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Jääskeläinen40, Nanette R. Lee41, Terho Lehtimäki42, Rozenn N. Lemaitre43, Wei Lu45, Robert N.
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FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the
potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and
body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly
inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776
African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-
rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and
(ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-
rs9939609 variant was associated with higher BMI in Whites (effect per allele 5 0.34 [0.31, 0.37] kg/m2, P 5 1.9 3
102105), and all participants (0.30 [0.30, 0.35] kg/m2, P 5 3.6 3 102107). The BMI-increasing allele of the FTO variant
showeda significant associationwithhigher dietaryprotein intake (effect per allele 5 0.08 [0.06, 0.10]%,P 5 2.4 3
10216), and relative weak associations with lower total energy intake (26.4 [210.1, 22.6] kcal/day, P 5 0.001) and
lower dietary carbohydrate intake (20.07 [20.11, 20.02] %, P 5 0.004). The associations with protein (P 5 7.5 3
1029) and total energy (P 5 0.002) were attenuated but remained significant after adjustment for BMI. We did not
find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or
fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and
higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.

INTRODUCTION

Obesity is a major health problem throughout the world. A recent
large-scale analysis including 9.1 million participants from 199
countries reported that the mean body mass index (BMI) has
increased substantially since 1980 worldwide (1). Obesity is the
results of a complex interplay between environmental and genetic
factors that have additive and interactive effects. Among the obesity-
susceptibility genes recently identified through genome-wide asso-
ciation studies, single-nucleotide polymorphisms (SNPs) that
cluster in the first intron of the FTO gene show the strongest associ-
ation with BMI (effect size¼ �0.35 kg/m2 per allele) and obesity
risk (2–4). FTO is highly expressed in the hypothalamus, a region
involved in regulation of food intake and energy expenditure
(5,6). Previous studies have reported that the BMI-increasing
allele of the FTO variant is associated with higher energy intake
or higher specific macronutrient intake, (7–13) whereas other
studies could not confirm such associations (14–23).

There is growing evidence supporting a gene–environment
(diet/lifestyle) interaction in relation to BMI and obesity risk
(24–26). Our previous meta-analysis of .218 000 individuals
demonstrated that physical activity may attenuate the

association between the FTO locus on BMI and obesity risk
(24) A recent study identified that FTO variants are associated
with phenotypic variability of BMI, suggesting interactions
between FTO and environment in relation to BMI (27). Fewer
studies have investigated the interaction between FTO variants
and dietary factors on BMI and have reported conflicting
results (12,15,19,23,28,29). While some studies found that
high energy intake, high dietary fat intake or low carbohydrate
intake might strengthen the association between FTO genetic
variants and BMI/obesity risk, (12,15,28) others failed to
confirm such interactions (19,23,29).

These inconsistent observations might be due to insufficient
statistical power of individual studies to identify interactions,
which typically require much large sample sizes. Moreover,
inevitable measurement errors in dietary factors further reduce
statistical power and necessitate studies with large sample
sizes (30). Therefore, we analyzed cross-sectional data from
40 individual studies with a total of 177 330 adults to examine
(i) the association between the FTO-rs9939609 variant (or a
proxy SNP) and dietary intakes of total energy and macronutri-
ents (protein, carbohydrate and fat) and (ii) the interaction
between the FTO variant and these dietary factors on BMI.
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RESULTS

Study characteristics

Study-specific characteristics for each study are shown in Sup-
plementary Material, Table S1. The ranges of mean age, mean
BMI and median of total energy, protein, carbohydrate and fat
intakes (% of total energy intake) across studies were 31–75
years, 22.1–31.6 kg/m2, 1184–2703 kcal/day, 12.5–19.3,
41.8–69.4 and 14.9–39.7%, respectively.

FTO variant and BMI

The minor allele (A-allele) of FTO-rs9939609 variant (or of its
proxy) was associated with increased BMI in Whites (effect
per allele [95% CI] ¼ 0.34 [0.31, 0.37] kg/m2, P ¼ 1.9 ×
102105), Asians (effect per allele ¼ 0.25 [0.14, 0.35] kg/m2,
P ¼ 6.2 × 1026) and all participants combined (effect per
allele ¼ 0.33 [0.30, 0.35] kg/m2, P ¼ 3.6 × 102107), but no as-
sociation was observed in African Americans (effect per
allele ¼ 0.00 [20.20, 0.20], P ¼ 0.98) (Table 1).

FTO variant and dietary intake

The minor allele (BMI-increasing allele) of the FTO variant was
associated with lower total energy intake (effect per allele ¼
26.4 [95% CI 210.1, 22.6] kcal/day, P ¼ 0.001) (Table 1;
Supplementary Material, Fig. S1), which was only modestly
attenuated after further adjustment for BMI (P ¼ 0.002). The

heterogeneity among studies was low (I2 ¼ 18%), and there
was no significant factor accounting for the heterogeneity in
the meta-regression (all P . 0.05) (Supplementary Material,
Table S2). The results in stratified meta-analyses for association
between FTO variant and total energy intake are shown in Sup-
plementary Material, Figure S2.

The minor allele of the FTO variant was significantly asso-
ciated with higher dietary protein intake (% of energy) (effect
per allele ¼ 0.08 [0.06, 0.10] %, P ¼ 2.4 × 10216), and results
were directionally consistent across ethnicities, with moderate
heterogeneity (Table 1 and Fig. 1). The association was attenu-
ated but remained significant after further adjustment for
BMI (effect per allele ¼ 0.05 [0.04, 0.07] %, P ¼ 7.5 × 1029).
The meta-regression identified geographic region (North
America versus Europe, P ¼ 0.006; North America versus Asia,
P ¼ 0.03) and ethnicity groups (White versus Asian, P ¼ 0.03)
to be contributing to the observed moderate heterogeneity
(Supplementary Material, Table S2). In stratified meta-analyses
(Supplementary Material, Fig. S3), the directions of the associ-
ation between the FTO variant and protein intake were consistent
across the subgroups, though P-values for heterogeneities were
nominally significant for geographic region (P ¼ 0.02) and
median of protein intake (P ¼ 0.03).

The minor allele of the FTO variant was associated with lower
intake of dietary carbohydrate (effect per allele ¼ 20.07
[20.11, 20.02] %, P ¼ 0.004) (Table 1; Supplementary Mater-
ial, Fig. S4) and was attenuated after further adjustment for BMI
(P ¼ 0.08). The heterogeneity among studies was moderate

Table 1. Associations of FTO SNP rs9939609 or a proxy with BMI and intakes of total energy, protein, carbohydrate and fat in a fixed effects meta-analysis of up to
177 330 adultsa

Model 1b Model 2c

b (95% CI) P I2 (%) b (95% CI) P I2 (%)

BMI (kg/m2)
Whites 0.34 (0.31,0.37) 1.9 × 102105 46 – – –
African Americans 0.00 (20.20, 0.20) 0.98 0 – – –
Asians 0.25 (0.14, 0.35) 6.2 × 1026 48 – – –
All 0.33 (0.30, 0.35) 3.6 × 102107 47 – – –

Total energy (kcal/day)
Whites 27.8 (211.8, 23.9) 1.5 × 1024 5 27.2 (211.1, 23.3) 3.3 × 1024 0
African Americans 4.0 (219.9, 27.9) 0.74 40 4.6 (219.3, 28.5) 0.70 39
Asians 13.2 (22.8, 29.2) 0.11 30 10.5 (25.5, 26.5) 0.20 26
All 26.4 (210.1, 22.6) 0.001 18 25.9 (29.7, 22.1) 0.002 13

Protein (% of energy)
Whites 0.08 (0.06, 0.10) 3.8 × 10215 26 0.05 (0.03, 0.07) 8.8 × 1028 20
African Americans 0.15 (0.01, 0.29) 0.03 0 0.14 (0.00, 0.28) 0.05 5
Asians 0.06 (20.02, 0.15) 0.14 57 0.06 (20.02, 0.15) 0.15 57
All 0.08 (0.06, 0.10) 2.4 × 10216 32 0.05 (0.04, 0.07) 7.5 × 1029 29

Carbohydrate (% of energy)
Whites 20.07 (20.11, 20.02) 0.005 30 20.04 (20.09, 0.01) 0.10 22
African Americans 20.06 (20.40, 0.27) 0.71 60 20.05 (20.38, 0.28) 0.77 59
Asians 20.07 (20.32, 0.18) 0.57 0 20.08 (20.33, 0.17) 0.53 0
All 20.07 (20.11, 20.02) 0.004 29 20.04 (20.09, 0.01) 0.08 23

Fat (% of energy)
Whites 0.02 (20.02, 0.07) 0.30 1 0.00 (20.04, 0.05) 0.85 0
African Americans 0.03 (20.22, 0.27) 0.84 43 0.01 (20.23, 0.26) 0.92 42
Asians 0.07 (20.12, 0.26) 0.47 0 0.08 (20.11, 0.28) 0.39 0
All 0.03 (20.02, 0.07) 0.24 3 0.01 (20.03, 0.05) 0.69 0

aData areb coefficients (95% CI) per minor allele of rs9939609 or a proxy (r2 . 0.8) for each trait. Analyses from individual studies were conducted separately in men
and women, and then combined by meta-analysis of up to 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians).
bModel 1, adjusted for age, physical activity (if available), region (if available) and eigenvectors (GWAS data only).
cModel 2, further adjusted for BMI.
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Figure 1. Forest plot of the association between FTO-rs9939609 SNP or a proxy and protein intake in a fixed effects meta-analysis of 175 142 adults. The studies are
shown in men (_M), women (_F) or mixed (_All), cases (_case) and controls (_control) for case–control studies, and Whites (_W) and African Americans (_AA) for
studies with multiple ethnicities separately, sorted by sample size (smallest to largest). Theb represents the difference in protein intake (% of energy intake) per minor
allele of SNP rs9939609 or a proxy (r2 . 0.8), adjusted for age, physical activity (if available), region (if available) and eigenvectors (GWAS data only).
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(I2 ¼ 29%). The meta-regression indicated heterogeneity by
geographic region (North America versus Europe, P ¼ 0.03)
(Supplementary Material, Table S2). We observed no significant
association between the FTO variant and dietary fat intake
(effect per allele ¼ 0.03 [20.02, 0.07] %, P ¼ 0.24) (Table 1;
Supplementary Material, Fig. S5), and heterogeneity among
studies was low (I2 ¼ 3%). The results in stratified
meta-analyses for the association between FTO SNP and carbo-
hydrate and fat intakes are shown in Supplementary Material,
Figure S6 and S7.

In addition, the minor allele of the FTO variant was associated
with higher absolute intake (g/day) of protein (P ¼ 7.9 × 10212)
and lower absolute intake (g/day) of carbohydrate (P ¼ 0.003)
(Supplementary Material, Table S3). We also performed
meta-analyses for the FTO SNP and dietary intakes using
random effects methods, resulting in similar findings (Supple-
mentary Material, Table S4).

Comparison of associations of FTO and MC4R variants with
dietary intake

To show some specificity of the FTO variant, we compared the
FTO with the MC4R, the second strongest obesity gene identified
so far, in associations with dietary intakes. As expected, the
MC4R genetic variant (SNP rs17782313 or a proxy) was signifi-
cantly associated with BMI (P ¼ 5.4 × 10276); however, there
is no significant association between the MC4R variant and
total energy, protein, carbohydrate or fat intake (Supplementary
Material, Table S5). As the effect size of the FTO variant on BMI
is larger than that of the MC4R variant on BMI (0.33 versus
0.23 kg/m2), we calculated the adjusted effect sizes of the FTO
variant on dietary intake after accounting for the strength of

the effect of the MC4R variant on BMI. There is a significant dif-
ference in effect sizes of the FTO variant (adjusted) and the
MC4R variant on dietary protein intake (P ¼ 0.008) (Supple-
mentary Material, Table S5).

Dietary intake and BMI

There was no significant difference in BMI between participants
in the high- and low-energy intake groups (b ¼ 20.07 [20.17,
0.04] kg/m2, P ¼ 0.21) (Supplementary Material, Table S6).
Participants in the high-protein (0.66 kg/m2, P ¼ 2.6 × 10229)
and high-fat intake groups (0.20 kg/m2, P ¼ 0.002) had a
higher mean BMI compared with those in the low intake
groups, whereas the mean BMI was lower (0.31 kg/m2, 4.3 ×
1028) among participants in the high carbohydrate intake
group compared with those in the low intake group (Supplemen-
tary Material, Table S6). Most of these differences seem to be
driven by those observed in Whites, whereas they are less
apparent or absent in African Americans and Asians. We
observed moderate-to-high heterogeneity for these comparisons
(I2 ¼ 40–90%).

Interaction between FTO variant and dietary intake on BMI

There was no significant interaction between the FTO variant
and total energy intake on BMI (effect for interaction ¼ 0.03
[20.02, 0.09], Pinteraction ¼ 0.25), and heterogeneity among
studies was low (I2 ¼ 14%) (Table 2 and Fig. 2). The
meta-regression identified ethnicity (White versus African
Americans, P ¼ 0.01) and sample size (P ¼ 0.02) as sources
of heterogeneity (Supplementary Material, Table S7). When
we stratified our meta-analysis by ethnicity, we observed a

Table 2. Interaction between FTO-rs9939609 SNP or a proxy and dietary intakes on BMI in a fixed effects meta-analysis of up to 177 330 adultsa

Main effect of SNP in high intake groupb Main effect of SNP in low intake groupb Interaction effect
b (95% CI) P I2 (%) b (95% CI) P I2 (%) b (95% CI) P I2 (%)

Total energy (kcal/day)
Whites 0.36 (0.32, 0.40) 1.4 × 10261 32 0.31 (0.26, 0.35) 3.9 × 10243 28 0.04 (20.01, 0.10) 0.13 5
African Americans 20.23 (20.52, 0.06) 0.12 36 0.20 (20.08, 0.48) 0.16 0 20.41 (20.81, 20.01) 0.04 7
Asians 0.26 (0.11, 0.41) 0.001 48 0.20 (0.04, 0.35) 0.01 37 0.00 (20.21, 0.21) 0.97 34
All 0.34 (0.30, 0.38) 7.1 × 10261 42 0.30 (0.26, 0.34) 1.6 × 10244 26 0.03 (20.02, 0.09) 0.25 14

Protein (% of energy)
Whites 0.32 (0.28, 0.37) 5.8 × 10248 32 0.33 (0.29, 0.37) 4.8 × 10252 33 0.00 (20.06, 0.06) 0.90 0
African Americans 20.07 (20.36, 0.21) 0.62 0 0.07 (20.21, 0.35) 0.61 23 20.11 (20.51, 0.29) 0.58 0
Asians 0.37 (0.21, 0.53) 8.6 × 1026 26 0.15 (20.02, 0.31) 0.08 23 0.22 (20.01, 0.44) 0.06 0
All 0.32 (0.28, 0.36) 1.2 × 10250 32 0.31 (0.27, 0.35) 3.0 × 10251 33 0.01 (20.05, 0.06) 0.80 0

Carbohydrate (% of energy)
Whites 0.34 (0.29, 0.38) 2.2 × 10254 37 0.33 (0.28, 0.37) 2.0 × 10249 21 0.00 (20.05, 0.06) 0.94 0
African Americans 0.10 (20.18, 0.38) 0.48 22 20.11 (20.40, 0.18) 0.45 0 0.24 (20.16, 0.64) 0.25 1
Asians 0.19 (0.03, 0.35) 0.02 40 0.36 (0.20, 0.51) 7.5 × 1026 33 20.19 (20.42, 0.04) 0.10 0
All 0.32 (0.28, 0.36) 1.4 × 10254 38 0.32 (0.28, 0.36) 5.6 × 10252 26 0.00 (20.06, 0.05) 0.87 0

Fat (% of energy)
Whites 0.34 (0.30, 0.38) 6.6 × 10253 26 0.32 (0.28, 0.36) 7.0 × 10250 38 0.03 (20.03, 0.09) 0.37 0
African Americans 0.02 (20.27, 0.31) 0.90 2 0.00 (20.28, 0.27) 0.98 46 0.02 (20.37, 0.42) 0.91 49
Asians 0.43 (0.27, 0.58) 7.4 × 1028 13 0.11 (20.05, 0.28) 0.18 31 0.30 (0.07, 0.52) 0.01 0
All 0.34 (0.30, 0.38) 5.7 × 10258 25 0.30 (0.26, 0.34) 3.8 × 10248 41 0.04 (20.01, 0.10) 0.13 7

aData are b (95% CI) per minor allele of rs9939609 or a proxy (r2 . 0.8), adjusted for age, physical activity (if available), region (if available) and eigenvectors
(GWAS data only). Analyses from individual studies were conducted separately in men and women, and then combined by meta-analysis of up to 177 330 adults
(154 439 Whites, 5776 African Americans and 17 115 Asians).
bHigh and low intake groups were defined by medians for each dietary intake.
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Figure 2. Forest plot of the interaction between FTO-rs9939609 SNP or a proxy and total energy intake on BMI in a fixed effects meta-analysis of 177 330 adults. The
studies are shown in men (_M), women (_F) or mixed (_All), cases (_case) and controls (_control) for case–control studies, and Whites (_W) and African Americans
(_AA) for studies with multiple ethnicities separately, sorted by sample size (smallest to largest). The b represents the difference in BMI per minor allele of SNP
rs9939609 or a proxy (r2 . 0.8) comparing participants in the high total energy intake to those in the low total energy intake group, adjusted for age, physical activity
(if available), region (if available) and eigenvectors (GWAS data only).
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nominally significant result that showed interaction in opposite
direction in African Americans (effect for interaction ¼
20.41 [20.81, 20.01], Pinteraction ¼ 0.04) (Table 2). We did
not observe significant interactions between the FTO genetic
variant and total energy intake on BMI in the stratified
meta-analyses by other characteristics (Supplementary Mater-
ial, Fig. S8).

Overall, we did not find a significant interaction between the
FTO variant and dietary protein intake (effect for interaction ¼
0.01 [20.05, 0.06], Pinteraction ¼ 0.80), carbohydrate intake
(effect for interaction¼ 0.00 [20.06, 0.05], Pinteraction ¼ 0.87)
or dietary fat intake (effect for interaction ¼ 0.04 [20.01, 0.10],
Pinteraction ¼ 0.13) on BMI (Table 2; Supplementary Material,
Figs S9, S10 and S11). The heterogeneity among studies was
low (I2 ¼ 0, 0 and 7%, respectively).

We observed a significant interaction between the FTO
genetic variant and fat intake on BMI in Asians (effect for
interaction¼ 0.30 [0.07, 0.52], Pinteraction ¼ 0.01), but not in
Whites (Pinteraction¼ 0.37) or African Americans (Pinteraction ¼
0.91) (Table 2). When stratified by other characteristics, we
observed a significant interaction between the FTO variant and
fat intake on BMI in studies from Asia (identical result in
Asians since participants of these studies are all Asians) and
in studies with low fat intake (effect for interaction ¼ 0.10
[0.01, 0.18], P for interaction ¼ 0.03) (Supplementary Material,
Fig. S12). We also conducted the stratified analyses by excluding
Asian studies (Supplementary Material, Fig. S13). Most results
were similar except that interaction between the FTO variant
and fat intake on BMI in studies with low fat intake did not
remain significant (effect for interaction ¼ 0.05 [20.04, 0.14],
P for interaction ¼ 0.25). No significant interactions between
the FTO genetic variant and dietary protein or fat intake on BMI
were observed in the stratified meta-analyses (Supplementary
Material, Fig. S14 and S15).

Since there was little or no heterogeneity in interactions
between FTO genetic variants and dietary intake on BMI
among studies, the results were similar when we performed
meta-analyses using random effects method (Supplementary
Material, Table S8).

DISCUSSION

By combining data from 40 studies including up to177 330 indi-
viduals, we confirmed the association between the minor allele
(A-allele) of the FTO-rs9939609 variant (or its proxy) and
higher BMI in Whites and Asians and all participants combined,
but not in African Americans. This is consistent with the previ-
ous results that this index SNP is not associated with adiposity
in African-ancestry populations (31–34), which can likely be
explained by different LD patterns of FTO between European
and African populations (35). We also found significant associ-
ation with dietary protein intake where the BMI-increasing allele
of FTO variant was associated with higher protein intake. This
association was only slightly attenuated after adjustment for
BMI. Dietary intakes of total energy, protein, carbohydrate
and fat did not influence the association between the FTO
variant and BMI.

We observed that the BMI-increasing allele of FTO was asso-
ciated with lower total energy intake in our study. Moreover, the

observed inverse association was slightly stronger among
studies with a higher mean BMI compared with those with a
lower mean BMI. This might be partly explained by the under-
reporting of total energy intake, as individuals with higher
BMI are more likely to be underreporters. In line with our
results, Sonestedt et al. (12) found an inverse association
between FTO and total energy intake, and interestingly, the fre-
quency of individuals who underreported their dietary energy
intake was higher in the BMI-increasing allele carriers compared
with non-carriers. The difference in energy intake between FTO
genotypes was not significant when misreporters were excluded
(12). Misreporting is a common and inevitable type of measure-
ment error found in any dietary assessment that relies on self-
reports, such as the food frequency questionnaire (FFQ) and
dietary records. Thus, the observed associations between
BMI-associated genetic variants (such as genetic variants in the
FTO and MC4R) and total energy intake could be biased among
studies using self-reported data on dietary intakes if this measure-
ment error (underreporting in obese participants) is not taken into
account. Unfortunately, we were unable to do further analysis by
excluding underreporters in the current study because detailed
data on energyexpenditure to evaluate the magnitude of misreport-
ing in each study were not available. For macronutrient intakes,
we primarily focused on relative intakes (% of energy) rather
than absolute intakes, since the results might be less influenced
by misreporting (36). Moreover, it has been suggested that under-
reporting was particularly frequent with fat- and/or carbohydrate-
rich foods (37).We observeda strongassociationbetween the FTO
genetic variant and dietary protein intake, and the association was
consistent across subgroups stratified by study characteristics.
Moreover, we found that another obesity-related genetic variant,
MC4R-rs17782313, was not associated with dietary intake and
there was a significant difference in effect sizes of the FTO
variant and the MC4R variant on dietary protein intake, after
adjusting for the strengths of the effects of these two genetic var-
iants on BMI. These results clearly suggest the specificity of the
FTO genetic variant in association with dietary protein intake,
and this observed association is less likely due to measurement
errors in reporting of dietary intakes which are related to obesity.

Previous animal studies have supported a role of the FTO in
energy homeostasis, but it remains unclear whether the FTO pri-
marily affects energy expenditure or food intake (38,39). Emer-
ging evidence from animal and in vitro studies suggests a role of
the FTO in protein metabolism and cellular amino acids sensing
(40–42). The sensing of amino acid levels in the brain has crit-
ical impacts on hypothalamic mTOR pathways regulating food
intake (43). Moreover, a very recent study suggested a link
between the FTO, ghrelin (a key mediator of ingestive behavior),
and neural responses to food cues (45). Taken together, it is pos-
sible that the FTO might be involved in the central sensing of
dietary macronutrients composition (41) and our data from
current large population studies suggest a preference for protein-
rich diets by the FTO BMI-increasing allele carriers.

We found no evidence for dietary total energy or macronutrient
intake influencing the association between the FTO variant and
BMI. Although sample size, age, gender, BMI, dietary intake,
ethnicity, geographic region, study design and measurement of
dietary intake varied among the participating studies, our
meta-regression indicated that these study-specific characteristics
were less likely to have affected the interaction effects. There was

6968 Human Molecular Genetics, 2014, Vol. 23, No. 25

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddu411/-/DC1


very little or no between-study heterogeneity in the meta-analyses
of interactioneffects. It isunlikely that the lackof significant inter-
action was due to low statistical power because we have adequate
sample size to detect interactions of small magnitude (.80%
power to detect gene–diet interaction effect size of 0.08 kg/m2).
Indeed, the observed interaction effects were close to null, and
therefore, it is unlikely that even larger sample sizes would
reveal significant interactions. Nevertheless, it is possible that
the estimate of the interaction effect may be an underestimation
of the true effect because of measurement error in dietary intake
and heterogeneous measurement methods across studies. A previ-
ous methodology paper suggested that gene–environment inter-
action studies would benefit more from better measurement of
environmental factors than from increasing sample size (30).
Studies with repeated and more precise measurement of dietary
intake are needed in future gene–diet interaction analyses. In add-
ition, our previously reported approach using a genetic risk score
based on multiple genetic variants rather than analysis of individ-
ual variants might be preferable in gene–environment interaction
studies (25,26,44).

Interestingly, we observed a nominally significant interaction
between dietary fat intake and FTO genetic variant on BMI in
Asians. Besides genetic differences, we may speculate that the
observed interaction specific to Asians might be related to the
lower dietary fat intake in Asian populations compared with
others from North America or Europe, as we also found a
similar but weaker interaction in studies with a low dietary fat
intake. As protein intake is relatively stable across different
populations, lower fat as percentage of energy intake likely
reflects higher carbohydrate intake in Asian populations. Thus,
either dietary fat or carbohydrate may be involved. However,
it was also difficult to tease out whether genetic differences, geo-
graphic differences in dietary intakes or both are responsible for
the observations. Asians included in our analyses were all from
Asia, and we did not have data for Asians living in North
America or Europe. Nevertheless, considering the compelling
interaction effect size of 0.30 kg/m2 observed in Asians (ap-
proximately equivalents to the main effect of the FTO variant
on BMI), it would be worth confirming this result in future
studies with larger samples.

Major strengths of ourstudy include the designedmeta-analysis
based on de novo analysis of both published and unpublished data,
analytical consistency across studies, and a large sample size of
.177 000 individuals. Together with our previous interaction
analysis between physical activity and FTO genetic variants,
(24) we have demonstrated that large-scale international colla-
borations are feasible and useful for confirming or refuting mod-
erate interactions between genes and diet/lifestyle.

Several limitations need to be acknowledged. The present
meta-analysis was based on cross-sectional data, which limits
the interpretation of observations. Although genetic variants
do not change throughout the life course, dietary intake may
change and obesity status and other environmental factors may
influence individuals’ dietary intake. As measurement errors in
self-reported dietary intake data are inevitable and accurate
dietary assessment remains a major challenge in the gene–diet
interaction analyses, repeated measures using longitudinally
collected data might be helpful in reducing measurement
errors and improving the study power. Furthermore, randomized
dietary intervention trials may provide reliable evidence because

the study conditions, especially the intakes of specific foods and
nutrients, are prescribed, and the confounding effects are max-
imally reduced. Therefore, a meta-analysis of longitudinal
studies or intervention trials would be required, but few studies
have investigated the long-term interactions between FTO var-
iants and dietary intake (46–48). In addition, we did not
include data on other adiposity proxies or different types of
fatty acid intake, while several studies reported interactions of
FTO genetic variants with total fat intake on body fat mass,
(49) and with saturated fat intake on BMI and risk of obesity
(15,50,51). Participants included in our analysis were mostly
from studies of Caucasian populations (87%), and more
studies are needed in other ethnic groups such as African Amer-
icans in which different effective FTO variants may be involved.
Finally, our current analysis did not include data from children
and adolescents in which a positive association between FTO
genetic variants and food intake has been reported previously
(7–9,11,13).

In summary, our findings, based on a large-scale meta-analysis,
suggest a strong association between FTO genetic variants and
dietary protein intake, independent of its association with BMI;
this is consistent with emerging insights from functional studies
(41,45). The current study did not provide evidence supporting
an interaction between total energy or macronutrient intake and
the FTO genetic variant in relation to adiposity. Due to the inevit-
able measurement errors in self-reported data on dietary intakes,
our results should be interpreted with caution. Future studies
with repeated and precise measurement of dietary intakes are war-
ranted to investigate interrelationships between the FTO genetic
variants, dietary intakes and adiposity.

MATERIALS AND METHODS

Study design

Considering the limitations of a literature-based meta-analysis,
such as publication bias and inconsistency in statistical
methods, exposures and outcomes across individual studies,
(52) we designed a meta-analysis based on de novo analyses of
data conducted according to a standardized analytical plan (see
details in Statistical analysis). We identified 45 eligible studies
with data on FTO genotype and dietary intake through
PubMed and through the network of collaborators who have
joined our previous meta-analysis on the interaction between
the FTO variant and physical activity in relation to BMI and
obesity (24). A standardized analytical plan was sent to 40
studies that agreed to participate in the meta-analysis. Analyses
according to our standardized plan were performed by each
study locally, and detailed summary statistics were subsequently
collected using our standardized data collection form.

Study participants

Our meta-analysis included cross-sectional data on 177 330
adults (62 275 men and 115 055 women; 154 439 Whites, 5776
African Americans and 17 115 Asians) from 40 studies (21
from Europe, 10 from North America and 9 from Asia) (Supple-
mentary Material, Table S9).
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Measurement of BMI and dietary intake

BMI was calculated as body weight (kg)/height2 (m2). Body
weight and height were measured in 37 studies, and three
studies used validated, self-reported data (Supplementary
Material,TableS10).Dietary intakes (total energy,protein, carbo-
hydrate and fat) were assessed using an FFQ (33 studies), dietary
record (thee studies), both FFQ and dietary record (two studies) or
diet recall over a 1-month period (two studies) (Supplementary
Material, Table S10). All the studies used data on height and
weight measured within 1 year of dietary intake assessment.

Genotyping

The FTO-rs9939609 SNP or a proxy (linkage disequilibrium
[LD] r2 . 0.8 in the corresponding ethnic group) and the
MC4R-rs17782313 SNP or a proxy were genotyped using
direct genotyping methods or Affymetrix and Illumina genome-
wide genotyping arrays or imputed using MACH (http://www.
sph.umich.edu/csg/abecasis/MACH/) or IMPUTE software
(https://mathgen.stats.ox.ac.uk/impute/impute.html) with a high
imputation quality (r2 . 0.99) (Supplementary Material, Table
S11 and S12). The studies provided summary statistics based on
data that met their quality control criteria for genotyping call
rate, concordance in duplicate samples and Hardy–Weinberg
equilibrium P-value.

Statistical analysis

Each participating study analyzed the data according to our stan-
dardized plan described below. We used linear regression model
to test (i) the difference in BMI between the low and high dietary
intake groups (dichotomized at median of respective dietary
intake variable) and (ii) the associations of the FTO variant
with BMI, total energy intake and absolute intakes (g/day) and
relative intakes (expressed as the percentage of total energy) of
fat, protein and carbohydrate, adjusted for age, geographic
regions (if available), physical activity (if available) and eigen-
vectors (GWAS data only). We additionally adjusted for BMI
when evaluating the association between the FTO variant and
dietary intake. The association between the FTO variant and
BMI was also tested stratified by low and high dietary intake
groups. Interactions between the FTO variant and dietary
intake on BMI were tested by including the respective inter-
action terms in the models (e.g. interaction term ¼ rs9939609
SNP × total energy intake [dichotomized at the medians]). All
the analyses were conducted in men and women separately,
except for two family studies that combined the data from men
and women. In studies with multiple ethnicities, each ethnicity
was analyzed separately. In case–control studies, cases and con-
trols were analyzed separately.

We pooled b-coefficients and standard errors from individual
studies using Mantel and Haenszel fixed effects as well as the
DerSimonian and Laird random effects meta-analysis methods
in Stata, version 12 (StataCorp LP, College Station, TX,
USA). Between-study heterogeneity was tested by Cochran’s
Q statistic and quantified by the I2 value. Low heterogeneity
was defined as an I2 value of 0–25%, moderate heterogeneity
as an I2 of 25–75% and high heterogeneity as an I2 of
75%–100%. P for heterogeneity was derived from a x2 test.

We also performed meta-regression analyses to explore
sources of heterogeneity in our meta-analyses. Meta-regression
included the following study-specific variables as covariates:
study sample size, mean age (or age group ,60 versus ≥60
years), mean BMI, median of dietary intake, gender, ethnicity
(White, African American and Asian), geographic region
(North America, Europe and Asia), study design (population- or
family-based versus. case–control), dietary intake measurement
method (FFQ versus. dietary record or other) and adjustment
for physical activity (yes versus no). Stratified meta-analyses
were performed in subgroups according to these covariates.
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