×
1,i) +K×i (c2(u×2,i) + η2u

×
2,i)

+
n∑

j=1

K×j ν
×
j (∂u×1,j/∂νi)(P − c′1(u×1,j)− η1) +K×j (1− ν×j )(∂u×2,j/∂νi)(P − c′2(u

×
2,j)− η2)

)
.

6

The B.E. Journal of Economic Analysis & Policy, Vol. 9 [2009], Iss. 1 (Contributions), Art. 53



Thus, in the social optimum, the marginal increase in expected net-welfare
caused by an additional unit of investment has to be equal for both technologies
and has to equal the marginal capital costs of investment.7

Due to the assumption of constant returns to scale, the social planner is indiffer-
ent with regard to the allocation of capital to firms. For simplicity, we consider the
symmetric case, where all firms have identical capital endowments. In this case,
we can use the inverse demand function (2) to characterize the socially optimal
diversification and the socially optimal investment more closely:

ν×i =
1

nbK×i E
(
(u×1,i − u×2,i)2

)(aE (u×1,i − u×2,i)− nbK×i E (u×2,i(u×1,i − u×2,i)) (5)

− (c1(u×1,i) + η1u
×
1,i) + (c2(u×2,i) + η2u

×
2,i)
)
,

K×i =
aE
(
u×1,i
)
− E

(
c1(u×1,i) + η1u

×
1,i

)
− r

nbE
(
u×1,i(ν

×
i u
×
1,i + (1− ν×i )u×2,i)

) . (6)

These conditions serve as a benchmark for our analysis of firm behavior. We will
interpret them in Section 3.

2.3 Benchmark 2: The Case of Certainty
As a second benchmark, we consider investment behavior under certainty. In this
case, we always have η1 = η2 = 0. Thus the firms have no more information in
the production stage than in the investment stage. Consequently, the setup can be
simplified to a simultaneous choice of investments ki and production levels ui.

The following lemma shows that diversification is not profit maximizing.

Lemma 1. Assume that the technologies have differing minimal average costs.
Then, under certainty, both a monopolist and a firm facing perfect competition will
invest at most in one technology.

Proof. Under certainty, a monopolist maximizes

P (k1u1 + k2u2) · (k1u1 + k2u2)− k1c1(u1)− k2c2(u2)− r(k1 + k2) (7)

with regard to k1, k2, u1, u2 ∈ R+. A firm facing perfect competition will consider
P as being fixed in (7). Maximizing (7) with regard to ks, us shows that in either

Substituting the optimality conditions of stage 2 (including the fact that we have ∂u×s,j/∂νi = 0, if
a constraint us,i ≥ 0 is binding) and setting the result equal to zero yields the first part of Eq. (4).
The second part follows from doing the same with regard to Ki and substituting the above result.

7The second-order conditions are identical to those analyzed in Section 3.1.

7

Krysiak: Technological Diversity and Cost Uncertainty



case,8 we have c′s(u
∗
s) = (cs(u∗s) + r)/u∗s, whenever technology s is actually used

(i.e., ks, us > 0). Thus marginal costs equal average costs (both per unit of in-
vestment, as we have constant returns to scale), implying that the firm invests and
produces so that each utilized technology is used at minimal average costs. As the
cost functions are strictly convex, this determines a unique value of u∗s.

Assume that the firm would invest in both technologies. Under certainty, this
implies that the technologies would be used simultaneously, as production decisions
do not vary (there are no shocks), and as it is clearly suboptimal to invest in a tech-
nology that is never used. By maximizing Eq. (7) with regard to u1, u2 > 0, we get
the additional condition c′1(u∗1) = c′2(u∗2). By c′s(u

∗
s) = (cs(u∗s)+r)/u

∗
s, the marginal

costs equal the minimal average costs, which differ between the technologies. Thus
the additional condition c′1(u∗1) = c′2(u∗2) cannot be met; the technologies are not
used simultaneously. Consequently, the firm invests only in one technology.

So, if there is no uncertainty, no diversification will occur. This is a conse-
quence of certainty and constant returns to scale. In most cases, technologies will
differ with regard to their costs with one technology having smaller minimal aver-
age costs. Due to constant returns to scale, it is possible to produce any output at
these minimal average costs, if the firm knows at the time at which investment deci-
sions are made how much it will produce later on. Under certainty, the firm has this
knowledge. Thus it can produce the desired quantity at the lowest possible costs
by investing only in the technology with the lower minimal average costs. As we
will show in the following sections, this result rests strongly on the assumption of
full information concerning future costs. It also rests on the assumption of constant
returns to scale; for decreasing returns to scale, it might be profitable to invest in
both technologies.9

3 Firm Behavior under Uncertainty
We now contrast these benchmarks with the investment behavior of a firm that faces
technology-specific cost uncertainty. We first establish that this firm behavior is so-
cially optimal under conditions of perfect competition. Then we show that, albeit
total investment is socially suboptimal, technological diversification is still socially
optimal in the case of a monopoly. In this section, we focus on the relation between

8Differentiating (7) with regard to ks, us, we get ks(P + P ′Q − c′s) and us(P + P ′Q − (cs +
r)/us), where Q := k1u1 + k2u2. For perfect competition, we have the same expressions, but
without the terms involving P ′. Setting these expressions equal to zero and comparing them yields
the above condition.

9In contrast, increasing returns to scale would provide an additional reason to invest only in a
single technology.
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the socially and the individually optimal diversification. The following section pro-
vides a more detailed analysis of the conditions under which diversification occurs.

3.1 Perfect Competition
Assume that the number of firms n is so large that each firm does not consider the
effects that its production and investment decisions have on the product price. In
the production stage, firm i thus maximizes its profit

P · (k1,iu1,i + k2,iu2,i)− k1,i(c1(u1,i) + η1u1,i)− k2,i(c2(u2,i) + η2u2,i) (8)
− r(k1,i + k2,i),

with regard to u1,i, u2,i ≥ 0 for observed values of η1, η2 and given values of
k1,i, k2,i. As above, the solution of this optimization problem is characterized by
P = c′1,i(u

∗
1,i) + η1 (if this yields a non-negative solution) or by u∗1,i = 0 and, simi-

larly, by P = c′2,i(u
∗
2,i) + η2 or u∗2,i = 0. Note that these conditions imply that u∗1,i

and u∗2,i are functions of (η1, η2). Also, by our convexity assumptions, the optimal
solution is unique and the second-order conditions are met.

We calculate the optimal investment behavior by maximizing the expected value
of (8) with regard to (Ki, νi), given this second-stage optimization and taking into
account that u∗1,i, u

∗
2,i depend on Ki as well as on νi. In this way, we get10

E
(
P · (u∗1,i − u∗2,i)

)
− E

(
c1(u∗1,i) + η1u

∗
1,i − (c2(u∗2,i) + η2u

∗
2,i)
)

= 0, (9)

E
(
P · (ν∗i u∗1,i + (1− ν∗i )u∗2,i)

)
− E

(
ν∗i (c1(u∗1,i) + η1u

∗
1,i)
)

(10)

−E
(
(1− ν∗i )(c2(u∗2,i) + η2u

∗
2,i)
)
− r = 0.

Note that rearranging these conditions yields Eq. (4), that is, the firms invest so that
the expected marginal net-benefits of the investment in each technology equal each
other and the marginal investment costs.

Substituting the inverse demand function and solving for ν∗i , K
∗
i gives

ν∗i =
1

nbK∗i E
(
(u∗1,i − u∗2,i)2

)(aE (u∗1,i − u∗2,i)− nbK∗i E (u∗2,i(u∗1,i − u∗2,i)) (11)

− (c1(u∗1,i) + η1u
∗
1,i) + (c2(u∗2,i) + η2u

∗
2,i)
)
,

10Differentiating the expected profit with regard to νi, we get

E
(
K∗i P · (u∗1,i − u∗2,i)−K∗i (c1(u∗1,i) + η1u

∗
1,i) +K∗i (c2(u∗2,i) + η2u

∗
2,i)

+K∗i ν
∗
i (∂u∗1,i/∂νi)(P − c′1(u∗1,i)− η1) +K∗i (1− ν∗i )(∂u∗2,i/∂νi)(P − c′2(u

∗
2,i)− η2)

)
.

Proceeding in the same way as described in Footnote 6 leads to the above results.

9
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Figure 2: Production decisions for technology 1 and 2 for given investment levels
and two cost realizations. The shaded areas correspond to revenues minus variable
costs per unit of investment.

K∗i =
aE
(
u∗1,i
)
− E

(
c1(u∗1,i) + η1u

∗
1,i

)
− r

nbE
(
u∗1,i(ν

∗
i u
∗
1,i + (1− ν∗i )u∗2,i)

) , (12)

as the symmetric solution.11

Eq. (11) suggests that we can have ν∗i ∈]0, 1[, that is, it can be optimal for a
firm to invest in both technologies. Let us briefly discuss why this might occur; in
Section 4, we will provide an in-depth analysis for a special case.

As firms can choose production levels after observing the cost shocks and as the
cost functions are strictly convex, the uncertainty increases firm profits compared
to a situation with constant, ex-ante known costs.12 A firm can increase its expected
profit by adjusting its production to observed realizations of the cost shocks. The
gain in expected profit depends on how much marginal costs change with changing
output and on the extent to which the output price varies with the cost shocks. If the
marginal cost function is very steep, firms will not adjust their production strongly,
and thus gain only little from cost uncertainty. If the output price is perfectly cor-
related with a firm’s cost shocks, the firm will not adjust its output at all and will
therefore not gain from the uncertainty.

Diversification reduces the correlation of the output price with a firm’s cost
changes and thereby increases the firm’s expected profit, because a firm with a

11Due to constant returns to scale and perfect competition, it suffices to consider the symmetric
equilibrium.

12The costs depend linearly on the cost shocks, so that a firm’s expected profit would equal the
profit under certainty, if the firm would not adjust its production decisions to the shocks. If the firm
makes optimal adjustments, it improves upon this and thus receives a higher expected profit.
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diversified technology can adjust the allocation of production to the technologies.
To see this, assume first that all firms except one firm use only technology 1. Thus
the output price will be high, whenever the marginal costs of technology 1 are high.
Now, the single firm that has invested in both technologies can shift production
to technology 2, whenever technology 1 has high costs and technology 2 has low
costs, and increase its expected profit by this behavior. Figure 2 shows this for a
simple example, where η1 can take on only two values (η̄, η) and where the costs
of technology 2 are certain and higher than the minimal costs of technology 1.
Therefore, it can be optimal to invest in both technologies.

If many firms invest in both technologies, the benefit of diversification will be
reduced, because the product price will increase less strongly in the case η = η̄,
as all these firms partially shift production to technology 2. In equilibrium, invest-
ments will be chosen so that the marginal benefit of investing in technology 1 equals
the marginal benefit of investing in technology 2 as well as the marginal costs of
capital. As noted above, rearranging Eqs. (9) and (10) shows that this is what our
analysis yields as optimality conditions.

This example also highlights that the assumed timing of investment and produc-
tion decisions is essential for our diversification result. If the firms would have to
choose production levels (i.e., u1,i, u2,i) ex-ante, it would not be profitable to invest
in technology 2, because the benefit of being able to use this technology in the case
where technology 1 has high marginal costs (η = η̄) is more than compensated by
the loss incurred when technology 1 has low marginal costs (η = η).

Unfortunately, it is not possible to provide general conditions under which di-
versification occurs, because, in Eqs. (11)–(12), u∗1,i, u

∗
2 depend on ν∗i , K

∗
i . But it

is possible to compare the decentralized outcome to the socially optimal outcome
derived above.

Proposition 1. Under perfect competition, the firm’s investment behavior is so-
cially optimal, both with regard to total investment and with regard to technological
diversification.

Furthermore, if Eqs. (11)–(12) have a solution K∗i > 0, ν∗i ∈]0, 1[, then this
solution is the unique profit maximum.

Proof. Both, in the firms’ and the social planner’s optimization, the second-stage
production decisions are characterized by the same conditions. Furthermore, Eqs.
(11)–(12) are identical to Eqs. (5)–(6). Thus in both stages, the firms’ and the social
planner’s optimality conditions coincide.

The determinant of the Hessian of the firm’s optimization problem is

E
(
A2(η1, η2) C(η1, η2)

)
E
(
B2(η1, η2) C(η1, η2)

)
(13)

− (E (A(η1, η2)B(η1, η2) C(η1, η2)))2 ,
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with

A(η1, η2) := K∗i (u∗1,i − u∗2,i), (14)

B(η1, η2) := ν∗i u
∗
1,i + (1− ν∗i )u∗2,i, (15)

C(η1, η2) := − b2K∗i n
2c′′1c′′2(ν∗i c′′2 + (1− ν∗i )c′′1)

(bnK∗i (1− ν∗i )c′′1 + (bnK∗i ν
∗
i + c′′1)c′′2)2 . (16)

This determinant is strictly positive.13 The first diagonal element of the Hessian
equals E (A2(η1, η2) C(η1, η2)/K∗i ) and thus is strictly negative, becauseC(η1, η2) <
0. Therefore, the first-order conditions characterize a maximum of the expected
profit. This holds for any solution of the first-order conditions, so that there is
no other interior extreme point than a maximum. But no continuous function can
have two maxima (interior or on the boundary) without a different type of ex-
treme point in between. Thus, if the solution of Eqs. (11)–(12) is feasible (i.e.,
if K∗i > 0, ν∗i ∈]0, 1[), it is the unique profit maximum.

That firms facing perfect competition will choose a socially optimal level of
total investment is a standard result. What Proposition 1 adds is that the firms also
invest in the socially optimal technology mix.

From the social perspective, technological diversification is beneficial, because
it reduces the transmission of cost shocks to consumer prices and thus the price
risk that consumers face. The optimal diversification is achieved, if, for both tech-
nologies, the marginal increase in expected consumer plus expected producer sur-
plus caused by investing in one technology equals the marginal investment costs.
From the firm perspective, diversification is advantageous, because it increases a
firm’s ability to react to cost shocks. These reactions increase the firm’s expected
profit and stabilize the output price. The level of diversification is optimal from the
firm perspective, if, for both technologies, the marginal increase in expected profit
caused by investing in a technology equals the marginal investment costs. Under
perfect competition, the marginal effect of investment on expected profit equals its
marginal effect on expected consumer and producer surplus (cf. Eq. (3) and Eq.

13To see this, consider a continuous probability distribution of η1, η2 that has the density φ(η1, η2).
By symmetry, Eq. (13) can be written as

(1/2)
∫ (

A(ηa
1 , η

a
2 )B(ηb

1, η
b
2)−A(ηb

1, η
b
2)B(ηa

1 , η
a
2 )
)2
C(ηa

1 , η
a
2 ) C(ηb

1, η
b
2)

· φ(ηa
1 , η

a
2 ) φ(ηb

1, η
b
2)dη

a
1dη

a
2η

b
1η

b
2

and is thus strictly positive, whenever σ1 > 0 or σ2 > 0. For a discrete distribution, a similar
expression can be derived.
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(8)). Thus the firms’ and the social planner’s calculations coincide with regard to
the optimal level of diversification.

This holds also in a corner solution, where no diversification takes place. Such a
corner solution will arise, if diversification is costly (e.g., if r is very large) or if the
benefits of diversification are small (e.g., if the technologies’ cost shocks are highly
correlated).14 In such a case, both profit maximization and welfare maximization
imply that only one technology should be used.

3.2 Monopoly
An important question is whether the above result is specific to perfect competi-
tion. As is well known, under imperfect competition, a firm chooses a socially
suboptimal investment level. Thus it seems likely that diversification will also be
suboptimal. Previous studies, like Mills and Smith (1996), support this conjecture.

We consider a monopoly as a simple example of imperfect competition. The
setup is the same as in the preceding section, except that we now have n = 1 and
that the firm can influence the market price. In contrast to the preceding section,
there is a substantial difference between firm heterogeneity and technological di-
versification in this setting. There can be no heterogeneity, if there is only a single
producer. But there can still be technological diversity.

Profit maximization in stage two now yields

a− 2bK(ν u∗1 + (1− ν)u∗2) = c′1(u∗1) + η1, (17)
a− 2bK(ν u∗1 + (1− ν)u∗2) = c′2(u∗2) + η2, (18)

whenever the constraints u1, u2 ≥ 0 are not binding. If one of them is binding, the
other production level is still described by the corresponding condition above.

We calculate the optimal total investment and diversification as in the preceding
section, and get the first-order conditions:15

K∗ =
aE (u∗1)− E (c1(u∗1) + η1u

∗
1)− r

2bE (u∗1(ν∗u∗1 + (1− ν∗)u∗2))
, (19)

14We provide a more detailed analysis in Section 4.
15Differentiating the expected profit w.r.t. ν yields

E
(
K∗ (P + P ′K∗(ν∗u∗1 + (1− ν∗)u∗2)) · (u∗1 − u∗2)−K∗(c1(u∗1) + η1u

∗
1) +K∗(c2(u∗2) + η2u

∗
2)

+K∗ν∗(∂u∗1/∂ν)(P + P ′K∗(ν∗u∗1 + (1− ν∗)u∗2)− c′1(u∗1)− η1)

+K∗(1− ν∗)(∂u∗2/∂ν)(P + P ′K∗(ν∗u∗1 + (1− ν∗)u∗2)− c′2(u
∗
2)− η2)

)
.

Setting this expression equal to zero and substituting Eq. (2) and the first-order conditions of stage
two leads to Eq. (20). Differentiating w.r.t. K and proceeding in the same way leads to Eq. (19).
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ν∗ =
aE (u∗1 − u∗2)− 2bK∗E (u∗2(u∗1 − u∗2))− (c1(u∗1) + η1u

∗
1) + (c2(u∗2) + η2u

∗
2)

2bK∗E ((u∗1 − u∗2)2)
.

(20)
This yields the following conclusion.

Proposition 2. A monopolist’s investment behavior is socially optimal with regard
to technological diversification but not with regard to the total level of investment.

Proof. We first show that Eqs. (19)–(20) characterize a unique profit-maximum, if
they have a feasible solution. The determinant of the Hessian of the firm’s opti-
mization problem can be written as

E
(
A2(η1, η2) Cm(η1, η2)

)
E
(
B2(η1, η2) Cm(η1, η2)

)
(21)

− E (A(η1, η2)B(η1, η2) Cm(η1, η2))2 ,

with

Cm(η1, η2) := − 2bc′′1c′′2
(2bK∗(1− ν∗)c′′1 + (2bK∗ν∗ + c′′1)c′′2)

, (22)

and A(η1, η2), B(η1, η2) defined by Eqs. (14)–(15) given in the proof of Proposi-
tion 1. Again, this determinant is strictly positive.16 Furthermore, the first diago-
nal element of the Hessian equals E (A2(η1, η2) Cm(η1, η2)/K∗) and is thus strictly
negative, as C(η1, η2) < 0. As argued in the proof of Proposition 1, the solution of
Eqs. (19)–(20) is thus the unique profit maximum, whenever it is feasible.

Suppose that there is a socially optimal solution K× > 0, ν× ∈]0, 1[, u×1 , u
×
2 ≥

0. Comparing (19) with (6), (20) with (5), and (17)–(18) with the socially opti-
mal production levels shows that, if this solutions fulfills the conditions of social
optimality, then K∗ = K×/2, ν∗ = ν×, and u∗1 = u×1 , u

∗
2 = u×2 solves the monop-

olist’s profit maximization conditions. As any feasible solution of Eqs. (19)–(20)
is unique, this constructed solution is indeed the profit maximum. By construction,
this solution has the property that the diversification is socially optimal whereas
total investment is not. So, we have proven that the assertion holds, if an interior
social optimum exists.

Now, suppose that there is no interior solution of the social optimality condi-
tions. Then there can also be no interior solution of the monopolist’s profit maxi-
mization problem. If an interior solution (K∗, ν∗, u∗1, u

∗
2) would exist, K× = 2K∗,

ν× = ν∗, and u×1 = u∗1, u
×
2 = u∗2 would be a feasible interior solution of the social

planner’s conditions. Any such solution would be the social optimum.17 Thus the
16The proof is identical to the one given in the preceding section and thus not repeated.
17The second-order conditions of the social planner’s problem are identical to those of the firm’s

problem under perfect competition, so that the proof of Prop. 1 shows that a feasible interior solution
of the social planner’s problem constitutes the unique welfare maximum.
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monopolist’s problem has only an interior solution, if an interior social optimum
exists.

Finally, a direct comparison shows that if the social planner’s problem has a
boundary solution, the same boundary solution is obtained in the monopolist’s prob-
lem with regard to ν.

So, a monopolist’s investment is socially suboptimal in total. However, the level
of diversification is not distorted by market power. This is intuitive. The monopolist
produces less than under perfect competition to obtain a higher price. For a homo-
geneous good, the price depends only on total production, not on the allocation of
production to technologies, so that there is no demand-related incentive to distort
the allocation of production. Due to constant returns to scale, it is optimal to scale
down production without changing this allocation compared to the competitive so-
lution; the allocation of production to technologies is cost minimizing for a firm’s
total production under perfect competition and, due to constant returns to scale, it is
also cost minimizing for any other total production. In fact, our above proof shows
that u1, u2 remain unchanged in monopoly compared to perfect competition; total
production is only reduced by a lower value ofK.18 But if the technologies’ relative
utilization is unchanged, so is the relative investment in these technologies, as the
investment costs are the same as under perfect competition.

This result implies that, even in the case of monopoly, there is no reason to in-
terfere with the firm’s diversification decision. Governmental programs that aim at
increasing technological diversity, for example, by increasing the attractiveness of
“underused” technologies, are likely to be socially detrimental. Both under perfect
competition and in a monopoly, firms have socially optimal incentives to diversify
their investment. If further diversification is induced, the additional benefit of more
stable consumer prices will be smaller than the additional costs of investing in only
infrequently used equipment.

However, with imperfect competition, it is optimal to induce higher total invest-
ment and thereby more production. To achieve this, a simple product subsidy suf-
fices. It is easy to show that the subsidy ω = −P ′ ·k×(ν×u×1 +(1−ν×)u×2 ) corrects
the production and investment incentives of the monopolist but does not distort the
technological diversification.19 So, a standard subsidy can implement the socially
optimal solution, with regard to production, total investment, and technological di-
versification. No technology-specific intervention is necessary to achieve the social
optimum.

18Total production equals K · (ν u1 + (1− ν)u2).
19Comparing Eqs. (11)–(12) with Eqs. (19)–(20) as well as comparing the optimality conditions

of the production stage, with a in the monopolists problem being replaced by a+ ω, directly yields
this assertion.
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Altogether, our results suggest that technology-specific subsidies or other pro-
grams intended to increase technological diversity are neither necessary nor helpful
if diversification is primarily a means to reduce the detrimental effects of technology-
specific cost shocks. Firms already have sufficient incentives to invest in techno-
logical diversity without such programs. Of course, there may be other reasons for
the support of specific technologies. But especially in the energy industry, where
the “insurance motive” of diversity is frequently stressed, it seems questionable
whether the wide spread of technology-specific governmental intervention actually
contributes to social welfare.

4 A Special Case
In the preceding sections, we have used a fairly general cost specification to show
that both, under perfect competition and in a monopoly, individual investment deci-
sions lead to a socially optimal technological diversification. Thus if diversification
is socially optimal, it will be induced by market forces. However, it is not possible
to analyze in detail under which conditions diversification is optimal in this general
setup. In this section, we use a more restrictive cost specification to provide such
an analysis.

As the result for the case of a monopoly is more surprising and as this case
induces the same diversification as perfect competition, we consider only a monop-
olistic producer. We assume that the expected variable costs cs(us) can be approxi-
mated by a quadratic function:

cs(us) ≈ αs us +
βs
2
u2
s. (23)

Here, αs ≥ 0 and βs > 0 are constant parameters. For notational simplicity, we
assume20 β1 = β2 =: β, set α1 = 0, and define δ := α2, so that δ is a measure of the
difference of the technologies with regard to their expected variable costs. Without
loss of generality, we assume δ ≥ 0. Also, we assume a > δ, which excludes cases
where the use of technology 2 is economically unfeasible on average.

As above, we denote the variance of η1 by σ2
1 , that of η2 by σ2

2 , and the covari-
ance by σ1,2. Whereas we have assumed δ ≥ 0, we do not impose restrictions on
the relation between σ1 and σ2, so that either technology can be subject to higher
cost volatility.

20This assumption is only for presentational ease, our results can be easily adjusted to the case
where the technologies also differ with regard to βs.
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By Eqs. (17), (18), and (23), the optimal production levels are

u∗1 =
β(a− η1)− 2bK(1− ν) (η1 − η2 − δ)

β(β + 2bK)
, (24)

u∗2 =
β(a− η2 − δ)− 2bKν (η2 + δ − η1)

β(β + 2bK)
, (25)

if these values are non-negative. Otherwise, the negative u∗s is replaced by zero. For
notational simplicity, and in line with our assumption on the cost shocks in Section
2.1, we assume that large cost shocks (i.e., those that lead to a binding constraint
us ≥ 0) have a negligible probability.

Calculating the expected profit of the monopolist from Eqs. (24) and (25) under
this assumption yields

E (π) =
K

2β(β + 2bK)

(
β
(
(1− ν)(δ2 + σ2

2 − σ2
1) + σ2

1 − 2rβ
)

(26)

+ aβ (a− 2(1− ν)δ)− 2bK
(
2rβ − ν(1− ν)(δ2 + σ2

1 + σ2
2 − 2σ1,2)

) )
.

Optimizing E (π) with regard to ν leads to

ν∗ =
1

2
− β (δ2 + σ2

2 − σ2
1 − 2δa)

4bK (δ2 + σ2
1 + σ2

2 − 2σ1,2)
. (27)

By substituting Eq. (27) in Eq. (26) and optimizing with regard to K, we get21

K∗ =
β

2b

(
− 1 (28)

+

√
4
(
a2 (σ2

1 + σ2
2 − 2σ1,2) + σ2

1 (δ2 + σ2
2)− 2aδ (σ2

1 − σ1,2)− σ2
1,2

)
(δ2 + σ2

1 + σ2
2 − 2σ1,2) (8rβ − δ2 − σ2

1 − σ2
2 + 2σ1,2)

)
.

As can be easily verified, these conditions satisfy Eqs. (19)–(20) of the preceding
section. The following proposition provides some characteristics of these optimal-
ity conditions.

Proposition 3. Define

r̄ :=


(a2+σ2

1)(δ2+σ2
1+σ2

2−2σ1,2)
2

8β(δa+σ2
1−σ1,2)

2 if σ2
2 < σ2

1 + 2δa− δ2,

∞ if σ2
2 = σ2

1 + 2δa− δ2,

((a−δ)2+σ2
2)(δ2+σ2

1+σ2
2−2σ1,2)

2

8β(σ2
2−σ1,2−δ(a−δ)))

2 if σ2
2 > σ2

1 + 2δa− δ2.

(29)

21The second solution of the (quadratic) first-order condition w.r.t. K is always non-positive.
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(a) If
δ2 + σ2

1 + σ2
2 − 2σ1,2

8β
< r < r̄, (30)

then there is a unique optimal investment plan for the monopolist that is
characterized by Eqs. (27) and (28) and that includes diversification (i.e.,
ν∗ ∈]0, 1[).

(b) If r ≥ r̄, then the firm will invest solely in technology 1, whenever σ2
2 <

σ2
1 + 2δa− δ2, and solely in technology 2, whenever σ2

2 > σ2
1 + 2δa− δ2.

(c) If σ2
2 = σ2

1 + 2δa− δ2, then the firm will always choose ν = 1/2.

(d) In all cases, the level of diversification is socially optimal.

Proof. Let ∆ := σ2
2 − σ2

1 , σ := σ1, and γ := 2(σ2
1 − σ1,2). By Eq. (28), K∗ is a

real number and is strictly decreasing in r, if r is larger than the lower boundary in
condition (30). Furthermore, K∗ is positive for r = r̄. Thus, under condition (30),
K∗ is feasible. Eq. (27) shows that ν∗ ∈]0, 1[ (and is thus feasible), if, in addition,
K∗ < |(2aβδ − β(2δ + δ2 + ∆))/(2β(γ + δ2 + ∆))|. Substituting Eq. (28) in this
condition yields the upper boundary (29) for r.

So, under condition (30), we have a feasible solution ν∗ ∈]0, 1[ and K∗ ≥ 0.
Furthermore, the determinant of the Hessian of the expected profit at this solution is
4((∆+γ)a2−δγa+σ2(δ2+∆+γ))−γ2

(2br+β)4
, which is strictly positive under condition (30). The

first diagonal element of the Hessian equals −2br2(γ+δ2+∆)
β(2br+β)

, which is strictly nega-
tive. Thus any interior extreme point is a maximum, again implying that there can
be no boundary maxima. So, the interior maximum is unique.

If r ≥ r̄, then substituting (28) in (27) yields no solution ν∗ ∈]0, 1[. For ∆ <
2δa− δ2, we get ν∗ ≥ 1, and the optimal solution is ν∗ = 1. For ∆ > 2δa− δ2, we
get ν∗ ≤ 0, and the optimal solution is ν∗ = 0. For ∆ = 2δa − δ2, condition (27)
yields the feasible solution ν∗ = 1/2.

That the level of diversification is socially optimal follows from Prop. 2.

Proposition 3 yields a detailed characterization of the conditions under which
diversification occurs. As both the competitive and the monopoly solution are so-
cially optimal with regard to diversification, it also applies to the case of perfect
competition. It shows that diversification occurs, if capital is not too expensive.22

In light of our above discussion of diversification incentives this is intuitive. Di-
versification is beneficial, because it affords the firm more flexibility in adjusting to
cost shocks. It is costly, because capital is less utilized on average, that is, for the

22The lower boundary in Eq. (30) is only necessary to assure that total investment is always finite.

18

The B.E. Journal of Economic Analysis & Policy, Vol. 9 [2009], Iss. 1 (Contributions), Art. 53



same average level of production, the firm needs to invest more. If capital is not too
expensive, the benefit exceeds the costs and the firm will diversify its investment.

The two parts of the upper limit for r correspond to different cases with regard
to the preferability of the technologies. If σ2

2 > σ2
1 + δ(2a− δ), the profit gain due

to uncertainty is so much higher for technology 2 that it compensates the (possibly)
higher expected costs. Consequently, technology 2 is preferred, so that we have
ν∗ ∈ [0, 0.5] and the limiting condition for diversification is ν∗ > 0. In the opposite
case, where σ2

2 < σ2
1+δ(2a−δ), technology 1 is preferred, and we have ν∗ ∈ [0.5, 1]

with diversification occurring for ν∗ < 1.
Note that for σ2

1 = σ2
2 = 0, there is no diversification; condition (30) cannot be

met.23 Thus diversification is solely a response to cost uncertainty, as our analysis
of Section 2.3 has suggested. Also, diversification is not simply due to choosing an
optimal portfolio of assets with regard to risks and expected returns, but is driven
by the greater flexibility that it affords in production.24

Proposition 3 also provides further insight into the benefit of diversification. As
we have argued above, and as Eq. (26) clearly shows,25 the firm gains from the
cost uncertainty. Thus, the larger (σ2

2 − σ2
1) is, the more beneficial is technology

2. In contrast, the higher δ is, the less will technology 2 be used and thus the less
beneficial is an investment in technology 2. Proposition 3 shows that there is an
indifference curve that relates (σ2

2 − σ2
1) and δ in a way that both technologies are

equally attractive; the more costly technology 2 is in relation to technology 1 (high
δ), the more risky (high σ2

2) it has to be for being equally attractive.26

An important question left open in Proposition 3 is under which conditions,
there are values of r that meet the condition of assertion (a) and thus induce the
firm to use a diversified technology portfolio.

Corollary 1.

(a) If there is uncertainty, that is, if either σ2
1 > 0 or σ2

2 > 0, and if the technology-
specific shocks are not perfectly positively correlated, that is, if σ1,2

σ1σ2
< 1, then

there exist positive values of r that meet condition (30).

(b) Under these conditions, the range of values of r for which diversification
occurs is strictly strictly decreasing in β.

23The upper and the lower bound become identical.
24If the firms could not respond to the cost shocks by adjusting production, diversification would

not be optimal in our setup.
25Observe that the expected profit is increasing in σ2

1 and σ2
2 .

26As we have assumed a > δ, the relation between δ and (σ2
2 − σ2

1) implied by assertion (c) of
Prop. 3 is strictly monotonic in δ.
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Proof. Any r that meets condition (30) is non-negative, because the lower bound
specified there is non-negative. Analyzing (30) shows that the lower and the upper

bound can become equal only if σ1,2

σ1σ2
=
− (δ+ψ)±

√
(σ2

2+ψ2)(σ2
1+(δ+ψ)2)

σ1σ2
, where ψ :=

a − δ, which is strictly positive by assumption. The term under the root is greater
than or equal to (ψ(δ + ψ) + σ1σ2)2. Thus the lower and upper bound can only
become equal for σ1,2

σ1σ2
≥ 1 or σ1,2

σ1σ2
< −1, the latter of which is impossible. Direct

inspection shows that, within the thus defined range −1 ≤ σ1,2

σ1σ2
< 1, the upper

bound is strictly greater than the lower bound, so that feasible values of r can be
found. This proves (a). Assertion (b) follows directly from Eq. (30).

So, diversification can occur, whenever the technology-specific shocks are not
perfectly positively correlated. This is intuitive: If the shocks are not perfectly
positively correlated, diversifying investment improves a firm’s ability to react to
factor price changes. As the costs of diversification are proportional to r, there will
be a value of r for which it is individually optimal to hold a diversified technology
portfolio. Furthermore, diversification occurs for a wider range of capital costs,
if the marginal cost functions have a smaller slope. Again, this is intuitive; the
gains from diversification result from a better ability in adjusting to cost shocks. If
the technologies are more flexible (smaller β), which facilitates larger adjustments,
these gains increase, and thus diversification becomes rational for a higher price of
capital.

Corollary 1 addresses the question of how the occurrence of diversification de-
pends on the model parameters. The following corollary investigates the influence
of the parameters on the level of diversification.

Corollary 2. Under the assumptions of part (a) of Proposition 3, the optimal in-
vestment has the following properties:

(a) For given and strictly positive levels of uncertainty, a given cost difference
δ, and a given correlation σ1,2/(σ1σ2) < 1, every level of diversification is
possible for feasible values of the other model parameters.

(b) Diversification increases (i.e., ν∗ gets closer to 1/2) for decreasing values of
r or β.

Proof. Let δ, σ1, σ2 > 0 be given and assume σ1,2/(σ1σ2) < 1. By Corollary
1, there are values of r for which diversification occurs. Eqs. (27)–(30) show
that choosing r equal to the lower boundary of (30) leads to ν∗ → 1/2, whereas
choosing r equal to the upper boundary leads to ν∗ = 1, for σ2

2 < σ2
1 + δ(2a − δ),

or to ν∗ = 0, for σ2
2 > σ2

1 + δ(2a − δ). As K∗ and ν∗ are continuous functions
of r within the range specified by (30), all values of ν∗i ∈ [0, 1] can be reached by
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varying r and by choosing a smaller or larger than (σ2
2−σ2

1 +δ2)/(2δ). This proves
(a). Assertion (b) follows directly from (27) and (28).

The most important implication of Corollary 2 is that the extent of uncertainty
does not limit the level of diversification, as long as there is some uncertainty. This
is important, because we have assumed that the cost shocks are small. The above
result shows that this assumption does not restrict the ability of our model to explain
substantial diversification.

The corollary also shows that a lower price of capital or a more flexible technol-
ogy lead to more diversification. Thus flexibility (low β) does not only increase the
number of cases (in terms of possible values of r) in which diversification occurs
but also increases the level of diversification. The intuition is the same as above;
more flexibility leads to higher gains from uncertainty and thus to more diversifica-
tion. In contrast, higher values of r imply higher costs of diversification and thus
less diversification.

As we have discussed in the introduction, technological diversification is ob-
servable in the electricity industry in the UK and in Germany. Our results suggest
that technology-specific uncertainty may provide a possible explanation for the ob-
served technological diversity. As Proposition 3 and Corollary 2 show, substantial
diversification can occur even if there are large differences in expected costs be-
tween the technologies and even if cost shocks are not very large and strongly (but
not perfectly) correlated. Furthermore, our model explains why there is not only
diversification in the aggregate but also at the firm level, which fits the observations
from the electricity industry.

5 Conclusions
In this article, we have analyzed the questions of whether technology-specific un-
certainty might provide an explanation for observed technological diversity and
whether the profit maximizing level of diversification is socially optimal. We have
advanced a model of technology choice under cost uncertainty and have shown that
such uncertainty can provide an incentive for firms to hold a diversified technol-
ogy portfolio. The profit maximizing diversification is socially optimal, both under
perfect competition and in the case of a monopoly.

Our study complements the literature by considering cost instead of demand un-
certainty, by analyzing firm-level incentives for investing in a diversified technology
portfolio instead of firm heterogeneity, and by comparing the results of firm behav-
ior to socially optimal outcomes for two market situations. As we have argued, this
change in assumptions reflects characteristics observed in important applications,
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such as the electricity industry.
Our analysis has produced two new results. First, cost uncertainty induces firms

to invest in a diversified technology portfolio. Second, albeit total investment can
be suboptimal, the diversification of this investment is socially optimal, even in the
case of a monopolistic producer.

These results have substantial policy implications. In the cases considered in
the literature on firm heterogeneity, technological diversity is a response to demand
uncertainty or the outcome of strategic interaction. A socially optimal technological
diversity is usually not attained without policy intervention. In contrast, our analysis
shows that, in the case of cost uncertainty, such intervention is not needed.

This case is relevant in many applications. Resource price volatility, such as
oil-price shocks, is often stated as a major motivation for programs aimed at in-
creasing technological diversity, like technology-specific subsidies, tax reductions,
or compensation programs. Such policies may be desirable for other reasons, such
as achieving environmental objectives or reducing import dependency in strategi-
cally important sectors. But our results suggest that they are dispensable to reduce
an economy’s vulnerability to resource price shocks.
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