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Abstract. Emission spectroscopy measurements on a plasma representative of Titan
atmosphere composition were obtained in the Inductively Coupled Plasma wind
tunnel facility (VKI-Minitorch) at the von Karman Institute in Belgium. Temperat-
ures ranged from 3600 to 5000 K, pressure was fixed at 300 mbar, and the molar
composition was 1.9% CH4 and 98.1% N2. The high-pressure plasma was produced
to obtain conditions close to equilibrium. In conjunction, line-by-line calculations
have been carried out to assess the reliability of two distinct sets of molecular
electronic transition moments, recently released, by predicting the radiative signature
of high-temperature N2–CH4 plasma. The radiative transfer problem was solved by
considering the plasma plume at local thermodynamic equilibrium conditions in an
axisymmetric configuration. Comparisons between the synthetic and experimental
spectra demonstrated good agreement for the CN Violet and high-wavelength CN
Red bands, while some discrepancies were observed for the C2 Swan bands and
low-wavelength CN Red bands.

1. Introduction
During a hypersonic atmospheric entry (for example
into Earth, Mars, or Titan), complex heat and mass
transfers take place between the plasma surrounding an
entering probe or vehicle and its surface (Mitcheltree
and Gnoflo 1995; Gupta 2000; Mazoue and Marraffa
2005; Magin et al. 2006; Park 2007; Boyd et al. 2008;
da Silva et al. 2009; Potter 2011; Witasse et al. 2011).
For a conventional entry along super-orbital trajectory,
characterized by elevated speed, typically above 10 km/s
for Earth re-entry, the non-equilibrium plasma generated
behind the bow shock is responsible for a considerable
radiative heat flux incident on the wall of the same order
of magnitude as the convective heat flux.

The accurate prediction of incident radiative heat load
is therefore critical for reducing design margins and
mission costs through thermal protection system (TPS)
optimization (Baker et al. 2007; Berry et al. 2007; Braun
and Manning 2007). Reliable calculations of radiative
fluxes and radiative source strengths in atmospheric
entry applications necessitate to use accurate spectro-
scopic databases allowing to calculate high-temperature
gas radiative properties over a wide spectral range (Park
et al. 1996; Bose et al. 2006; da Silva and Dudeck 2006;
Colonna et al. 2007; Panesi et al. 2008).

Also, reliable calculation of radiative properties can
be achieved if and only if the population of energy levels

participating the radiative processes are well predicted,
implying the use of relevant chemical kinetic models

for post-shock flow computation (Nelson et al. 1991;
Bose et al. 2006; Gökçen 2007; Leyland et al. 2007;
Gallis et al. 2010; Savajano et al. 2011). Several works
have been devoted to the establishment of spectro-

scopic databases, including relevant radiative processes
for atmospheric applications, the most prominent being
the bound-bound transitions of atomic, diatomic, and

triatomic species and continuum transitions such as
photoionization, photodissociation, and bremsstrahlung

radiation (Park 1985; Hartung 1994; Whiting et al. 1996;
Fujita and Abe 1997; Kuznetsova and Surzhikov 1999;
Chauveau et al. 2002; Laux 2002; Johnston 2006;
Passarinho and da Silva 2006; Smith et al. 2006; Babou
et al. 2009; Hyun 2009). However, there is still a lack of
studies to assess reliability of tabulated data and in par-
ticular those for diatomic molecule bound-bound trans-
itions. During Titan atmospheric entry of the Huygens
probe, the radiative and the convective incident heat
fluxes peak respectively at approximately 300 Wcm−2

and 45 Wcm−2 (estimations taken from Olejniczak et al.
(2003, 2004) for the nominal entry trajectory with a rel-
ative velocity of 6.5 km s−1 and 16◦ angle-of-attack). The
incident intensity is mainly due to electronic radiative
transitions of CN diatomic molecules with the CN Violet
B2Σ+ − X2Σ+ and the CN red A2Π − X2Σ+ systems
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Figure 1. (Colour online) VKI-Minitorch scheme (left). Photograph of VKI-Minitorch air plasma jet.

contributing respectively in the ultraviolet and the
visible- and near-infrared spectral domains. Also, in the
visible spectral range, the C2 Swan system can contribute
in a lesser extent to the plasma emission (Olejniczak et al.
2003, 2004; Wright et al. 2004; Mazoue and Marraffa
2005; Osawa et al. 2006, 2008).

The present study is aimed to assess the reliability
of two sets of diatomic electronic transition moments,
recently released, to predict the radiative signature of
high-temperature N2–CH4 plasma. The proposed val-
idation task is carried out by means of quantitative
comparisons between suiTable experimental emission
spectra measured in a thermal plasma jet and spectra
simulated on the basis of data taken from Hyun (2009)
and from Babou et al. (2009).

A brief outline of experiments, comprehensively de-
scribed in Playez et al. (2004), is presented in Section 2,
and the approach adopted to rebuilt measured spectra
is presented in Section 3. In Section 4, comparisons
between rebuilt and experimental spectra and discrep-
ancies are discussed.

2. Experimental
2.1. Facility

The experimental emission spectra considered in this
study, taken from Playez et al. (2004), have been ob-
tained by means of optical emission spectroscopy (OES)
to determine the absolute intensity emitted by 98.1%
N2–1.9% CH4 plasma. The experiments were conducted
in the VKI-Minitorch facility, which is a small-scale
high enthalpy plasma jet facility installed at the von
Karman Institute. The VKI-Minitorch facility, illus-
trated in Fig. 1, uses a radio frequency (RF) power
generator operating at a frequnecy of 27 MHz to feed
a coil inductor surrounding a quartz tube with up to
several kilowatts at nominal operating conditions. The
RF cylindrical discharge is generated inside the quartz
tube of 30 mm inner diameter and exhausted into a
chamber of 300 mm inner diameter, where a pressure
from one atmosphere to few millibar can be maintained.
The VKI-Minitorch operating conditions have been se-

lected to ensure a reasonable level of jet instabilities
to have a relatively laminar jet and a sufficiently high
pressure (typically above 100 mbar) to achieve local
thermodynamic equilibrium (LTE). In the experiments,
documented in Playez et al. (2004) and considered within
the present study, 98.1% N2–1.9% CH4 mixture is
injected into the ICP torch through an annular injection
at 0.6 g s−1 mass flow rate. The operating power was set
to 3.75 kW and the chamber pressure was maintained
at 300 mbar.

2.2. Test conditions

The line-of-sight (LOS) plasma jet emission was collec-
ted by a set of UV-enhanced aluminum mirrors before
being focused in the entrance of an optical fiber con-
nected to a Ocean Optics HR2000-UVIR spectrometer
allowing to record in one scan the optical emission in
the spectral range 200 � λ � 110 nm with a resolution
of 1.1 nm. Radial distribution of the plasma jet emission
has been measured at few centimeters downstream the
outlet by means of a radial scanning of line-of-sight
intensity to rebuilt local emission spectra. The axial
symmetry of the plasma jet has been assessed. Details
on the adopted optical arrangement and its calibration
procedure in absolute units can be found in Playez
et al. (2004). Before performing the plasma character-
ization in terms of temperature, the local emission (in
W cm−3 nm−1 sr−1) has been rebuilt by means of an Abel
transform applied to measured line-of-sight intensity
radial profiles (in W cm−2 nm−1 sr−1). The local emission
spectra considered in the following have been corrected
consistently with recommendations of Playez et al.
(2004) accounting for calibration uncertainty and plume
fluctuations. The temperature was determined through a
common fitting approach consisting in the determination
of the temperature minimizing the error between the
experimental spectrum and spectra simulated at LTE.
The procedure was applied to emission spectra recorded
in the visible spectral range since the CN Violet bands
in the range 350 � λ � 430 nm are self-absorbed, as will
be demonstrated in Section 4. The resulting temperature
profile is given in Fig. 2.
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Figure 2. Temperature radial profile taken from Playez et al. (2004) obtained for 98.1% N2–1.9% CH4 plasma.

Figure 3. (Colour online) Extraction of a one-dimensional
computational domain from the axisymmetric plume for
line-of-sight (LOS) calculations.

3. Simulation
3.1. Radiative transfer under local thermochemical equi-

librium

As described in Section 2, the measurements were per-
formed at spatial locations where the plasma is in
LTE. A one-dimensional (1D) computational domain is
derived from the axisymmetric geometry of the plasma
plume, as shown in Fig. 3. The assumption of a one-
dimensional computational domain is sufficient for the
line-of-sight calculations as the effective emission col-
lection volume of the spectrometer is approximately
equivalent to a cylinder of diameter 320 μm or 1%
of the plume diameter (Playez et al. 2004). The de-
termination of the monochromatic spectral intensity,
Iλ, was performed by solving the radiative transport
equation (Modest 2003):

dIν

dx
= εν − κνIν , (3.1)

where ελ is the monochromatic spectral emission coeffi-
cient and κλ is the monochromatic spectral absorption
coefficient corrected for stimulated emission. The plasma
can be represented by n isothermal slabs, where the

accuracy of the calculation is improved with an increas-
ing number of slabs. In the present work 101 slabs
were found to give adequate results. For this collection
of slabs, the monochromatic spectral intensity can be
written as

Iν,n =
εν,n

κν,n

[
1 − exp(κν,nΔx)

]
+ Iν,n−1 exp(κν,nΔx), (3.2)

where Δx is the spatial width along the computational
line-of-sight for the ith slab. The plasma was supposed
to have a radial extent as presented in Fig. 2, where
the temperature radial profile was determined using
LTE approximation. A spectral grid formed in frequency
space with an average of 1000 points-per-nm has been
selected to adequately resolve rovibrational lines.

3.2. Spectral radiation coefficients

The line-by-line spectral radiation model developed by
Potter (2011) has been used in the present work. The
spectral emission and absorption coefficients for an
individual rovibrobic diatomic bound-bound transition
are respectively calculated (Zel’dovich et al. 1966) as

εν,ul =
nu h νul Aul

4π
bul (ν) , (3.3)

and

κν,ul =

(
nl
gu

gl
− nu

)
c2

8πν2
ul

Aulbul (ν) , (3.4)

where l and u denote the lower and upper rovibronic
levels, n is the level number density, Aul is the Einstein
coefficient for spontaneous emission (transition probab-
ility), bul (ν) is the spectral distribution function, and g

is the total degeneracy of particular level. The purpose
of the present work is to assess the influence of the
transition probability parameter Aul on the resulting
spectra. The reader is referred to Potter (2011) for a
complete description of spectral radiation calculation.

The CEA code (McBride and Gordon 1996) was used
to calculate the equilibrium species densities imposed
as initial conditions to the test conditions described in
Section 2.2. The species considered were those from
Gökçen’s (2007) reduced model without Ar species:
HCN, C2, C, N2, N, CH, H, CN, CH4, CH3, CH2,
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Table 1. Diatomic radiator systems with transitions considered in this work.

Diatomic species System name Transition designation Reference

C2 Philips A2Πu − X1Σ+
g Babou et al. (2009),

Hyun (2009)

Mulliken D2Σ+
u − X1Σ+

g Babou et al. (2009),

Hyun (2009)

Deslandres–d’Azambuja C1Πg − A1Σu Babou et al. (2009),

Hyun (2009)

Ballik–Ramsay b3Σ−
g − a3Πu Babou et al. (2009),

Hyun (2009)

Swan d3Πg − a3Πu Babou et al. (2009),

da Silva and Dudeck (2006)

Fox–Herzberg e3Πg − a3Πu Babou et al. (2009),

Hyun (2009)

Freymark E3Σ+
g − A1Πu Babou et al. (2009),

Hyun (2009)

N2 First-Positive B3Πg − A3Σ+
u Babou et al. (2009),

Hyun (2009)

Second-Positive C3Πu − B3Πg Babou et al. (2009),

Hyun (2009)

Hopfield–Birge 1 b1Πu − X1Σ+
g Babou et al. (2009),

Hyun (2009)

Hopfield–Birge 2 b
′1Πu − X1Σ+

g Babou et al. (2009),

Hyun (2009)

Carroll–Yoshino c
′1
4 Σ

+
u − X1Σ+

g Babou et al. (2009),

Hyun (2009)

Worley–Jenkins c13Πu − X1Σ+
g Babou et al. (2009),

Hyun (2009)

Worley a1
3Πu − X1Σ+

g Babou et al. (2009),

Hyun (2009)

CN Red A2Πi − X2Σ+ Babou et al. (2009),

Hyun (2009)

Violet B2Σ+ − X2Σ+ Babou et al. (2009)

Hyun (2009)

NH, H2, CN+, N+, N+
2 , C+, H+, and e−. The diatomic

species, C2, CN, and N2, were assumed to be the main
radiators. The free electrons were included to account
for the Stark broadening of species rotational lines due
to the presence of ions; however, due to the relatively
low plasma temperature the magnitude of Stark broad-
ening was weak. For the C2 species the Freymark’s,
Mulliken’s, Swan’s, Deslandres–d’Azambuja’s, Philips’,
Fox–Herzberg’s, and Ballik–Ramsay’s transitions were
included in the calculation. For the CN species the
Red and Violet transitions and for the N2 species the
Hopfield–Birge’s one and two, Worley’s and Worley–
Jenkin’s, First Positive, Second Positive, and Carroll–
Yoshino’s transitions were considered. All spectroscopic
constants for molecules were obtained from Huber and
Herzberg (2010), while the transition probabilities were
compiled either from the database of the SPRADIAN07
program from Hyun (2009) or Babou et al. (2009).
Updated values for the vibronic transition moments
of C2 Swan data in the case of SPRADIAN07 data-
base were taken from da Silva and Dudeck (2006).
The B2Σ+ − X2Σ+ (CN violet system) transition was
modelled via Hund’s case (b) considering spin splitting,
A2Π − X2Σ+ (CN red system) transition was modelled
via intermediate Hund’s (a)–(b) case considering spin

splitting using the Hönl–London factors of Arnold et al.
(1969), and the remaining transitions were modelled
via Hund’s case (a) without spin splitting. In Table 1
the diatomic radiator systems along with the transitions
considered in this work are listed.

The emission and absorption coefficients were spec-
trally distributed with the Voigt profile. The Lorentzian-
type mechanisms considered are pressure, Stark and
natural broadening. Doppler broadening accounts for
the Gaussian-type mechanism. A value of 11 Å full
width at half maximum has been applied to all spectra,
which accounts for the apparatus function of the optical
system (Playez et al. 2004).

4. Results and comparison with experiments
Comparisons of the numerical rebuilding with experi-
mental emission spectra taken from Playez et al. (2004)
are presented in this section. In Figs. 4–6 the comparis-
ons of the measured and computed emissivities using the
transition probabilities of Babou et al. (2009) are shown
for specific radial positions at 1.24, 3.82, and 8.43 mm
respectively. The numerical results reproduce almost
all experimentally observed spectral features with good
agreement, an exception being slight underprediction
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Figure 4. (Colour online) Comparison of the measured and computed emissivities between 4300 and 10 000 Å at radial position
equal to 1.24 mm using the transition probabilities of Babou et al. (2009).
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Figure 5. (Colour online) Comparison of the measured and computed emissivities between 4300 and 9000 Å at radial position
equal to 3.82 mm using the transition probabilities of Babou et al. (2009).
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Figure 6. (Colour online) Comparison of the measured and computed emissivities between 4300 and 9000 Å at radial position
equal to 8.43 mm using the transition probabilities of Babou et al. (2009).

of spectral features at approximately 4400, 4800, and
5200 Å where the C2 Swan band system dominates.
It is also noted that the magnitude of the discrepancy
increases for the measurements toward the edge of the
plasma plume where uncertainty raises consequently to

the drop of the emission and then the elevation of the
signal-to-noise ratio.

In Figs. 7–9 the results for the same calculations
presented in Figs. 4–6 are illustrated using the transition
probabilities of Hyun (2009). While good agreement
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Figure 7. (Colour online) Comparison of the measured and computed emissivities between 4300 and 10 000 Å at radial position
equal to 1.24 mm using the transition probabilities of Hyun (2009).
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Figure 8. (Colour online) Comparison of the measured and computed emissivities between 4300 and 9000 Å at radial position
equal to 3.82 mm using the transition probabilities of Hyun (2009).
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Figure 9. (Colour online) Comparison of the measured and computed emissivities between 4300 and 9000 Å at radial position
equal to 8.43 mm using the transition probabilities of Hyun (2009).

between experimental and numerical spectra is observed
for the CN Violet Δv = −2 manifold at approximately
4600 Å and the CN Red system for λ � 6500 Å, con-
siderable discrepancy exists for the C2 Swan band heads
at approximately 4300, 4600, 5100, and 5600 Å and
the CN Red system for λ � 6500 Å. In addition, the

underprediction of the spectral features at approximately
4400, 4800, and 5200 Å observed for the Babou data-
set is amplified. A possible contributing factor to the
differences observed between the two transition prob-
ability datasets is that Babou et al. (2009) consider vi-
bronic transitions with much higher vibrational quantum
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Figure 11. (Colour online) Comparison of the measured and computed monochromatic spectral intensities at the center of the
plasma jet using the transition probabilities of Babou et al. (2009). Optically thin (OT) and absorbing plasmas were considered
in the spectral range 4300 � λ � 10 000 Å.

numbers comapred to Hyun (2009). For example, for the
C2 Swan system, Babou et al. (2009) consider vu � 18
and vl � 33, while Hyun (2009) considers vu � 10 and
vl � 9. The absence of transitions from elevated vibra-
tional states may explain the underprediction of certain
spectral features by the Hyun (2009) dataset, but the
overprediction of the C2 Swan bands at approximately
4300 Å, for example, also indicates differences in the
magnitude of the transition moments for vibrational
transitions considered by both datasets.

In Figs. 10 and 11, the spectral intensities at the
center of the plasma jet are evinced. The calculated
results for both optically thick and optically thin plasmas
are presented and the main molecular band systems
have been labelled. The omission of absorption results
is almost a doubling of the cumulative intensity in
Fig. 10, and essentially the same cumulative intens-
ity in Fig. 11. This confirms that the plasma exhibits
strong self-absorption in the 3500 � λ � 4300 Å spec-

tral range and negligible self-absorption in the 4300 �
λ � 10000 Å spectral range. While the calculated and
measured spectral intensities exhibit good qualitative
agreement for the Babou dataset, the calculation con-
sistently overpredicts the experiment by approximately
40%. This difference can be reasonably attributed to the
experimental uncertainties (see Figs. 4–6).

The same numerical calculations as in Figs. 10 and
11 have been performed using the transition probab-
ilities of Hyun (2009) in the range 3500–4300 Å and
4300–10000 Å and these are presented, respectively, in
Figs. 12 and 13. Similar observations regarding the self-
absorption qualities of the plasma can be made as for
the Babou dataset. Despite the clear discrepancies in the
4300 � λ � 6000 spectral range when using the Hyun
dataset, the cumulative intensity is essentially the same
as for the Babou dataset, indicating that these spectral
features are not large contributors to the total radiative
flux at these conditions.
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Figure 12. (Colour online) Comparison of the measured and computed monochromatic spectral intensities at the center of the
plasma jet using the transition probabilities of Hyun (2009). Optically thin and thick plasmas were considered in the spectral
range 3500 � λ � 4300 Å.
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Figure 13. (Colour online) Comparison of the measured and computed monochromatic spectral intensities at the center of the
plasma jet using the transition probabilities of Hyun (2009). Optically thin and thick plasmas were considered in the spectral
range 4300 � λ � 10 000 Å.

5. Concluding remarks

Numerical simulations have been performed on data
measured in the VKI-Minitorch facility for CH4–N2

plasma using the line-by-line approach to assess the
reliability of two distinct spectroscopic databases, i.e.
Hyun (2009) and Babou et al. (2009). The experiment
was performed at high pressure (300 mbar) to reach the
equilibrium conditions in an axisymmetric configuration.
The radiative transport problem was solved with two
sets of molecular transition probabilities with C2, CN,
and N2 as main radiators. Between 3500 and 4300 Å,
the plasma has been found to manifest strong self-
absorption with CN violet (Δv = 0,±1) as the main
radiation mechanism. Between 4300 and 10000 Å, the
plasma is essentially optically thin with most of the emis-
sion coming from CN Red, with minor contributions
from C2 Swan and CN violet toward the visible region
of this spectral range. While both datasets exhibit good
qualitative agreement with experiment for the CN Violet

bands and the higher wavelength CN Red bands, con-
siderable improvement was found when using the Babou
dataset for the C2 Swan bands and lower wavelength CN
Red bands. The results of the comparison suggest that
the Babou dataset is more accurate of the two for the
conditions at hand, partly because of the wider range
of vibronic transitions considered. Nevertheless, the pre-
dicted integrated intensity is essentially the same for
the two datasets, as the CN Violet and high-wavelength
CN Red bands contribute the majority of the radiative
flux.
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