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ABSTRACT
We analyse the two-point correlation function (2PCF) of galaxy groups identified from the
2-degree Field Galaxy Redshift Survey with the halo-based group finder recently developed
by Yang et al. With this group catalogue we are able to estimate the 2PCFs for systems ranging
from isolated galaxies to rich clusters of galaxies. The real-space correlation length obtained
for these systems ranges from ∼4 to ∼15 h−1 Mpc, respectively. The observed correlation
amplitude (and the corresponding bias factor) as a function of group abundance is well repro-
duced by associating galaxy groups with dark matter haloes in the standard �-cold dark matter
model. Redshift distortions are clearly detected in the redshift-space correlation function, the
degree of which is consistent with the assumption of gravitational clustering and halo bias
in the cosmic density field. In agreement with previous studies we find a strong increase of
the correlation length with the mean intergroup separation. Although well-determined obser-
vationally, we show that current theoretical predictions are not yet accurate enough to allow
for stringent constraints on cosmological parameters. Finally, we use our results to explore
the power-law nature of the 2PCF of galaxies. We split the 2PCF into one- and two-group
terms, equivalent to the one- and two-halo terms in halo occupation models, and show that
the power-law form of the 2PCF is broken, when only including galaxies in the more massive
systems.

Key words: methods: statistical – galaxies: haloes – dark matter – large-scale structure of
Universe.

1 I N T RO D U C T I O N

In the standard cold dark matter (CDM) cosmogony galaxies are
assumed to form in virialized dark matter haloes. Theoretically, the
properties of the halo population can be studied in great detail with
the use of high-resolution N-body simulations and sophisticated
analytical models. Observationally, however, dark matter haloes can
only be detected indirectly, either through their gravitational lensing
of background sources, or by using galaxies and/or X-ray gas as
tracers of the dark matter potential wells. In this paper we investigate
the clustering of dark matter haloes using the second method.

Based on galaxy kinematics, X-ray studies and gravitational lens-
ing effects, it is now well established that clusters of galaxies are
associated with the most massive dark matter haloes. Observations
show that clusters of galaxies are strongly clustered. The cluster–
cluster two-point correlation function, ξ cc(r), is roughly a power
law, ξ cc(r ) = (r 0/r )α , with α ∼ 1.8 and with a correlation length,
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r0, that is much larger than that of galaxies (see Bahcall 1988 for
a review; Croft et al. 1997; Park & Lee 1998; Bahcall et al. 2003).
This is in good agreement with clusters being associated with mas-
sive dark matter haloes, which are expected to be strongly clustered
from the fact that they are associated with high peaks in the initial
density field (e.g. Kaiser 1984).

The correlation length of clusters is also observed to increase
with the mean intercluster separation d ≡ n−1/3, where n is the
number density of objects (e.g. Bahcall & West 1992). As richer
clusters (where richness expresses the number of galaxy members)
are rarer objects, this relation between r0 and d is equivalent to a
relation between r0 and cluster richness. Associating richer clusters
with more massive haloes, this, again, is in good agreement with
theoretical predictions. Mo, Jing & White (1996), using the halo bias
model developed by Mo & White (1996), found that the observed
r0–d relation can be well described in terms of halo–halo correlation
functions in the CDM cosmogony. In addition, these authors showed
that the relation between correlation length and mean separation can
be used to constrain models of structure formation. In particular,
they showed that the observed r0–d relation is well reproduced by a
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�CDM model with �m,0 = 0.3 and h = 0.7, but differs significantly
from the predictions for a CDM model with �m,0 = 1 and h = 0.5
(see also Bahcall et al. 2003).

The r0–d relation for poorer systems can be probed by studying
the correlation function of galaxy groups (Zandivarez, Merchan &
Padilla 2003; Padilla et al. 2004). Using groups of galaxies selected
from the 2-degree Field Galaxy Redshift (2dFGRS; Eke et al. 2004),
Padilla et al. (2004) found that the s0–d relation (with s0 the corre-
lation length in redshift space) obeyed by clusters extends to poor
groups. Unfortunately, the connection between galaxy groups and
dark matter haloes is less straightforward than for rich clusters, sim-
ply because the smaller number of galaxies involved in individual
groups makes it harder to identify systems that are physically asso-
ciated. The correspondence between galaxy groups and dark matter
haloes may therefore depend significantly on the group finder used,
complicating the interpretation of the observational results. In order
to overcome this problem, one needs a group finder that associates
galaxies according to their common dark matter haloes.

In a recent paper (Yang et al. 2004b, hereafter YMBJ), we de-
veloped a halo-based group finder that is optimized for grouping
galaxies that reside in the same dark matter halo. We tested the
performance of this group finder extensively using mock galaxy
redshift surveys constructed from the conditional luminosity func-
tion model (van den Bosch, Yang & Mo 2003; Yang, Mo & van den
Bosch 2003; Yang et al. 2004a), and found that our group finder
is more successful than the conventional friends-of-friends (FOF)
algorithm in associating galaxies according to their common dark
matter haloes. In particular, our group finder also performs reliably
for very poor systems, including isolated galaxies in small-mass
haloes.

In this paper we analyse the two-point correlation function (2PCF)
of the galaxy groups identified by YMBJ. As we will show, our
group catalogue allows us to determine 2PCFs for vastly different
systems, ranging from isolated galaxies to rich clusters. Using de-
tailed mock galaxy redshift surveys (hereafter MGRSs), we show
that the group correlation functions are closely related to those of
dark matter haloes. The paper is organized as follows. In Section 2,
we briefly describe our group finder, and summarize the proper-
ties of the group catalogues obtained from the 2dFGRS and the
MGRSs. In Section 3 we estimate the 2PCF of galaxy groups in the
2dFGRS. The relation between the correlation of galaxy groups and
that of dark matter haloes is examined in Section 4. In Section 5,
we analyse how the correlation length of galaxy groups depends on
the abundance of the systems under consideration, and we compare
the observational results with theoretical predictions in Section 6.
In Section 7, we use our results to discuss how one can understand
the galaxy–galaxy correlation function in terms of the group–group
correlation function and the galaxy occupation in groups. Finally,
in Section 8, we summarize our results.

Unless stated otherwise, we consider a flat �CDM cosmology
with �m = 0.3, �� = 0.7 and h = H 0/(100 km s−1 Mpc−1) = 0.7
and with initial density fluctuations described by a scale-invariant
power spectrum with normalization σ 8 = 0.9. All distances are
calculated using this cosmology.

2 G A L A X Y G RO U P S A N D DA R K
M AT T E R H A L O E S

2.1 The group finder

In a recent study (YMBJ), we developed a halo-based group finder
that can successfully assign galaxies into groups according to their

common haloes. The basic idea behind our group finder is simi-
lar to that of the matched filter algorithm developed by Postman
et al. (1996, see also Kepner et al. 1999; Kim et al. 2002; White
& Kochanek 2002; Kochanek et al. 2003; van den Bosch et al.
2004a,b), although we also made use of the galaxy kinematics. In
summary (see YMBJ for details), the group finder starts with an
assumed mass-to-light ratio to assign a tentative mass to each po-
tential group. This mass is used to estimate the size and velocity
dispersion of the underlying halo that hosts the group, which in
turn is used to determine group membership (in redshift space).
This procedure is iterated until no further changes occur in group
memberships (see the Appendix for more details). We tested the per-
formance of our group finder in terms of the completeness of true
members and contamination by interlopers, using detailed MGRSs.
The average completeness of individual groups is ∼90 per cent and
with only ∼20 per cent interlopers. Furthermore, the resulting group
catalogue is insensitive to the initial assumption of the mass-to-light
ratios, and the group finder is more successful than the conventional
FOF method (Eke et al. 2004) in associating galaxies according to
their common dark matter haloes.

2.2 2dF groups and mock catalogues

In YMBJ we applied the group finder described above to the fi-
nal public data release of the 2dFGRS. This observational sam-
ple contains 250 000 galaxies with redshifts and is complete to an
extinction-corrected apparent magnitude of bJ ≈ 19.45 (Colless
et al. 2001). The survey volume of the 2dFGRS consists of two
separate declination strips in the North Galactic Pole (NGP) and the
South Galactic Pole (SGP), respectively, together with 100 2-degree
fields spread randomly in the southern Galactic hemisphere. When
identifying galaxy groups, we restricted ourselves only to galaxies
with redshifts 0.01 � z � 0.20 in the NGP and SGP regions. Only
galaxies with a redshift quality parameter of q � 3 and with a red-
shift completeness of >0.8 were used. This left a total of 151 280
galaxies with a sky coverage of 1124 deg2. We obtained a group cat-
alogue of 78 708 systems, which in total contain 104 912 galaxies.
Among these systems, 7251 are binaries, 2343 are triplets and 2502
are systems with four or more members. However, the vast majority
of the groups (66 612 systems) in our catalogue consist of only a
single member. Note that some faint galaxies are not assigned to
any systems, because it is difficult to decide if they are either the
satellite galaxies of larger systems, or if they are the central galaxies
of small haloes.

As discussed in YMBJ, it is not reliable to estimate the (total)
group luminosity based on the assumption that the galaxy luminos-
ity function in groups is similar to that of field galaxies. We therefore
used a more empirical approach to estimate the group luminosity
L18, defined as the total luminosity of all group members brighter
than M bJ − 5 log h = −18. In the Appendix we describe in detail
how L18 is estimated for each group. As demonstrated in detail in
YMBJ, L18 is tightly correlated with the mass of the dark matter halo
hosting the group, and can be used to rank galaxy groups accord-
ing to halo masses. Fig. 1 plots the redshift distributions of groups
detected in the 2dFGRS (solid dots) and in our MGRSs (open cir-
cles). The solid line corresponds to a constant number density, and
is shown for comparison. As already shown in YMBJ, the group cat-
alogue is virtually complete over the entire redshift range (0.01 �
z � 0.20) for groups with L 18 > 1010.5 h−2 L� (right-hand panel).
For groups with smaller L18, the catalogue is incomplete: groups
with 1010 < L 18 < 1010.5 h−2 L� are only complete to z ∼ 0.13
(middle panel), while those with 109.5 < L 18 < 1010 h−2 L� are
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Figure 1. The redshift distributions of galaxy groups for three different bins in L18 (as indicated). Open squares with errorbars are the mean and 1σ variance
of the number counts for groups in eight independent MGRSs, while solid dots correspond to the number counts of groups in the 2dFGRS. Solid lines indicate
the expected value for a constant group number density. As shown in YMBJ, groups with L 18 � 1010.5 h−2 L� are complete for z < 0.2.

Table 1. The 2dFGRS group correlation functions.

Sample N zmax d s 0(γ = 1.8) r 0(γ = 1.8) r0 γ b/b(O6) β

h−1 Mpc h−1 Mpc h−1 Mpc h−1 Mpc
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

O1 250 0.20 43.77 19.30 ± 1.73 – – – – –
O2 500 0.20 34.74 16.09 ± 1.42 15.05 ± 0.83 15.44 2.38 1.79 ± 0.11 0.22 ± 0.27
O3 1000 0.20 27.57 14.84 ± 0.63 12.79 ± 0.58 13.53 2.16 1.58 ± 0.07 0.17 ± 0.16
O4 2000 0.20 21.88 12.68 ± 0.41 11.83 ± 0.48 11.82 1.79 1.34 ± 0.04 0.28 ± 0.15
O5 4000 0.20 17.37 10.84 ± 0.32 9.62 ± 0.32 9.36 1.72 1.19 ± 0.03 0.36 ± 0.07
O6 8000 0.20 13.79 9.26 ± 0.22 8.11 ± 0.17 8.02 1.77 1.00 0.35 ± 0.08
O7 16 000 0.20 10.94 8.12 ± 0.17 6.94 ± 0.23 6.54 1.68 0.87 ± 0.02 0.48 ± 0.07
O8 16 000 0.13 7.22 6.24 ± 0.20 4.77 ± 0.12 4.78 1.86 0.63 ± 0.03 0.50 ± 0.12
O9 8000 0.08 5.67 4.55 ± 0.40 3.55 ± 0.23 3.70 1.85 0.48 ± 0.05 0.68 ± 0.26

complete down to z ∼ 0.08 (left-hand panel). Note that the redshift
distributions of the MGRS agree nicely with the 2dFGRS, indicating
that we have properly accounted for the various incompleteness ef-
fects when constructing our mock surveys (see van den Bosch et al.
2004a; Yang et al. 2004a for details). With these considerations, we
can construct volume-limited group samples by ranking all groups
according to their L18. The brightest N groups then form a volume-
limited subsample. Using this ranking-technique we construct nine
subsamples, Oi, where i = 1, 2, . . . , 9 correspond to different
choices of N and the maximum redshift zmax. Rather than character-
izing different subsamples by N and zmax, we use the mean group
separation, d = n−1/3, where n is the number density of groups in
the subsample. Table 1 lists the subsamples thus selected, and which
form the observational data base for our analyses.

In YMBJ, we also applied our group finder to eight MGRSs con-
structed using exactly the same selection criteria as the 2dFGRS (see
Yang et al. 2004a for details). Note that in the present MGRSs, we
also include fibre collisions in the way described in van den Bosch
et al. (2004b). Here we make use of these mock group catalogues
to test the relation between the groups and the dark matter haloes.
For this purpose, we generate eight dark halo catalogues from the
eight MGRSs. In which, we select all the dark matter haloes in our
‘virtual universe’ with 0.01 < z < 0.20 that are within the area
of the sky covered by 2dFGRS, where the completeness is larger

than 0.8. Note that these haloes are not exactly the same as those
corresponding to all selected groups, because the later are not com-
plete due to the survey selection effect. Subsamples of mock groups
and dark matter haloes are constructed in the same way as the 2dF
group samples, i.e. according to the L18 ranking for mock groups
or according to halo mass ranking for dark matter haloes. We de-
note these two sets of subsamples as Mi (for mock groups) and Hi
(for dark matter haloes). Subsamples Oi, Mi and Hi all have the
same number of objects for a given i. As we have eight independent
MGRSs, for each i we have eight independent mock subsamples
and eight halo subsamples. All errorbars quoted below are based on
the scatter among these subsamples.

Column 1 indicates the sample ID. Columns 2 (number of groups)
and 3 (redshift range: 0.01 � z � zmax) indicate the selection cri-
teria. Column 4 lists the mean separation (d = n−1/3) of the se-
lected groups. Columns 5 and 6 list the redshift space and real-space
correlation lengths, respectively, obtained fitting ξ (s) with ξ (s) =
(s/s 0)1.8(5 � s � 15 h−1 Mpc) and wp(rp) using ξ (r ) = (r/r 0)1.8

(3 � r p � 15 h−1 Mpc), columns 7 and 8 indicate the r0 and γ

obtained fitting wp(rp) using ξ (r ) = (r/r 0)γ . Column 9 indicates
the bias of groups relative to that of the fiducial O6 sample, and
column 10, finally, lists the β parameter. All the error bars listed in
this table are 1σ variances obtained from the scatter among eight
mock group samples.
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3 T H E T WO - P O I N T C O R R E L AT I O N
F U N C T I O N

We compute the group–group (or halo–halo) 2PCF ξ (r p, π) using
the following estimator

ξ (rp,π) = 〈R R〉〈DD〉
〈DR〉2

− 1 (1)

with 〈DD〉, 〈RR〉 and 〈DR〉 the number of group–group, random–
random and group–random pairs with separation (rp, π) (Hamilton
1993). Here rp and π are, respectively, the pair separations perpen-
dicular and parallel to the line of sight. Explicitly, for a pair (s1, s2),
with s i = czi r̂ i/H0, we define

π = s · l
|l| , rp =

√
s · s − π2, (2)

where l = (1/2)(s1 + s2) is the line of sight intersecting the pair,
and s = s1 − s2.

Except for O1, all the 2dF samples listed in Table 1 contain suf-
ficient numbers of galaxy groups for a proper determination of the
2PCF. Fig. 2 shows the contour-plots for the ξ (r p, π) of some of
these samples. Panels from the upper left- to the upper right-hand
side and from lower left- to lower right-hand side correspond to
samples O3 – O8. Note that these ξ (r p, π) look very different from
those of galaxies (e.g. Hawkins et al. 2003): the only deviation from
isotropy is a flattening of the contours at large separations due to the
infall motion induced by the gravitational action of large-scale struc-

Figure 2. The two-point correlation function, ξ (rp, π), for various group samples (as indicated) extracted from the 2dFGRS. From the upper left- to the upper
right-hand side, then the lower left- to the lower right-hand side, the samples have smaller mean intergroup separations d (see Table 1), indicating an increased
inclusion of less massive systems. Note that samples with smaller d reveal a more pronounced flattening of the contours (see also Section 5 and the right-hand
panel of Fig. 7).

ture. Unlike for galaxies, no finger-of-God effect on small scales is
present, due to the fact that groups themselves are virialized objects
rather than test particles in larger virialized potentials. As we will
see in Section 5, this absence of virial motions on small scales makes
the interpretation of the redshift distortion easier.

As the redshift-space distortion only affects π, the projection of
ξ (r p, π) along the π-axis can remove the infall induced distortions
and give a function that is more closely related to the real-space
correlation function. This projected 2PCF, wp(rp), is related to the
real-space 2PCF, ξ (r), through a simple Abel transform

wp(rp) =
∫ ∞

−∞
ξ (rp,π) dπ = 2

∫ ∞

rp

ξ (r )
r dr√
r 2 − r 2

p

(3)

(Davis & Peebles 1983). Therefore, if the real-space 2PCF is a
power-law, ξ (r ) = (r 0/r )γ , the projected 2PCF can be written as

wp(rp) = √
π

	(γ /2 − 1/2)

	(γ /2)

(
r0

rp

)γ

rp. (4)

The black dots in the upper panels of Fig. 3 show the projected
correlation function wp(rp) of 2dFGRS groups estimated from
ξ (r p, π) using equation (3) with the integration range set to |π| �
40 h−1 Mpc. For comparison, we also plot wp(rp) for the mock
groups (solid line with errorbars). The three panels correspond
to samples with mean separation d = 34.74, 17.37 and 7.22 h−1

Mpc, as indicated. Overall, the agreement between data and mock
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Figure 3. The projected correlation function, wp(rp) (upper panels), and redshift space correlation function, ξ (s) (lower panels), of groups and dark matter
haloes. Solid dots correspond to the groups extracted from the 2dFGRS, while solid and dashed lines indicate the same results, but obtained for the samples of
mock galaxies and their corresponding dark matter haloes, respectively. The errorbars associated with the solid lines indicate the 1σ variance obtained from
the eight independent MGRSs. Results are shown for three different values of the mean group separation, d, as indicated.

is extremely good. An exception is the large scales in sample O8
(d = 7.22 h−1 Mpc),1 where the wp(rp) of the mock groups is sig-
nificantly underestimated. This is due to the fact that this sample
occupies a small, nearby volume, which in our MGRSs is repre-
sented by a small box-size simulation that does not properly sample
the large(r) scale structure (see Yang et al. 2004a for details).

In most previous studies of group–group correlation functions,
the redshift-space 2PCF ξ (s), rather than the real-space 2PCF, was
used to represent the clustering strength (Croft et al. 1997; Park
& Lee 1998; Bahcall et al. 2003; Zandivarez et al. 2003; Padilla
et al. 2004). In order to allow for a comparison we also compute the
redshift-space correlation functions, which are shown in the lower
panels of Fig. 3. Here again, the results for the mock samples match
those of the 2dFGRS samples remarkably well, except at large radii
in sample O8.

4 T H E R E L AT I O N B E T W E E N G A L A X Y
G RO U P S A N D DA R K M AT T E R H A L O E S

So far we have focused on the 2PCFs for groups in the 2dFGRS
and in our MGRSs. We now examine whether or not these results
can be understood in terms of 2PCFs between dark matter haloes
in the �CDM concordance cosmology. As the clustering properties

1 We find a similar discrepancy between data and model for sample O9,
which is limited to an even smaller volume, with an even smaller mean
separation, than sample O8.

of CDM haloes are well understood (Mo & White 1996, 2002; Jing
1998; Sheth & Tormen 1999; Jenkins et al. 2001; Sheth, Mo &
Tormen 2001; Seljak & Warren 2004), such a connection between
the populations of galaxy groups and dark matter haloes enables us
to understand the clustering of groups in a cosmological context.

As mentioned above, the luminosity of a group, L18, is tightly
correlated to the mass of its host halo. Therefore, groups ranked by
the value of L18 may be used to represent dark matter haloes ranked
by halo mass. To check this, we compare the correlation functions of
mock group samples (M1, M2, etc.) with those of dark matter halo
samples (H1, H2, etc.). The results are shown as solid and dashed
lines, respectively, in Fig. 3. Note that the correlation function of
mass-ranked dark matter haloes matches that of L18-ranked groups
remarkably well.

In order to facilitate a more qualitative comparison, we fit wp(rp)
with a single power law of the form (4) over the range 3 < r p <

15 h−1 Mpc. The goodness of fit is based on a simple χ 2 criterion,
where the errors used for each data point are obtained from the
scatter among eight independent mock samples [the errors due to
cosmic variance are typically larger than the statistical errors on
each individual wp(rp) measurement]. Over the rp range considered
here, a power law is an acceptable model. We treat the slope γ

either as a free parameter or keep it fixed at a value of γ = 1.8.
In the latter case, the fit is used to determine only the correlation
length r0. The differences in the correlation lengths estimated with
fixed or free γ is less than 10 per cent. Fig. 4 shows r0 (obtained
keeping γ fixed) as a function of mean group separation for both
mock groups and dark matter haloes. The agreement between the
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Figure 4. The relation between the correlation length, r0, and the mean
intergroup separation, d, for groups (solid circles) and dark matter haloes
(solid squares) in the MGRSs (errorbars indicate the 1σ scatter among the
eight independent mock catalogues). For clarity, the results for the dark
matter haloes have been shifted to the right by �log d = 0.03. Note the
good agreement between groups and haloes, indicating that groups ranked
by luminosity can be compared directly to dark matter haloes ranked by
halo mass. Thick and thin solid lines correspond to theoretical predictions
based on the halo bias models of SW04 and SMT01, respectively. Note that
the difference between these two model predictions is larger than the scatter
among our eight MGRSs (see Section 6 for a detailed discussion).

groups and dark matter haloes is remarkably good, especially for
massive/bright systems (note that they have been offset from each
other by � log d = 0.03 for clarity). At small values of d, i.e. for
faint groups and low-mass haloes, the groups have slightly lower
correlation lengths than the dark matter haloes. This discrepancy is at
least partly due to the incompleteness of the 2dFGRS (which we have
mimicked in our MGRSs). As a result of this incompleteness, which
is not present for the dark matter haloes, the true mean intergroup
separation is overestimated. This effect is less important for larger

Figure 5. Left-hand panel, the relation between r0 and d for groups selected from the 2dFGRS (solid dots). Errorbars indicate the 1σ variance from eight
independent mock group samples. The solid and dashed lines are model predictions for a �CDM cosmology with σ 8 = 0.9 and 0.7, respectively. Thick and thin
lines are based on the bias models of SW04 and SMT01, respectively. The dot-dashed line, finally, corresponds to the best-fitting power-law relation, r 0 = 1.11
d0.75. Right-hand panel, the relation between the redshift-space correlation length, s0, and mean group separation, d, for our 2dFGRS group catalogue (solid
dots), compared with those of the SDSS (Bahcall et al. 2003) and 2PIGG (Padilla et al. 2004). The dot-dashed line corresponds to the best-fitting power-law,
s0 = 1.88 d0.61.

groups; although some of the member galaxies are missed, they still
contain sufficient members to be identified as a group.

We have also estimated the redshift-space correlation lengths, s0.
In this case, we adopt a simple power-law model, ξ (s) = (s/s 0)1.8,
to fit ξ (s) over the range 5 < s < 15 h−1 Mpc. The lower limit of s
adopted here is larger than that of rp used in fitting wp(rp), because
the redshift-space correlation is not well described by a power law at
smaller separations (see lower panels of Fig. 3). As for the real-space
correlation lengths, we find extremely good agreement between the
s0 of mock groups and dark matter haloes (not shown).

All these results provide strong support for a tied correlation
between group luminosity and halo mass, clearly demonstrating that
the groups ranked by luminosity can be compared meaningfully to
dark matter haloes ranked by halo mass.

5 A BU N DA N C E D E P E N D E N C E O F G RO U P
C O R R E L AT I O N F U N C T I O N

Having established a tied correlation between group luminosity and
halo mass, we now return to our 2dFGRS group catalogue. Using
the same fitting procedure as described above, we determine the
correlation lengths r0 and s0 as well as the slope γ for 2dFGRS
groups. Results are listed in Table 1 (columns 5–8). In Fig. 5 we
plot the correlation lengths r0 (left-hand panel) and s0 (right-hand
panel) as a function of d, obtained assuming a fixed slope of γ = 1.8.
For comparison, the right-hand panel also shows the SDSS results
(open squares) obtained by Bahcall et al. (2003) and the 2dFGRS
percolation-inferred galaxy group (2PIGG) results (open circles)
obtained by Padilla et al. (2004) from the 2dFGRS. All three mea-
surements are in excellent agreement with each other. Fitting our
r 0–d and s0–d relations by power laws, we obtain r 0 = 1.11 d0.75

and s 0 = 1.88 d0.61. These power laws are shown as dot-dashed lines
in Fig. 5.

The correlation strength of a sample can also be described by the
ratio of its projected correlation function and that of a fiducial sam-
ple. Fig. 6 plots the ratio wp(rp)/wp,O6(rp) as a function of rp, where
O6 has been used as the fiducial sample. Note that wp(rp)/wp,O6(rp)
is roughly constant with rp, indicating that the slope of the
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Figure 6. The ratio of the projected 2PCF of various samples of 2dFGRS
groups relative to the fiducial sample O6, wp(rp)/wp,O6(rp). Note that the
projected 2PCFs of different samples have very similar slopes but very dif-
ferent amplitudes.

correlation function is roughly the same for different samples. How-
ever, the overall amplitude of the ratio has a clear trend with d. To
illustrate this we define the relative bias b/b(O6) as the mean value
of the ratio wp(rp)/wp,06(rp) in the range 5 � r p � 10 h−1 Mpc, and
plot b/b(O6) as a function of mean group separation in the left-hand
panel of Fig. 7 (numerical values are listed in column 9 of Table 1).

For a given sample the value of s0 is systematically larger than r0

(cf. columns 5 and 6). This is due to the enhancement of clustering
in redshift-space due to gravitational infall. To quantify this redshift
distortion, we use the model of Kaiser (1987; see also Hamilton
1992). According to linear theory, the infall velocities around density
perturbations affect the observed correlation function as

ξlin(rp,π) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (5)

Figure 7. Left-hand panel, the relative bias, b/b(O6), of groups as a function of mean group separation d. These relative biases are computed from the relation
in Fig. 6 using the radial interval with 5 � r p � 10 h−1 Mpc. Note that more massive systems (i.e. with larger d ) are more strongly biased. Right-hand panel,
the redshift distortion parameter β of mock (open squares with errorbars) and 2dFGRS groups (solid dots) as a function of d. In both panels, the various lines
correspond to the model predictions, with the same line styles as in Fig. 5. Errorbars in both panels indicate the 1σ variance from eight independent mock
group samples.

where Pl (µ) is the lth Legendre polynomial, and µ is the cosine of
the angle between the line of sight and the redshift-space separation
s. According to linear perturbation theory the angular moments can
be written as

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r ), (6)

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξ (r ) − ξ (r )], (7)

ξ4(s) = 8β2

35

[
ξ (r ) + 5

2
ξ (r ) − 7

2
ξ̂ (r )

]
, (8)

with

ξ (r ) = 3

r 3

∫ r

0

ξ (r ′)r ′2 dr ′, (9)

and

ξ̂ (r ) = 5

r 5

∫ r

0

ξ (r ′)r ′4 dr ′. (10)

In the above expressions, β is the linear distortion parameter, which
can be written as β = �0.6

m /b, where b is the bias parameter of the ob-
jects under consideration. Given the real-space correlation function
ξ (r ) = (r/r 0)γ , which can be obtained from wp(rp), equation (5)
can be used to model ξ (r p, π) on linear scales. By comparing the
model predictions with the observed ξ (r p, π), one can easily obtain
the value of β. We use a simple χ 2 fit of the observed ξ (r p, π)
in the range 8 � s � 20 h−1 Mpc to equation (5) to probe the only
free parameter β. In the fitting, each data point for ξ (r p, π) is
weighted by the error based on the scatter among eight independent
mock samples. The right-hand panel of Fig. 7 plots the β values
thus obtained for both mock groups (squares with errorbars) and
2dFGRS groups (solid dots). Although there is significant scatter,
there is a clear trend that groups with a smaller mean separation d
(i.e. less luminous groups) have larger β and thus a stronger distorted
redshift-space correlation function (this is also directly visible from
Fig. 2). The numerical values of β for the 2dFGRS groups are listed
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in column 10 of Table 1, together with the 1σ variances obtained
from the scatter among the eight MGRSs.

6 C O M PA R I S O N W I T H T H E O R E T I C A L
P R E D I C T I O N S

The tests described in the previous sections show that the abun-
dance dependence of the group–group correlation function can be
explained in terms of the halo–halo correlation function (after all,
we constructed our group finder to associate galaxies according to
their common dark matter halo). This suggests that we may compare
the 2dFGRS group–group 2PCF with halo–halo correlation func-
tions predicted by current models of structure formation in order to
constrain cosmological parameters.

The mean number density of dark matter haloes with mass M >

M 1 can be estimated through,

n(M > M1) =
∫ ∞

M1

n(M) dM, (11)

where n(M) is the mass function of dark matter haloes, which can
be estimated analytically from the Press–Schechter formalism (e.g.
Press & Schechter 1974; Sheth et al. 2001, hereafter SMT01). The
mean bias for haloes with mass exceeding M1 can be estimated from

b(M > M1) = 1

n(M > M1)

∫ ∞

M1

n(M) b(M) dM, (12)

where b(M) is the bias parameter of dark matter haloes (Mo & White
1996; Jing 1998; Sheth & Tormen 1999; SMT01; Seljak & Warren
2004, hereafter SW04). Throughout we use the halo mass function
of SMT01, which has been shown to be in excellent agreement with
numerical simulations (e.g. Jenkins et al. 2001; White 2002). For the
halo bias parameter, we use the models of both SMT01 and SW04
for comparison.

Using d = n−1/3 and r 0 = b2/1.8 r 0,DM, where r0,DM is the cor-
relation length of the dark matter, we compute r0(d). Here the
linear power spectrum is computed using the transfer function of
Eisenstein & Hu (1998), which properly accounts for the baryons,
while the non-linear power spectrum, which is required in calcu-
lating the dark matter correlation function and r0,DM, is computed
using the fitting formula of Smith et al. (2003). The solid lines in
Fig. 4 show the model predictions thus obtained using the bias mod-
els of SW04 (thick line) and of SMT01 (thin line). The difference
between the two bias models is quite large, and much larger than the
1σ variance among our 8 MGRSs. Thus, although the r0–d relation
can now be accurately determined from observational data the cur-
rent models for halo bias are not yet accurate enough to allow one
to obtain stringent constraints on model parameters (see below).

In the left-hand panel of Fig. 5 we compare the results obtained
for the 2dFGRS groups with various theoretical predictions. The
thin solid line corresponds to a standard �CDM model with σ 8 =
0.9, obtained using the bias model of SMT01. The thin dashed line
indicates the prediction for the same bias model, but with σ 8 =
0.7. Based on this, one might conclude that the observational data
are in better agreement with σ 8 = 0.9. However, if we use the bias
model of SW04 (thick solid and dashed lines), the σ 8 = 0.7 cos-
mology matches the data better. Note that although the bias model
of SW04 may be more accurate than earlier models, the uncertainty
of the bias parameter at the massive end is still 10 to 20 per cent,
which is much larger than the error on the observational results.
Clearly, the halo bias model has to be improved further, in order to
make full use of the constraining power of the present observational
results.

Fig. 7 compares the theoretical predictions for the relative bias
b/b(O6) (left-hand panel) and the redshift-distortion parameter
β = �0.6

m /b (right-hand panel, assuming �m = 0.3) with our ob-
servational results from the 2dFGRS. As a result of the normaliza-
tion at a given d, the predicted relation between the relative bias
and d is quite similar for different models (i.e. the relative bias is
fairly insensitive to the value of σ 8). More importantly, all model
predictions are in good agreement with the observational data. The
observed value of β as a function of d is also well described by the
theory, but the errorbars are too big to provide stringent constraint
on model parameters.

7 U N D E R S TA N D I N G T H E S H A P E O F T H E
C O R R E L AT I O N F U N C T I O N O F G A L A X I E S

It is well known that the real-space correlation function of (normal)
galaxies is remarkably well described by a single power law for r �
10 h−1 Mpc. Given that the mass correlation function predicted for
typical �CDM cosmologies is significantly curved on these scales,
it is important to understand the origin of this power-law behaviour.
Jing, Mo & Börner (1998) were the first to show that, if the number
of galaxies in a dark matter halo increases with halo mass as a power
law, with a power index moderately below unity, and if the number
density distribution of galaxies in massive haloes has approximately
the same profile as the dark matter, the observed power-law shape
of the galaxy correlation function can be reproduced. This kind
of galaxy bias on small scales is now well understood in the cur-
rent halo occupation model (Peacock & Smith 2000; Seljak 2000;
Scoccimarro et al. 2001; Berlind & Weinberg 2002; Bullock,
Wechsler & Somerville 2002; Jing, Börner & Suto 2002; Scran-
ton 2002; Berlind et al. 2003; van den Bosch et al. 2003; Yang, Mo
& van den Bosch 2003). In the halo model, the 2PCF of galaxies
can be decomposed into two terms:

ξ (r ) = ξ1h(r ) + ξ2h(r ), (13)

where ξ1h represents the correlation due to pairs of galaxies within
the same halo (the ‘one-halo’ term), and ξ2h describes the corre-
lation due to galaxies that occupy different haloes (the ‘two-halo’
term). In the standard �CDM model ξ (r) has a characteristic scale at
r ∼ 1–2 h−1 Mpc, where the dominating contribution to the 2PCF
makes a transition from the one- to the two-halo term. Therefore,
some departure from a pure power law is expected for populations
of galaxies for which the one- and two-halo terms are not well bal-
anced. In fact, such a departure, albeit small, has recently been found
in the projected correlation function of SDSS galaxies (Zehavi et al.
2004).

The various analyses in the previous sections have shown that our
groups selected from the 2dFGRS are nicely related to dark matter
haloes. Therefore, we can directly measure the ‘one-’ and ‘two-halo’
terms of the 2PCF, by simply determining whether both galaxies of
a pair reside in the same group (this pair adds to the one-group term),
or whether they reside in two different groups (in which case the
pair adds to the two-group term). Fig. 8 plots the projected two-
point correlation functions of 2dFGRS galaxies that are associated
with groups of different abundances. In addition to wp,tot(rp), we
also indicate the ‘one-halo’ (one-group) and ‘two-halo’ (two-group)
terms as dot-dashed and dashed lines, respectively. Each galaxy pair
is weighted by Wg = 1/(ci c j ), where ci is the survey complete-
ness at the position of galaxy i. On scales r p � 3 h−1 Mpc the pro-
jected correlation function wp,tot(rp) is dominated by the ‘two-halo’
term, while on smaller scales (r p � 1 h−1 Mpc) the ‘one-halo’ term
dominates. Note also that for galaxies residing in massive systems
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Figure 8. The projected two-point correlation function wp(rp) of galaxies in different samples of groups. The solid lines indicate the total correlation functions,
wp,tot(rp), of all galaxies in group samples O4 (upper left-hand side), O6 (upper right-hand side), O8 (lower left-hand side) and of all (151 820) galaxies in
the 2dFGRS sample with 0.01 < z < 0.20 and completeness >0.8 (lower right-hand side). The dot-dashed and short-dashed lines indicate the corresponding
‘one-halo’ terms, wp,1h(rp), and ‘two-halo’ terms, wp,2h(rp), respectively. Finally, the long-dashed line in the lower right-hand panel indicates the projected
correlation function of that half of all galaxies that is not associated with the luminous groups. See the text for details and discussion.

(i.e. large d), the projected correlation function clearly deviates from
a pure power-law; for these galaxies, the ‘one-halo’ term is signif-
icantly enhanced. This occurs because the ‘one-halo’ term contri-
bution from a large group is proportional to N g(N g − 1) (where
N g is the number of galaxies in the group), while the ‘two-halo’
term contribution is proportional to b2, which increases with halo
mass at a slower rate. When adding more galaxies to the sample
hosted by smaller haloes (i.e. decreasing d), wp,tot(rp) becomes bet-
ter described by a pure power-law. In particular, as shown by the
solid line in the lower right-hand panel, when all galaxies (151 820
galaxies with 0.01 < z < 0.20 and completeness >0.8) are in-
cluded, the correlation function is well represented by a single power
law.

As an additional test, we estimate wp,tot(rp) for a sample in which
we remove all the galaxies in the most luminous groups such that
the total number of galaxies in the sample is halved. Thus, this
sample contains only galaxies in low-mass haloes. The correlation
function for this sample is shown as the long-dashed line in the
lower right-hand panel of Fig. 8. As for the complete sample, the
projected correlation function of this sample is well described by
a power law, with a slightly shallower slope as for the complete
sample.

Therefore, we conclude that the 2PCF of 2dF galaxies reveals
a power-law form as long as sufficiently many small mass groups
(haloes) are included. For galaxies hosted by massive haloes, how-
ever, the 2PCF can deviate significantly from a pure power law.

8 C O N C L U S I O N S

We have measured the 2PCFs for galaxy groups in the 2dFGRS
group catalogue constructed by YMBJ using a halo-based group
finder. We have shown that the current data allows one to estimate the
correlation function accurately for a wide range of different systems,
ranging from isolated galaxies to rich clusters of galaxies. Ranking
groups according to their luminosities, L18, we have studied how the
correlation of groups depends on group abundance. Consistent with
previous studies (e.g. Bahcall et al. 2003; Padilla et al. 2004), we
found that the amplitude of the correlation function increases with
group luminosity (richness). The dependence of the redshift-space
correlation length s0 on the mean intergroup separation d can be
quantified as s 0 = 1.88 d0.61, while the real-space correlation length
r0 reveals a somewhat steeper dependence: r 0 = 1.11 d0.75.

Using mock group catalogues, obtained from detailed mock
galaxy redshift surveys, and the corresponding catalogues of dark
matter haloes, we have shown that the correlation functions of the
2dFGRS groups can be understood in terms of halo–halo clustering.
The observed correlation length (and the corresponding bias factor)
as a function of group abundance is well reproduced by associating
galaxy groups with dark matter haloes in the standard�CDM model.
In particular, the groups ranked by L18 match extremely well with
dark matter haloes ranked by mass. We found, however, that cur-
rent theoretical predictions for the halo–halo correlation functions
are not yet accurate enough to allow us to use the observational
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results to put stringent constraints on model parameters in the
�CDM cosmogony.

Analysing the correlation function for galaxies associated with
different groups, we were able to bisect the 2PCF of galaxies in terms
of a group–group correlation function and a term due to galaxies in
the same group. As our groups are closely related to dark matter
haloes, this split corresponds to the one- and two-halo terms of the
correlation function. We have shown how the power-law form of the
(projected) correlation function is broken when only considering
galaxies in massive haloes, and how the balance between the ‘one-’
and ‘two-halo’ terms changes with halo mass.
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A P P E N D I X : T H E H A L O - BA S E D G RO U P
F I N D E R A N D T H E A S S I G N M E N T O F L18

A1 The group finder

In a recent paper, Yang et al. (2004b) developed a halo-based group
finder that can successfully assign galaxies into groups according
to their common haloes. For completeness, we present a brief de-
scription of the group finder here, but refer the reader to Yang et al.
(2004b) for details.

The halo-based group finder consists of the following main steps.

Step 1. Two different methods are combined to identify the centres
(and members) of potential groups. First, we use the traditional FOF
algorithm with very small linking lengths to assign galaxies into
groups. The geometrical centres of all FOF groups thus identified
with more than two galaxies are considered as centres of potential
groups. Next, from all galaxies not yet linked together by these FOF
groups, we select bright, relatively isolated galaxies which we also
associate with the centres (and members) of potential groups.

Step 2. We estimate the luminosity of a selected potential group
using

Lgroup =
∑

i

Li

fc(Li )
, (A1)

where Li is the luminosity of each galaxy in the group, and f c is the
incompleteness of the survey. The total luminosity of the group is
approximated by

L total = Lgroup

∫ ∞
0

Lφ(L) dL∫ ∞
L lim

Lφ(L) dL
, (A2)

where Llim is the minimum luminosity of a galaxy that can be ob-
served at the redshift of the group, and φ(L) is the galaxy luminosity
function.

Step 3. From Ltotal and a model for the group mass-to-light ra-
tio, we compute an estimate of the halo mass associated with the
group under consideration. From this estimate we also compute the
halo radius r180, the virial radius rvir and the virial velocity V vir =
(GM/rvir)1/2. The line-of-sight velocity dispersion of the galaxies
within the dark matter halo is assumed to be σ = Vvir/

√
2.

Step 4. Once we have a group centre, and a tentative estimate of the
group size, mass and velocity dispersion, we can assign galaxies to
this group according to the properties of the associated haloes. If
we assume that the phase-space distribution of galaxies follows that
of the dark matter particles, the number density contrast of galaxies
in redshift space around the group centre (= centre of dark matter
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halo) at redshift zgroup can be written as

PM (R, �z) = H0

c


(R)

ρ̄
p(�z). (A3)

Here �z = z − zgroup and 
(R) is the projected surface density of a
(spherical) Navarro, Frenk & White (1997) halo, while the function
p(�z) d�z describes the redshift distribution of galaxies within the
halo. See Yang et al. (2004b) for the functional forms of 
(R) and
p(�z) used.

Thus defined, PM(R, �z) is the three-dimensional density contrast
in redshift space. In order to decide whether a galaxy should be
assigned to a particular group we proceed as follows. For each galaxy
we loop over all groups, and compute the corresponding distance
(R,�z) between galaxy and group centre. Here R is the projected
distance at the redshift of the group. If PM(R,�z) � B, with B =
10 an appropriately chosen background level, the galaxy is assigned
to the group. If a galaxy can be assigned to more than one group, it
is only assigned to the group for which PM(R,� z) has the highest
value. Finally, if all members of two groups can be assigned to one
group according to the above criterion, the two groups are merged
into a single group.

Step 5. Using the group members thus selected we recompute the
group-centre and go back to Step 2, iterating until there is no further
change in the memberships of groups. Note that, unlike the tradi-
tional FOF method, this group finder also identifies groups with only
one member.

A2 The assignment of L18 to groups

As discussed in Yang et al. (2004b), it is not reliable to estimate the
(total) group luminosity based on the assumption that the galaxy
luminosity function in groups is similar to that of field galaxies.

Therefore, we used a more empirical approach to estimate the group
luminosity L18, defined as the total luminosity of all group members
brighter than M bJ − 5 log h =−18. The assignment of L18 to a group
goes as follows.

(i) We estimate the group luminosity Lgroup with equation (A1)
using only galaxies with M bJ − 5 log h � −18.0.

(ii) We compute the absolute magnitude limit MbJ ,lim− 5 log h at
the redshift of the group under consideration.

(iii) If M bJ ,lim− 5 log h � −18.0, then we set L 18 = L group; oth-
erwise L 18 = L group × f (L group, M bJ ,lim), where f (Lgroup, MbJ ,lim)
is the correction factor determined from groups at lower redshifts
where the galaxy sample is complete down to M bJ − 5 log h �
−18.0.

To determine the correction factor between Lgroup and L18 we
first select all groups with z � 0.09, which corresponds to the
redshift for which a galaxy with M bJ − 5 log h = −18 has an
apparent magnitude equal to the mean limiting magnitude of the
2dFGRS (bJ � 19.3). By applying further absolute magnitude limit
cuts, we estimate L group (M bJ � M bJ ,cut) and consider the ratio
L18/Lgroup as a function of MbJ ,cut) (see fig. 9 in Yang et al. 2004b).
We fit the L18/Lgroup – MbJ ,cut relation to a functional form [log
(L group/a0)]a1�M2+a2 �M , where �M = M bJ ,lim− 5 log h −18.0, by
adjusting a0, a1 and a2, and use this fit result as an estimate for the
correction factor, f (Lgroup, MbJ ,lim). Note that the correction factor
obtained in this way is an average, and is not expected to be accurate
for individual groups. However, as demonstrated in detail in Yang
et al. (2004b), L18 so defined is quite tightly correlated with the mass
of the dark matter halo hosting the group in the mock catalogue, and
can be used to rank galaxy groups according to halo masses.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2005 RAS, MNRAS 357, 608–618


