
Incomplete Modeling of the
Effect of Antiretroviral
Therapy on the Risk of
Cardiovascular Events

TO THE EDITOR—The paper by Desai and
colleagues [1] presents some difficulties
for the reader.

The authors represent exposure in
their marginal structural models as the
current use of a single specific drug or
drug combination. The idea that the
current risk of a cardiovascular disease
(CVD) event depends on a single current
antiretroviral drug or combination is bio-
logically implausible [2–4]. The authors
implicitly acknowledge this when they re-
port that some exposures appear to have
nonlinear cumulative effects. Although
this is far more plausible, they do not pre-
sent these results. The authors note that
assuming a linear cumulative effect could
lead to misleading results, but it is hard to
see why assuming an even simpler dose
response relationship will give results
that are any less misleading. The solution
to this problem is to carry out flexible cu-
mulative exposure modelling [5].

The authors use the approach of Cole
and Hernan to select variables for model-
ing treatment initiation and censoring.
Cole and Hernan conclude that selecting
these variables “requires a thoughtful
process,” and they encourage authors to
present the results of sensitivity analysis
using different sets of variables [6]. The
reader has no idea of the variables that
these authors considered when modeling
treatment initiation and censoring and
the sensitivity of results to the choices
made. Their SAS code suggests that the
authors used only the most recent CD4
cell count and viral load for every drug
and combination. In our work we found
that exposure to abacavir depended on
variables such as dyslipidaemia, lipodys-
trophy, and a previous CVD event and
that prescribing behavior changed after
the D:A:D published their findings on
abacavir in 2008 [7]. Residual confound-
ing seems likely if the authors used the
same simple model for every drug and
combination.
The authors include a large number of

variables in their Cox models. Full results
are not given, but it seems as if these
models contained 30 to 40 covariates.
The resulting estimates are probably too
precise, because seldom used drugs and
drug combinations are omitted, and their
effects are then ignored [8] and probably
somewhat inflated because of small sam-
ple bias (especially with myocardial in-
farction as the outcome) [9]. A better
solution to the problem of multiple expo-
sures is hierarchical modeling, with addi-
tional modeling of likely associations
between the effects of drugs in the same
drug class or between the effects of com-
binations that share components, and
with an explicit acknowledgement of re-
sidual effects due to exposures omitted
from the model [8]. In this way, the au-
thors might have been able to identify
combinations whose effect differed from
the sum of its components.
Some of the variables used in these Cox

models had many missing values. Miss-
ing values were replaced using multiple

imputation, but the reader does not
know what imputation model was used,
or how results changed when missing
values were replaced, or the sensitivity
of results to other plausible imputation
models [10].

So what should a prudent reader con-
clude? That some common antiretroviral
combinations contain drugs that elevate
the risk of CVD? – Yes, but we knew that.
That some combinations are more or less
risky than the sum of their components?
– In our opinion there is little evidence
here to support such conclusions. Margin-
al structural modeling, multiple regression,
and multiple imputation are delicate tools
that can account for time-dependent con-
founding, multiple exposures, and missing
data. But modeling these complexities re-
quires careful thought—one cannot simply
rerun a SAS macro.
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