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ABSTRACT
We identify a large sample of isolated bright galaxies and their fainter satellites in the 2dF

Galaxy Redshift Survey (2dFGRS). We analyse the dynamics of ensembles of these galaxies

selected according to luminosity and morphological type by stacking the positions of their satel-

lites and estimating the velocity dispersion of the combined set. We test our methodology using

realistic mock catalogues constructed from cosmological simulations. The method returns an

unbiased estimate of the velocity dispersion provided that the isolation criterion is strict enough

to avoid contamination and that the scatter in halo mass at fixed primary luminosity is small.

Using a maximum likelihood estimator that accounts for interlopers, we determine the satellite

velocity dispersion within a projected radius of 175 h−1 kpc. The dispersion increases with the

luminosity of the primary and is larger for elliptical galaxies than for spiral galaxies of similar

bJ luminosity. Calibrating the mass–velocity dispersion relation using our mock catalogues,

we find a dynamical mass within 175 h−1 kpc of M175/h−1 M� � 4.0+2.3
−1.5 × 1012 (LbJ

/L∗) for

elliptical galaxies and M175/h−1 M� � 6.3+6.3
−3.1 × 1011 (LbJ

/L∗)1.6 for spiral galaxies. Finally,

we compare our results with recent studies and investigate their limitations using our mock

catalogues.

Key words: surveys – galaxies: fundamental parameters – galaxies: haloes – galaxies:

kinematics and dynamics – galaxies: spiral.

1 I N T RO D U C T I O N

The view that galaxies are surrounded by large dark matter haloes

dates back more than 30 yr to the pioneering study of the rotation

curve of M32 by Rubin & Ford (1970). Extended galactic haloes

are, in fact, a generic feature of the cold dark matter (CDM) model

of galaxy formation (Blumenthal et al. 1984; Frenk et al. 1985), but

this fundamental theoretical prediction has limited observational

support. Zaritsky et al. (1993) attempted to measure the mass and

extent of dark matter haloes by analysing the dynamics of satel-

lite galaxies found around ‘isolated’ galaxies. Since galaxies gen-

erally have only a few detectable satellites, they used a method that

consists of stacking satellites in a sample of primaries of similar

luminosity. In spite of the small size of their relatively inhomoge-

neous sample, Zaritsky et al. (1993) were able to detect massive

haloes around isolated spiral galaxies extending to many optical

radii. Having nearly doubled their satellite sample to 115 members,

Zaritsky et al. (1997b) confirmed their earlier claims including a

puzzling lack of correlation between the velocity dispersion of the

(stacked) satellite system and the luminosity of the primary.

�E-mail: iprn@roe.ac.uk

†The Scottish Universities Physics Alliance.

More recently, McKay et al. (2002) performed a similar analy-

sis on data from the Sloan Digital Sky Survey (SDSS; York et al.

2000). They compared mass estimates derived from satellite dynam-

ics to those derived from weak lensing analyses of the same data

(McKay et al. 2001). With a much larger sample than that of Zaritsky

et al. (1997a,b), they were able to detect a correlation between

satellite velocity dispersion and primary luminosity. This trend was

confirmed by Prada et al. (2003) who also used SDSS data. Al-

though they are both based on SDSS data, these two studies find

results that, while consistent at first sight, are, in fact, somewhat

contradictory. For example, although Prada et al. (2003) found a

strong dependence of satellite velocity dispersion on galactrocen-

tric distance, their measured velocity dispersion within a radius of

125 h−1 kpc is similar to the values obtained by McKay et al. (2002)

at a radius of 275 h−1 kpc. Discrepant results were also found by

Brainerd & Specian (2003) who applied the same technique to the

early, ‘100k’ data release of the 2dF Galaxy Redshift Survey (2dF-

GRS; Colless et al. 2001) and derived satellite velocity dispersions

which are in qualitative and quantitative disagreement with those

of Zaritsky et al. (1997a,b), McKay et al. (2002) and Prada et al.

(2003). A more extensive analysis of the complete 2dFGRS (Colless

et al. 2003) by Brainerd (2005) also led to disagreements with the

results of earlier work. This somewhat confused picture of satel-

lite dynamics is due in large part to different choices of primary
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galaxy samples and to differences in the modelling and analysis

methods.

This paper has multiple aims. First, we carry out a new analy-

sis of the dynamics of satellites around bright galaxies of different

morphological types selected from the full 2dFGRS. The goal is

to constrain the velocity dispersion and mass of their dark matter

haloes and we therefore select a sample of isolated galaxies chosen

according to strict criteria. Secondly, we investigate the reliabil-

ity and accuracy of commonly used dynamical analysis methods.

For this, we make extensive use of realistic mock catalogues con-

structed from large cosmological N-body simulations and different

semi-analytic galaxy formation models (Cole et al. 2000; Springel

et al. 2001). A similar approach, but in a different context, was

adopted by van den Bosch et al. (2004). Finally, we attempt to un-

derstand the root cause of the differences found in previous work,

again relying on the use of realistic mock catalogues.

The paper is organized as follows. In Section 2, we briefly present

some of the characteristics of the 2dFGRS data and simulations used

for our analysis. In Section 3, we describe the satellite sample selec-

tion scheme, together with its robustness to changes in the selection

parameters. The analysis of the ‘stacked’ satellite velocity distribu-

tion is carried in Section 4 while, in Section 5, we present velocity

dispersion estimates for our mock catalogues and for 2dFGRS pri-

maries split according to luminosity and morphological type. Using

a model for the relationship between dark halo mass and satellite

velocity dispersion, we give, in Section 6, an estimate of the mass of

the haloes around 2dFGRS galaxies. In Section 7, we compare our

results with those of previous studies, and we conclude in Section 8.

2 T H E DATA

2.1 The 2dFGRS data

Detailed descriptions of the construction of the 2dFGRS and its

properties are given in Colless et al. (2001, 2003). In summary,

galaxies are selected down to a magnitude limit of bJ ≈ 19.45 from

the full 2dFGRS catalogue, with ∼225 000 galaxies having a ‘good

quality’ redshift measurement. We restrict our analysis to the two

large contiguous volumes of the survey, one centred on the South-

ern Galactic Pole (SGP) and the other close to the direction of the

Northern Galactic Pole (NGP).

Three limitations of the 2dFGRS catalogue are relevant for this

work. First, the 2dFGRS source catalogue, based on the Automated

Plate Measuring machine (APM) galaxy catalogue, is not complete.

By comparing the 2dFGRS with the SDSS, Norberg et al. (2002)

estimated the completeness of the 2dFGRS to be ∼ 91 ± 2 per

cent, and ascribed the incompleteness primarily to misclassification

of APM images. Misclassification of close galaxy pairs will cause

some true pairs to be missed from our sample of primaries. The 2dF-

GRS suffers from an additional form of close pair incompleteness

due to ‘fibre collisions’ during the spectroscopic observations. The

observing strategy employed in the 2dFGRS, consisting of a set of

overlapping tiles which are successively observed, was designed to

minimize the number of ‘fibre collisions’, and the remaining incom-

pleteness is very precisely quantified (Colless et al. 2001). Finally,

the rms accuracy of redshift measurements for a typical galaxy is

85 km s−1 and tends to be slightly larger for the faintest galaxies and

slightly smaller for the brighter ones (Colless et al. 2001).

Since we are primarily interested in the velocity dispersion at

large radius, the close pair incompleteness in the catalogue does

not have an important effect on our conclusions. Nevertheless, it

is important to model carefully both the incompleteness and the

velocity errors and to include these in the construction of our mock

galaxy catalogues.

Finally, we make use of the ‘eyeball’ morphological classification

carried out by Loveday (1996) based on the APM images. This is

available for 80 per cent of the central galaxies in our sample. We

prefer this classification to the more objective spectral classification

of Madgwick et al. (2002) because aperture effects are important for

our sample of relatively nearby galaxies. However, we have repeated

the analysis of Section 5.2 using subsamples defined by their spectral

classification and find no difference in our results within the errors.

2.2 The ΛCDM simulation

We use mock 2dFGRS catalogues constructed from cosmological

simulations in order to assess the extent to which the various limi-

tations of the data affect our results. In particular, we use the mocks

to investigate possible systematic effects arising from our method

for selecting satellites, as well as from our procedure of stacking

satellites together. The mock catalogues allow us also to investigate

the effects of redshift space distortions and redshift measurement

errors. In the simulations we, of course, know not only the red-

shifts of galaxies but also their distances. In what follows, we use

the term ‘real space’ to refer to measurements that make use of the

true three-dimensional (3D) position and the term ‘redshift space’

to refer to measurements that make use of pseudo 3D positions, i.e.

those for which the distance to the galaxy is given by the sum of

the pure Hubble flow distance and the peculiar velocity along the

line-of-sight, in units of h−1 Mpc.

To construct mock 2dFGRS catalogues, we use a high-resolution

N-body simulation of a flat, �-dominated CDM universe with the

following parameters: matter density, �m = 0.3; cosmological con-

stant term, �� = 0.7; Hubble constant, H0 = 70 km s−1 Mpc−1;

index of primordial fluctuation power spectrum, n = 1; and present-

day fluctuation amplitude σ 8 = 0.9. The simulation followed 4003

particles in a box of side 110 h−1 Mpc (see Gao et al. 2004, for a full

description of the simulation). The simulation was populated with

galaxies by applying the ‘Munich’ semi-analytic model of galaxy

formation to the merger trees of each halo (Springel et al. 2001). In

this model, galaxies reside in resolved haloes and their subhaloes.

When a subhalo is no longer resolved, the galaxy is placed on the

most bound particle of the subhalo when it was last resolved and an

analytic dynamical friction calculation is used to determine when

a satellite merges with the central galaxy. The free parameters of

the model are tuned to match the Tully–Fisher relation, the B-band

cluster galaxy luminosity function and the overall two-point corre-

lation function (Springel et al. 2001). An interesting feature of this

semi-analytic galaxy formation model is the generation of a velocity

bias between galaxies and dark matter, as function of halo radius.

In order to obtain as close a match as possible between the 2dF-

GRS selection function and that in the mocks, we rescale the lu-

minosities of the model galaxies preserving the luminosity ranking

so that their luminosity function exactly matches that of the 2dF-

GRS (Norberg et al. 2002). The required rescaling can be as large

as a magnitude for some of the mock galaxies, but the differential

rescaling for galaxies brighter than MbJ
− 5 log10 h < −18, which

make up the bulk of our sample of primaries, is small. Thus, for

these brighter galaxies, the magnitude differences are quite accu-

rately preserved. We then extract magnitude-limited catalogues of

galaxies to the same magnitude limit and with the same geometry

as the real 2dFGRS, as described by Norberg et al. (2002). This re-

quires using three periodic replications of the simulation cube. (We

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 646–662



648 P. Norberg, C. S. Frenk and S. Cole

have checked that removing any duplicated systems does not affect

any or our results.)

The last step is to create ‘sampled’ mocks by applying the

2dFGRS masks (including the redshift incompleteness mask) and

the 2dFGRS photometric errors, as explained in greater detail in

Norberg et al. (2002). Finally, we add to each observed velocity an

‘observational error’ randomly sampled from a Gaussian of width

80 km s−1. This value is a compromise between the Gaussian errors

measured from repeat observations for our sample of 2dFGRS pri-

maries (σ � 70 ± 7 km s−1) and satellites (σ � 86 ± 5 km s−1).

3 S AT E L L I T E S A M P L E

We begin this section by explaining the method used to define the

satellite sample, which is applied to both the 2dFGRS data and

the mock catalogues. We then briefly consider the robustness of the

satellite properties to variations of the selection parameters, an issue

that we address further in the appendices. Finally, we present some

general properties of the satellite samples used in this paper.

3.1 Satellites around isolated primaries

Since the main purpose of our analysis is to constrain the mass

of the galactic halo using the dynamics of satellites, we require a

sample of isolated primaries. To construct it, we begin by excluding

regions in the 2dFGRS that could be contaminated by large clusters.

Specifically, we exclude regions lying within three projected Abell

radii (3 × 1.5 h−1 kpc) and 3000 km s−1 of the centre of clusters in

the catalogue of Dalton et al. (1997). Next, we select a sample of

bright, isolated primaries by requiring that they satisfy the following

criteria:

(i) the local 2dFGRS magnitude limit should be at least δms =
2.2 fainter than the primary;

(ii) all the neighbouring galaxies within �V = |Vprim − Vgal|
� 2400 km s−1 and within a projected radius δrs � 400 h−1 kpc

should be faint enough to satisfy bgal
J − bprim

J � δms = 2.2;

(iii) all neighbouring galaxies within �V = |Vprim − Vgal|
� 2400 km s−1 and within a projected radius δrb � 1000 h−1 kpc

should satisfy bgal
J − bprim

J � δmb = 0.8,

where the projected radius between two galaxies, at positions r1 and

r2, is defined by

δd = 2
|r 1 + r 2|

2

√
1 − cos(α)

1 + cos(α)
with cos(α) = r 1 · r 2

|r 1| |r 2| . (1)

All galaxies that lie within a projected distance �400 h−1 kpc

of a primary and have relative velocity �Vs = |Vprim − Vgal| �
1200 km s−1 are considered as potential satellites. The isolation cri-

terion is presented in schematic form in Fig. 1.

Our adopted value of δms corresponds to a factor of 8 in luminosity

and a similar factor in mass. The primary motivation behind this

choice is to ensure that the satellites are small enough to produce

only minor perturbations in the gravitational potential of the system.

As shown in Section 5, our galaxy mock catalogues indicate that our

adopted value is adequate. A more detailed discussion of the precise

choice of δms may be found in Appendix A.

Since not all galaxies in the 2dFGRS have a measured redshift, the

primary isolation criterion could be violated by galaxies that lack a

redshift measurement. We can guard against this by eliminating all

primaries that could have their isolation criterion violated by such

galaxies. A less restrictive condition is to accept only those for which
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Figure 1. A schematic of the isolation criterion. The figure on the left shows

the projection on the sky of the cylinder that defines the primary isolation

criterion. The figure on the right shows the configuration as seen along the

redshift axis. The central point in each panel corresponds to a primary; only

galaxies located in the shaded area are considered as potential satellites.

it could be violated by at most Nviol galaxies. A conservative esti-

mate of Nviol follows from taking all galaxies without redshift to be

at the redshift of the primary and checking whether this would cause

the primary to violate the isolation criterion. In what follows, we

adopt a value of Nviol = 4. We have checked that none of our results

are influenced by the precise choice of Nviol used. The only effect of

adopting Nviol = 4, rather than Nviol = 0, is to increase the number

of satellites and hence the signal-to-noise ratio of our measure-

ments. With this choice of Nviol, the satellite sample is ∼55 per cent

larger than for Nviol = 0 (∼45 per cent for spirals and ∼65 per cent

larger for ellipticals). The largest increase occurs for the faintest

absolute magnitude bins for which the number of satellites nearly

doubles.

With this algorithm and using the values of the selection parame-

ters specified above, we identify 571 primary galaxies surrounded by

1003 satellites. The algorithm also detects over 1500 isolated galax-

ies without spectroscopically confirmed satellites brighter than the

local magnitude limit, but these have over 2200 neighbours without

measured redshift which could in principle be satellites. Some of

these statistics are summarized in Table 1.

Applying the same selection criterion to the mock catalogues, we

identify, in real space, 750 primary galaxies surrounded by 1241

satellites. In real space, the isolation criterion is slightly different:

instead of two cylinders of length�V and�Vs, we use two spheres of

radius δrb and δrs, respectively. The requirements on the magnitude

differences remain the same. All galaxies within δrs of the primary

are considered as satellites. In redshift space, including velocity

errors, we find 736 primary galaxies surrounded by 1226 satellites.

As for the real data, the algorithm detects a further 1500 primaries

without any confirmed satellite, but with 1700 possible candidates

without measured redshifts.

3.2 Robustness of the satellite detection algorithm

It is important to test the dependency of the satellite detection al-

gorithm on the values of the selection parameters. We find that the

size of the satellite sample and its properties are not very sensitive to

the specific values of the inner and outer projected radii, so long as

the exclusion criterion does not become too restrictive. The adopted

values for these parameters represent a compromise between having

a dynamically isolated system and a large sample of satellites.

On the other hand, the inner and outer cylinder depths have a

non-trivial influence on the satellite sample. First, if the ‘velocity

difference’ between �Vs and �V is less than �Vs,
1 then there is the

potential risk of finding a single satellite galaxy associated with two

1 i.e. |�V − �Vs| � �Vs
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Table 1. Properties of the combined NGP and SGP satellite samples around bright galaxies, for different values of Nviol and for different primary

morphological type. The numbers quoted in brackets are after small groups are excluded from the full satellite sample. rp is in h−1 kpc.

Sample Primary type Nviol Nprim Nsat Nsat(rint < r < rext)

0 < rp < 175 40 < rp < 175

2dFGRS Any 0 362 (357) 642 (588) 273 241

2dFGRS Any 4 571 (564) 1003 (918) 434 383

2dFGRS Spiral-irregular 0 203 (203) 322 (322) 141 120

2dFGRS Spiral-irregular 4 311 (311) 465 (465) 210 181

2dFGRS Elliptical-S0 0 85 ( 81) 203 (161) 75 69

2dFGRS Elliptical-S0 4 141 (135) 338 (265) 118 111

Mock Any 0 387 (387) 648 (648) 384 231

Mock Any 4 736 (736) 1226 (1226) 723 442

different primaries. In such a case, neither primary can be considered

isolated. Therefore, in order to avoid this problem and obtain a self-

consistent isolation criterion, we always impose |�V − �Vs| �
�Vs. We note that none of the previous work in this subject has

included such a constraint. It is not clear if their samples had any

shared satellites and if they did how they were treated, but we note

that for both the 2dFGRS data and our mock galaxy catalogues, this

subtle problem does occur.

Secondly, if the outer depth of the cylinder, i.e. �V, is very large,

the isolation criterion is more stringent, and our catalogue will con-

tain fewer primaries. Conversely if �V is too small the isolation

criterion becomes too relaxed and we risk including non-isolated

systems in our sample.

Finally, if �Vs increases the contamination of the satellite sam-

ple by interlopers2 is increased. For instance, when increasing �Vs

from 600 to 1800 km s−1, we see a flattening of the velocity distri-

bution, which we interpret as being due to interlopers in our satellite

catalogue. Conversely too small a value of �Vs would mean that the

full width of the velocity distribution that we are trying to charac-

terize would not be sampled. It is essential that �Vs be greater than

3 to 4σ , where σ is rms width of the underlying satellite velocity

distribution.

Therefore, the choice of �V = 2400 km s−1 and �Vs =
1200 km s−1 is a compromise between reducing the catalogue con-

tamination from interlopers, increasing the size of the satellite cat-

alogue and allowing a robust velocity dispersion estimate to be ob-

tained. We note that the choice of the depth of the cylinders could

be tuned with the size of the system considered to increase the ef-

ficiency with which ‘small’ systems are detected. This is a point to

which we return in Section 5.

In the appendices, we discuss in detail the isolation criteria pro-

posed by McKay et al. (2002), Brainerd & Specian (2003), Prada

et al. (2003), van den Bosch et al. (2004) and Brainerd (2005). The

summary of those findings is given in Section 7.

3.3 General properties of satellite samples

Before performing a detailed dynamical study, we focus briefly on

some general properties of the satellite samples. This leads us to

2 In the mock catalogues we can label any galaxy that is selected as a satellite,

but does not reside within the dark matter halo of the primary galaxy as an

interloper. In the real data this is not possible, but one can still statistically

estimate the fraction of interlopers by their effect on the satellite velocity

distribution (see Section 4.2).

Figure 2. Transverse distributions of satellites: comparison between satel-

lite samples extracted from the 2dFGRS (solid bold line), from the mocks

in redshift space (dashed line) and in real space (dotted line). The vertical

dashed line indicates the limiting projected radii, as used for the ‘rp cut’ (see

text). The error bars plotted assume Poisson statistics.

make some additional cuts to improve the match between observed

and mock samples.

3.3.1 Transverse distributions of satellites

In Fig. 2, we present the distribution of transverse separations for

three satellite samples. The mock satellite samples selected both

in real and redshift space have centrally peaked distributions with

the redshift space selected sample having the flatter distribution at

separations rp > 100 h−1 kpc. In contrast the data has a almost flat

distribution throughout 100 < rp < 350 h−1 kpc, but with a signifi-

cant drop in the central region. The reasons behind this difference

on small scales are multiple: first of all, the 2dFGRS input cata-

logue lacks close galaxy pairs (Norberg et al. 2002) and this deficit

is enhanced by the targets that are rejected due to fibre collisions;

secondly, galaxies are not point source objects, but extended objects

on the sky, which means that the innermost radial bin can suffer from

projection effects which are not taken into account in the mocks (see

van den Bosch, Mo & Norberg 2005, for a more detailed study of

this particular issue). Finally, the large number of satellites in the
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Figure 3. Statistics of primary galaxies and their associated satellites: in all panels we adopt a thick line style for 2dFGRS data and a thin line style for final

mock data. All error bars assume Poisson statistics. The top left-hand panel shows the distribution of absolute magnitudes of satellites (solid line) and primaries

(dot–dashed line). The top right-hand panel shows the distribution of the number of satellites per primary. The bottom left-hand panel shows the distribution

of the magnitude difference between primary and satellite. The bottom right-hand panel shows the fraction of satellites per primary as function of redshift. All

panels are done using the satellite samples obtained by applying the isolation criterion, rejecting small groups and with ‘rp cut’. See text for more details.

innermost radial bin is not a generic model prediction: their number

is sensitive to details of the dynamical friction prescription used in

the semi-analytic model.

We could model this limitation in the mock catalogues by e.g. im-

plementing a supplementary incompleteness around each primary.

However, we preferred not to add an arbitrary incompleteness model

to our analysis, and hence choose to restrict some comparisons to

satellite samples with satellites rp > 40 h−1 kpc. Hereafter we refer

to this as the ‘rp cut’. The vertical line in Fig. 2 indicates this in-

ner limiting projected radius. Beyond this radius, the distributions

of transverse separations for satellites from the mocks (in redshift

space) and from the 2dFGRS are in approximate agreement.

3.3.2 Satellite sample properties

In Fig. 3, we present general properties from the mock and data

satellite samples (with light and bold line-styles, respectively). The

data and the semi-analytic mock satellite samples have very similar

properties: the peak of the satellite and primary absolute magnitude

distributions are roughly the same for both samples, with primaries

being typically one magnitude brighter than M� (top left-hand panel

of Fig. 3); the fraction of satellites per primary does not vary signif-

icantly as function of redshift; the overall distribution of satellite-

primary magnitude differences is similar for both samples, as is the

shape of the distribution of the number of satellites per primary (top

right-hand panel of Fig. 3).

The good match between data and mock satellite samples, shown

in Fig. 3, is achieved after applying both the ‘rp cut’ and an addi-

tional cut to remove small groups from the 2dFGRS sample. We

have removed all primaries which have nine or more satellites. In

the mock catalogue there is only one primary with more than six

satellites, but in the 2dFGRS there are a few primaries, satisfying

the isolation criterion, with nine or more satellites. Most of them,

more than 85 per cent, have primaries that are elliptical galaxies.

Removing these systems reduces our 2dFGRS satellite sample by

85 satellites and reduces the average number of satellites per pri-

mary from ∼1.75 to ∼1.63. The reason for removing them is to

both achieve a better match between the mock and 2dFGRS sam-

ples and to avoid our dynamical estimates being dominated by these

small groups. We could have achieved this second goal by retaining

the groups, but down weighting them by giving equal weight per

primary rather than per satellite. However, we find that within the

errors this does not change our results.

In summary, with these extra restrictions, we end up with mock

satellite samples which are rather similar to the 2dFGRS satellite

samples.

4 M O D E L L I N G T H E S AT E L L I T E
V E L O C I T Y D I S P E R S I O N

In this section, we consider the dynamical properties of the satellite

samples obtained in Section 3. We start by looking at the satellite
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Figure 4. Velocity difference of satellite galaxies and primaries versus trans-

verse separation for the 2dFGRS sample (bottom right-hand panel) and for

the mock samples: real space (top left-hand panel); redshift space with-

out velocity errors (bottom left-hand panel) and with velocity errors (top

right-hand panel). The solid lines show, respectively, the 16th, 50th and 84th

percentiles of the distribution, in bins of 40 h−1 kpc. This plot has not been

corrected for interlopers.

velocity distributions, then address the issue of interlopers and

background subtraction. Once they are well understood, we devise

a method to estimate the satellite velocity dispersion of stacked

primaries.

4.1 Velocity distribution of satellites

Fig. 4 is a scatter plot showing, for the 2dFGRS data and the mock

samples, the satellite galaxy velocity difference (with respect to its

associated primary) versus its projected distance from the primary.

In all panels, the velocity distribution is rather symmetric around

zero for all projected distances. The precise choice of the cylinder

depth (as fixed by �V and �Vs) does not have a strong influence

on the distribution for either data or mock, except that the 16th and

84th percentiles become slightly more noisy as the sample size is

reduced. There is no strong correlation between velocity difference

of the satellite-primary pair and the satellite’s projected distance

from the primary. We note that Fig. 4 has not been corrected for

interlopers, an issue we address in Section 4.2.

In Fig. 5, we consider the velocity distribution of satellites aver-

aged over projected radii. Comparing real and redshift space sam-

ples, we see that the velocity errors and the redshift space distortions

tend to broaden the velocity distribution. Applying the ‘rp cut’ to

the redshift space mock slightly alters the shape of the velocity dis-

tribution (the number of satellites with smaller velocity difference

is reduced more than those with larger velocity difference). The de-

pendence of velocity dispersion on project radius seen in the mock

might not occur in the real Universe. If so the incompleteness at

small rp has no effect and the 2dFGRS satellite samples can be in-

terpreted as sampling the full velocity distribution within a given

radius. However, if the real satellites are like those in the mock we

should restrict our comparisons to large scales where the ‘rp cut’

has no influence.

The velocity distribution of the mocks after applying the ‘rp cut’

is close to the one measured from the 2dFGRS. Both sets of satellite

Figure 5. Velocity distributions of satellites within a projected radius of

400 h−1 kpc: comparison between 2dFGRS satellite sample (solid bold line)

and the mock samples in real and redshift space (with and without ‘rp cut’).

Error bars, only plotted on two of the curves for visibility, assume Poisson

statistics. See text for discussion.

catalogues have a velocity distribution with an extended tail, with

a nearly constant amplitude beyond ∼800 km s−1. This is to be ex-

pected due to contamination from interlopers and needs to be dealt

with when analysing redshift space distributions.

At this stage we split the samples by absolute magnitude, as our

theoretical prejudices, leads us to expect that the satellite velocity

distributions will be more extended around brighter primaries. This

is exactly what we see in the various panels of Fig. 6. The two top

Figure 6. Velocity distributions of satellites within a projected radius of

400 h−1 kpc: similar plot as Fig. 5 (with same lines types showing 2dFGRS

data and mock satellite sample in redshift space, with velocity errors and

‘rp cut’ applied), but split by absolute magnitude (indicated in each panel).

The y-axis is here divided by the total number of satellites in each sample,

to facilitate comparisons between samples of different sizes. For clarity, we

omit error bars. See text for discussion.
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panels show the velocity distributions around the faintest primaries.

For both samples, it seems clear that a velocity limit of 1200 km s−1

is probably too large. Although not plotted the real-space sam-

ples do not contain any galaxy with velocity �V � 450 km s−1).

Moreover, the faintest mock sample contains a ‘lump’ of galaxies at

�V ∼ 900 km s−1. This indicates that for faint primaries a smaller

value for �Vs should be chosen, as otherwise contamination from

interlopers will be very strong. The two bottom panels show the

satellite velocity distributions around the brighter primaries. They

both show the existence of satellite galaxies with large relative ve-

locities, especially the brightest sample for which ∼20 per cent

(∼5 per cent) of the satellites have a relative velocity larger than

500 km s−1 (900 km s−1). Therefore, in order to measure the veloc-

ity dispersion of these systems it is essential to sample the full width

of the velocity distribution.

We note that, with the exception for the brightest sample, the ve-

locity distributions of the mocks are quite similar to those extracted

from the 2dFGRS for each absolute magnitude split sample. For

the brightest subsample the 2dFGRS velocity distribution is wider

than that of the mock. We find that this is related to the presence

bright ‘isolated’ ellipticals which are found in 2dFGRS sample. We

address the influence of the morphological mix in Section 5.2.

4.2 Interlopers and background subtraction

In the previous section, we came across one important concern for

the satellite sample: its contamination by interlopers. The core of the

velocity distributions shown in Figs 5 and 6 are rather well described

by Gaussian distributions, with some extended tails. These tails are

due to interlopers, i.e. galaxies which in redshift space just happen

to come within the selection region, but which in real space are more

distant and belong to another halo/system.

Our stacked systems are probing a cylindrical volume in redshift

space. Hence to first order we would expect the interlopers to be

randomly distributed within this cylinder. This motivates modelling

the velocity distribution of each stacked system as the sum of a

Gaussian and a constant. More precisely we set-up a maximum

likelihood estimator based on the following probability function:

p(v) = f (v)∫ +vfit

−vfit
f (v) dv

, (2)

f (v) = 1√
2πσ

exp

(
− v2

2 σ 2

)
+ c̃, (3)

where the velocity fitting range is between −vfit and vfit. Hence the

maximum likelihood estimator is just the product of the probabilities

p(vi) associated with each satellite, which can be written as

ln[L] = −2

N∑
i=1

ln [ f (vi )]

+ 2 N ln

[
1 − erfc

(
vfit√
2 σ

)
+ 2 vfit c̃

]
.

(4)

By maximizing this likelihood as function of σ and c̃ for each sam-

ple of stacked primaries, we are able to determine a typical velocity

dispersion for these systems, together with the fraction of interlop-

ers. We note that this approach can be applied to any subsample

of satellite galaxies. Hence, we can, for example, test for a radial

dependence of the satellite velocity dispersion by just considering

satellites in different projected radial shells. The σ we measure in

this way will be the underlying velocity dispersion of the stacked

satellite system added in quadrature with the rms error of the mea-

sured satellite-primary velocity difference. This simple subtraction

would only be invalid if the measured satellite-primary velocity dif-

ferences were correlated with the measurements errors and there is

no evidence for this in the 2dFGRS.

In Fig. 7, we show the results of this method for three magnitude

bins (bright to faint from top to bottom) taken from the mock satel-

lite samples in real (left) and redshift space (middle) and from the

2dFGRS data (right-hand column). Note that we have not subtracted

in quadrature the ‘known’ velocity measurement error, which for the

data and the simulation is verr ∼ 110 km s−1 (see Section 5.2), from

the fitted velocity dispersion. The inset in each panel shows the 1 and

2σ confidence regions:3 as dotted contours for two free parameters

(i.e. �χ2 = 2.30, 6.17) and as solid contours for one free parameter

(i.e. �χ2 = 1.0, 4.0). As expected, the real-space samples (i.e. left

most column of Fig. 7) are all fit by a pure Gaussian, as in real space

we do not have the problem of interlopers. The interloper fraction

averaged over the fitted range is given by

I (σ, c̃) = 2 c̃ vfit∫ +vfit

−vfit
f (v) dv

, (5)

and for the samples in redshift space we find a roughly constant

value. For galaxies in the range −20.3 � MbJ
−5 log10 h � −20.7,

and assuming a cylinder depth of 1200 km s−1, we find interloper

fraction of 10.7+3.7
−2.4 per cent. Interestingly the interloper fraction in

the mock samples and the 2dFGRS data are similar for all the three

magnitude bins presented in Fig. 7. This is another example of how

well our mock catalogues mimic the real data.

Finally, we note that the size of the error on the satellite ve-

locity dispersion differs between the mock and 2dFGRS sam-

ples. The typical 1σ uncertainty on σ for the 2dFGRS data is

approximately 30 km s−1, independent of the best-fitting velocity

dispersion, whereas for the mock samples uncertainty is closer

to 20 km s−1. This is probably related to the greater homogeneity

of mock catalogues, which, despite their high level of sophistica-

tion, do not contain as much variety as the real 2dFGRS data (see

Section 5.2).

5 V E L O C I T Y D I S P E R S I O N
O F S AT E L L I T E S Y S T E M S

We can now estimate the velocity dispersion of satellites around

stacked primaries for different ranges of absolute magnitude within

a chosen limiting transverse radial separation. The limiting radius

needs to be large enough so that the composite satellite system

contains sufficient satellites, but small enough so as to only sample

dynamically connected regions. From theoretical considerations, a

limiting radius of 175 h−1 kpc is reasonable for halo masses between

5 × 1011 and 1013 h−1 M�, as it is smaller than their typical virial

radius, but still large enough to sample a fair fraction of the virial

volume. Unless otherwise specified, our measurements are all done

within a projected separation of 175 h−1 kpc from the primary.

5.1 Mock satellite velocity dispersion

In Fig. 8, we plot the estimated velocity dispersion from the mock

satellite samples in real (triangles) and redshift (squares) space, with

and without velocity errors included (filled and empty symbols,

3 Assuming Gaussian errors, the likelihood given by equation (4) is dis-

tributed like a χ2 distribution with two degrees of freedom (σ, c̃).
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Figure 7. Fitting a Gaussian plus constant to the velocity distribution of satellite galaxies around primaries of three different absolute magnitude bins (bright to

faint from top to bottom, with magnitude range indicated in the middle column) taken from, respectively, the mock satellite samples in real and redshift space

and from the 2dFGRS data (from left to right). The binned satellite velocity distribution is shown by the squares with error bars (assuming Poisson statistic)

and the smooth curve the best-fitting Gaussian plus constant, as determined by solving equation (4). The binning used is regular and of width 3/4 σ best, which,

given in each panel, is the best velocity dispersion estimate, expressed in km s−1. Intervals without bins represent velocity intervals without any satellites in.

The best-fitting constant, c̃, is also given in s km−1. The inset in each panel show, in dotted, the 1 and 2σ contour levels, in the δσ − log10 c̃ plane, of the two

parameter fit and, in solid, the corresponding one parameter confidence contours. We point out that the velocity dispersion error contours are relative to σ best

and that insets in different panels have different scales. See text for further details.

respectively). All are in pretty good agreement with the distribu-

tion of velocity dispersions measured directly from the full semi-

analytic simulation cube, whose median and associated 16 and 84

percentiles are shown by the solid and dashed curves, respectively.

We note that when the volume-limited simulation cube is analysed

in this way including or excluding the most central satellites has a

systematic effect on the measured velocity dispersion. Discarding

all satellites within a projected radius of ∼ 5 h−1 kpc of the primary,

results in a velocity dispersion which is systematically larger, by 5 to

15 per cent.

Fig. 9 is like Fig. 8, but with the ‘rp cut’ applied to the samples

analysed from both the simulation cube and mocks. For this reason,

the black solid and dashed curves in Fig. 9 are slightly different to

those in Fig. 8 (reproduced in grey in Fig. 9). The agreement between

the various velocity dispersion estimates is not as good as in Fig. 8.

Nevertheless, the satellite velocity dispersion inferred after apply-

ing the ‘rp cut’ agrees within the (typically 50 per cent larger) errors

with those measured before this cut was applied. In other words, the

velocity dispersion as measured from satellite galaxies is not too

sensitive to the innermost spatial distribution. This is probably not a

big surprise, because of the mixed selection effects that come into the

isolation criterion. Despite the less than perfect agreement between

the simulation and mock in Fig. 9, it is important to have demon-

strated that the velocity dispersion inferred from satellite galaxies

is in general agreement with the median halo velocity dispersion

measured in the simulation. However, the fact that the agreement is

not perfect should also not be forgotten when interpreting the results

of dynamical studies of stacked satellite systems.

We recall that to arrive at the velocity dispersion estimates plotted

as the filled triangles in Figs 8 and 9 we have subtracted in quadra-

ture the mean velocity measurement error verr ∼ 110 km s−1, which

comes from adding in quadrature the velocity measurement errors

of primaries and the satellites. This has the desired effect of produc-

ing estimates that are all in reasonable agreement with each other,
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Figure 8. Velocity dispersion of ‘stacked’ primaries of given absolute mag-

nitude for various mock samples: in real space with and without velocity

errors included (filled and open triangles, respectively) and in redshift space

with and without velocity errors included (filled and open squares, respec-

tively). The error bars plotted are the 1σ errors as obtained from the two

parameter fits on samples taken with cylinder depths of δV = 1200 km s−1,

for samples brighter than M�, and with cylinder depths of δV = 600 km s−1,

for the fainter samples. The solid line is the median satellite velocity disper-

sion, as estimated from the volume limited semi-analytic galaxy catalogue.

The two dashed lines shows the 16th and 84th percentiles of the velocity dis-

persion distribution. For samples where the 80 km s−1 velocity uncertainty

has been included, we subtract from the estimated velocity dispersion the

total velocity uncertainty, verr, in quadrature. See text for discussion.

but also has the consequence that the fractional error on the esti-

mated velocity dispersion is increased by a factor σ /(σ 2 − v2
err)

1/2

relative to that of the σ that comes from the maximum likelihood

algorithm. Nevertheless, Figs 8 and 9 show that for nearly the full

absolute magnitude range covered by our data we are able to recover

the underlying velocity dispersion without any strong biases due to

selection effects.

5.2 Satellite velocity dispersion from 2dFGRS

For the 2dFGRS satellite sample, we find it useful to split the sam-

ple based on whether the primary is an isolated spiral or elliptical

galaxy. In Fig. 10, we plot the velocity dispersions for the combined

2dFGRS samples (filled circles) as well for the subsets of satellites

with spiral (and irregular) primaries (open circles) and elliptical-S0

primaries (open squares). In the mocks, if we infer the morphologi-

cal types of the primaries from the bulge-to-disc ratios, then we also

find a small fraction of elliptical primaries. However, the correspon-

dence between bulge-to-disc ratio and morphology is crude and so

we prefer not to split the mock sample in this way. Fig. 10 shows

that the velocity dispersions from the mocks are in very good agree-

ment with those from the overall 2dFGRS sample, but we also see

in the 2dFGRS that the velocity dispersions of satellites around spi-

ral primaries are significantly lower than those of satellites around

elliptical primaries.

We also note that for the 2dFGRS the typically error on the esti-

mated velocity dispersion is twice as large as in the corresponding

mock sample. This is most certainly related to a combination of

Figure 9. Velocity dispersion of ‘stacked’ primaries of given absolute mag-

nitude for various mock samples: same as Fig. 8, but with the ‘rp cut’ applied.

In light grey, we plot, as for reference, the same lines as shown in Fig. 8.

Figure 10. Velocity dispersion as measured using the isolation criterion

as function of associated primary absolute magnitude. The data sample is

shown for all primary types (filled solid circles), but also split by primary

galaxy morphology: elliptical-S0 (open squares) and spiral-irregulars (open

circles). The solid and dashed lines, same lines as shown in Fig. 9, are plotted

here for comparison purpose only. See text for discussion.

the following factors: the mock satellite samples are typically two

times larger than the two 2dFGRS satellite samples (as the mock

catalogues used are not split by morphology); due to the limited

physics included the mock samples are likely to be more statisti-

cally homogeneous than the real data; the average number of satel-

lites per primary is slightly smaller in the data than in the mocks and

the smaller total number of satellites in the data will lead to more

scatter in the estimated velocity dispersion.

Based on the correspondence between the estimated satellite ve-

locity dispersions and those of the underlying dark matter haloes
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found for the mocks in Section 5.1, we make the claim that the

velocity dispersions of the primaries as inferred from the 2dFGRS

satellite sample should be a reliable tracer of the primaries ‘true’

velocity dispersions. Quantitatively, we expect this method to work

for ‘isolated’ galaxies brighter than MbJ
− 5 log10 h � −19.0, i.e.

galaxies which are as bright or brighter than the Milky Way.

6 M A S S E S T I M AT E O F I S O L AT E D S Y S T E M S

In Section 5, we showed that it is possible, over a range of absolute

magnitudes, to recover from the satellite velocity dispersion the

underlying halo velocity dispersion. Therefore, it is tempting to go

one step further and infer the mass which is dynamically enclosed in

these systems. There are, nevertheless, many issues which need to

be dealt with in order to obtain a reliable mass estimate. Two major

concerns are, of course, which mass estimator to use and how to

choose the radius within which to measure the mass. Our approach

is to calibrate a mass estimator using the mocks, as for them we

know the mass of the parent dark matter halo of each galaxy.

6.1 Calibration of mass estimator

The way we calibrate the halo mass–luminosity relation is to mea-

sure in the simulation the relation between halo mass and halo ve-

locity dispersion and so obtain a way to relate the measured velocity

dispersion to a halo mass. In Fig. 11, we plot the satellite velocity

dispersion as measured in the volume limited semi-analytic cata-

logue as function of the associated halo mass within 175 h−1 kpc,

M175. The varying symbol type indicates the absolute magnitudes of

the isolated primaries (see the figure legend). The galaxy formation

model used preserves very accurately the mass–luminosity hierar-

Figure 11. Satellite velocity dispersion in the volume limited mock cata-

logue as function of the associated primary halo mass. Both the halo mass and

the satellite velocity dispersion are measured within a radius of 175 h−1 kpc.

The different symbols correspond to isolated systems found in the mock sur-

vey and labelled as function of primary luminosity (see key). The thick grey

and black solid lines correspond to the median satellite velocity dispersion

as measured from the simulation cube for all primaries found in the mocks

and all central galaxies in the simulation cube, respectively. The associated

dashed line corresponds to 16th and 84th percentiles of the satellite velocity

dispersion distributions. For comparison purpose the median dark matter

velocity dispersion is also plotted as a thin black line.

chy of central galaxies.4 By this we mean not only that on average

bright central galaxies reside in massive haloes and faint central

galaxies in the less massive ones, but also that the scatter in this

whole mass–luminosity relation is quite small. This is an essential

assumption which needs to be accurately satisfied both in the model

and the genuine data for the method of stacked primary systems to

work.

Mocks created from the same dark matter simulation, but with the

Cole et al. (2000) galaxy formation model have a much larger scatter

in the relationship between halo mass and central galaxy luminos-

ity and can therefore not be used in the calibration process. The

scatter present in those mocks does not allow satellites of primaries

of similar luminosity to be stacked, as they can belong to systems

which are intrinsically too different in mass. Since this work began,

a whole new suite of semi-analytic galaxy formation models with

active galactic nucleus (AGN) feedback has appeared (e.g. Croton

et al. 2006; Bower et al. 2006). These models also have quite a large

scatter in the relationship between halo mass and primary luminos-

ity, though less than in the Cole et al. (2000) semi-analytic model.

We simply restate that by stacking systems by primary luminosity

and then attempting to infer the halo mass, we are implicitly assum-

ing that the scatter between luminosity and mass is small and so in

calibrating such a relation we should use a mock catalogue in which

this is true.

Using Springel et al. (2001) semi-analytic model of galaxy for-

mation in the full simulation cube, we show in Fig. 11 that using

all central galaxies or just those whose primaries satisfy the iso-

lation criterion make very little difference to the relation satellite

velocity dispersion and dark matter halo mass. In both cases the

medians and the 16th and 84th percentiles of the satellite velocity

dispersion distributions match well over one full magnitude in halo

mass. They are both well parametrized by a power-law relation of

the form σ 175 ∝ (M175)α , with α ranging between ∼0.42 and ∼0.56,

depending on which percentile of the velocity dispersion distribu-

tion one attempts to fit. We note that in our mock we do not find any

isolated systems residing in haloes outside the range ∼5 × 1011 to

1013 h−1 M�. Hence any mass estimate outside this range is based

on assuming the good correspondence found in Fig. 11 around iso-

lated haloes and central galaxies holds over a larger mass range.

Finally, we have investigated whether the calibrating relation in the

mocks is the same for both elliptical and spiral primaries. For our

crude bulge-to-disc ratio assignment of morphological type we find

the relations are virtually identical and so we have opted to use the

one overall relation present in Fig. 11 in all cases.

6.2 Mass estimates for 2dFGRS primaries

We now use the relation between the median velocity dispersion

of all central galaxies and halo mass, shown in Fig. 11, to directly

convert the measured satellite velocity dispersions into estimates of

halo masses. In Fig. 12, we plot the estimated masses for primaries

split by morphological type. As is to be expected, we find in both

cases that the inferred halo mass increases steadily with the absolute

magnitude of the primary. With this mass calibration, we find that

elliptical galaxies live in haloes which are typically three to 10 times

more massive than spirals of similar bJ brightness.

The scatter seen in Fig. 11 indicates that the uncertainty in the

mass calibration is large. For a given halo mass, the scatter in velocity

4 This is only true for halo masses with circular velocities below 400 km s−1,

as for haloes with larger circular velocities, an artificial cut-off in the cooling

recipe creates much fainter central galaxies in the very largest haloes.
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Figure 12. Simulation calibrated halo mass, within 175 h−1 kpc, as func-

tion of primary absolute magnitude. The open squares correspond to the

mass of the haloes of elliptical galaxies, whereas open circles to spiral halo

masses. The solid dots correspond to the halo mass of an ‘average’ galaxy.

The error bars plotted do only take into account the error on the measured ve-

locity dispersion. Errors due to uncertainties in the mass–velocity dispersion

calibration are not taken into account (see text for further details). The best-

fitting parameters for the mass–luminosity relation given by equation (6) are

given for spirals and ellipticals, and plotted as solid lines.

dispersion is around ∼25 to ∼40 per cent. Hence, considerable

care should be taken when using this relation to infer halo mass

from the measured velocity dispersion. In Fig. 12, we are assuming

that the satellite velocity dispersion measurement inferred from the

2dFGRS is in good agreement with the median of the ‘true’ satellite

velocity dispersion. In Fig. 8, we showed that for the mocks the

corresponding agreement is good, but not perfect. For the mocks

we can use the spread between 16th and 84th percentiles of the

distribution as a guide to the uncertainty in this calibration and

hence on the systematic uncertainty in the calibration procedure.

For an individual object, a systematic shift of ∼75 per cent in the

estimated mass is entirely acceptable, as this shift corresponds to

the 1σ dispersion on the calibration relation.

Using this calibration, we find the power-law fit relation

M175

h−1 M�
=

(
LbJ

L∗

)α (
M∗

h−1 M�

)
(6)

between the halo mass within 175 h−1 kpc, M175 and the bJ-band

luminosity of the primary, LbJ
. This can be written equivalently as

log10

[
M175/(h−1 M�)

] = α log10

[
LbJ

/L∗
] + β, (7)

where L∗ is the characteristic luminosity as given by the 2dFGRS

Schechter luminosity function estimate of Norberg et al. (2002), and

β = log10 [M∗/(h−1 M�)], with M∗ the dynamical mass of an L∗
galaxy. For elliptical galaxies, we observe a nearly linear relation

between halo mass and luminosity, with α � 1.0 ± 0.4 and β �
12.6 ± 0.2, i.e. a nearly luminosity independent mass-to-light ratio.

This is in stark contrast with spiral galaxies, for which the relation

between halo mass and primary luminosity is much steeper, with α

� 1.6 ± 0.6 and β � 11.8 ± 0.3. The errors on these best-fitting

parameters are, as already mentioned, rather substantial.

We note that the existence of a difference between the scaling

relations for ellipticals and spirals is independent of the calibration

used. The calibrating relation between halo mass and satellite veloc-

ity dispersion was assumed to be independent of galaxy morphology

and hence the difference in the mass–luminosity scaling relations is

due entirely to the differences in the measured luminosity–velocity

dispersion relations. However, the magnitude of this difference does

depend on the halo mass–velocity dispersion calibration used.

Finally, for a spiral galaxy like the Milky Way we estimate

the halo mass within 175 h−1 kpc to be approximately 3.5+4.0
−2.1 ×

1011 h−1 M�, whereas for an elliptical galaxy of similar bJ bright-

ness we estimate its halo mass to be nearly eight times larger. We

note the large statistical error associated to this mass estimate, which

do not include any systematical error on the mass calibration relation

used.

6.3 Comparison with other mass estimates

This statistical Milky Way mass estimate needs to be compared with

other Milky Way mass estimate, using completely different tech-

niques. When comparing with techniques independent of the value

of the Hubble constant, we assume here H0 = 70 km s−1 Mpc−1,

implying our estimate of the Milky Way mass within 250 kpc be-

comes 5.0+5.7
−3.0 × 1011 M�. Assuming a simple scaling relation for

the mass enclosed at large radii (e.g. M(r) ∼ r, isothermal sphere),

we estimate the mass within 100 kpc to be 2.0+2.3
−1.2 × 1011 M�.

From the dynamics of the Magellanic Clouds and the associated

stream, Lin, Jones & Klemola (1995) estimate the mass of the Milky

Way inside 100 kpc to (5.5 ± 1) × 1011 M�. From the escape ve-

locity and motions of satellite galaxies, Kochanek (1996) estimates

the mass of the Galaxy inside 100 kpc to be (5–8) × 1011 M�. Us-

ing more recent kinematic information for Galactic satellites and

halo objects, Sakamoto, Chiba & Beers (2003) derive an essen-

tially model-independent Galaxy mass estimate within ∼50 kpc of

5.5+0.1
−0.2 × 1011 M�, which corresponds to ∼1012 M� within

100 kpc. This mass, which is nearly twice as large as the one found

by Lin et al. (1995), seems to be confirmed by Bellazzini (2004),

who uses the tidal radii of remote globular clusters (between 35 and

∼200 kpc from the Galactic Centre) to provide constraints on the

mass profile of the Milky Way, independently of kinematic data and

yielding an enclosed mass of 1.3+2.9
−1.0 × 1012 M� at ∼90 kpc.

All these estimates are at least a factor of 2 larger than our esti-

mate and the more recent Milky Way mass estimates are as much as

a factor of 5 larger. There are several systematic effects that could

be contributing to this difference. First, our estimate is a statistical

estimate of the mean mass for galaxies of a given luminosity. The

scatter about this mean relation is large and ought to be taken into

account. For instance, the scatter of the halo mass satellite velocity

dispersion calibration relation is 25 per cent for a given mass, which

translated into the mass–luminosity relation implies a typical 75 per

cent scatter for a given luminosity. Secondly, our mass estimate for

the Milky Way is obtained using a power-law fit to the data, which

therefore averages data over a range of luminosities. If a power law

is not appropriate and only the data in a bin centred at the Milky

Way’s luminosity were used then the statistical error on our estimate

would be ∼70 per cent larger. Finally, according to the Milky Way

models of Kochanek (1996), the assumption of isothermal sphere be-

tween 100 and 250 kpc may not be appropriate. Following his fig. 7,

the scaling is closer to M(r) ∼ r∼0.6, implying a ∼50 per cent increase

in the estimated Milky Way mass.

Taking these statistical and systematic issues into account, our

mass estimate is compatible with those of Lin et al. (1995) and
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Figure 13. Comparison of velocity dispersion estimates as function of ab-

solute magnitude from recent analyses using similar techniques. For McKay

et al. (2002), Brainerd & Specian (2003), Prada et al. (2003) and Brainerd

(2005), the quoted error bars are upper limits on the error bars shown in

their respective analyses. For van den Bosch et al. (2004), we show their

final velocity dispersions estimates, for their satellite sample optimised so

as to have, according to mock catalogues constructed using the conditional

luminosity function, the lowest amount of interlopers. Our measurements,

within 175 h−1 kpc, are the same as presented in Fig. 10. See Section 7, but

also the Appendix A, B and C for further comments on this rather busy plot.

Kochanek (1996), but still roughly a factor of 2–3 too small when

compared to the recent estimates from Sakamoto et al. (2003) and

Bellazzini (2004). Clearly our statistical method is not optimal for

inferring the mass of an individual object. A fairer comparison would

be to compare our results with other statistical mass estimators,

like McKay et al. (2002) did when comparing with weak lensing

estimates from SDSS (McKay et al. 2001).

7 C O M PA R I S O N TO S I M I L A R M E T H O D S

There have recently been several complementary studies that have

used similar techniques to stack satellites around isolated primaries

(McKay et al. 2002; Brainerd & Specian 2003; Prada et al. 2003;

Brainerd 2005; van den Bosch et al. 2005). The results of these stud-

ies, appropriately converted into MbJ
− 5 log10 h where necessary,

are compared to ours in Fig. 13. At first sight, one sees very large

variation between the findings of the different authors. However,

one has to be very careful because both the selection criteria and

method of estimating velocities vary considerably. A more detailed

comparison between the different analysis methods is presented in

the appendices. The tests presented there show why some estimates

differ, but also raise new concerns over other estimates which on

face value appear to agree when in reality they probably should not.

From the analysis presented in Appendix A, we learn first that

the agreement in the results from McKay et al. (2002) and Prada

et al. (2003) is, as already claimed by Prada et al. (2003), spurious.

The selection criteria are different enough so that when applied to

mocks the results are expected to be significantly different. It is clear

from the paper of Brainerd & Specian (2003) that they have not sub-

tracted the pairwise velocity measurement uncertainty from their

velocity dispersion estimate, while Brainerd (2005) does take it into

account. Despite this (see Appendix B), the results from Brainerd

& Specian (2003) and Brainerd (2005) still do not agree with our

findings also extracted from the 2dFGRS. We believe this is due to

some source of extra contamination of their satellite sample, but we

are unable to reproduce their results. Moreover, we find that the dif-

ference between our measurements and those of Prada et al. (2003)

is mostly due to the different selection criteria used to define the

samples. The larger errors on our 2dFGRS velocity dispersion esti-

mates cannot be explained solely by the larger redshift measurement

errors of the 2dFGRS data. Using the data of Prada et al. (2003), we

find their quoted errors to be approximately 30–40 per cent smaller

than those we estimate.

As a final conclusion from this comparative work, we have to

point out that the large variety of results present in the literature

reflects mostly the large variation in the proposed methods of both

identifying the isolated systems and also measuring the satellite

velocity dispersions. All the proposed methods introduce biases and

unless one applies the same selection criterion to a set of realistic

mock galaxy catalogues one cannot quantify these systematic effects

and the interpretation of the results remain questionable.

8 C O N C L U S I O N S

We have developed, tested and applied a method to probe the prop-

erties of extended dark matter haloes around bright galaxies. We

do this by carefully selecting isolated galaxies in the 2dFGRS

and using their faint satellites as tracers of the gravitational poten-

tial. By stacking systems of similar primary luminosity to improve

the signal-to-noise ratio, we estimate the satellite velocity disper-

sion. Realistic mock galaxy catalogues, created from cosmological

N-body simulations populated with a semi-analytic galaxy forma-

tion scheme, enable us to relate the measured velocity dispersion

of the satellite system to the velocity dispersion and mass of the

underlying dark halo.

Fig. 10 shows evidence for the existence of dark matter haloes

around typical galaxies. Our sample of satellites probes the potential

well of the primaries out to several hundred kiloparsecs and demon-

strates that the dark haloes extend many times beyond the optical

radius of the primary. This is in agreement with the current theo-

retical picture of galaxy formation in a CDM universe (e.g. White

& Frenk 1991; Kauffmann, White & Guiderdoni 1993; Cole et al.

2000). The satellite velocity dispersion increases with the luminos-

ity of the primary and is much larger for elliptical galaxies than for

spiral galaxies of similar bJ luminosity.

The total extent of the dark halo is not constrained by our data.

Although, the satellite distribution extends to rp ∼ 375 h−1 kpc, most

of the signal comes from within rp ∼ 175 h−1 kpc. Within the errors,

the velocity dispersion appears to be constant within rp ∼ 175 and

375 h−1 kpc. In this range, the satellite velocity dispersion does not

depend strongly on the luminosity of the primary.

Our mock catalogues allow us to calibrate the velocity dispersion–

mass relation for galaxies selected according to the isolation cri-

terion of our 2dFGRS sample. Fig. 12 then indicates that el-

liptical galaxies reside in haloes which are at least four times

more massive than spiral galaxies of similar bJ brightness. Galaxy

like the Milky Way typical reside in dark matter haloes of mass

∼3.5+4.0
−2.1 1011 h−1 M� within 175 h−1 kpc.

A key assumption in our analysis is that isolated galaxies of simi-

lar luminosity reside in haloes of similar mass. It is this that justifies

the stacking procedure. Our semi-analytic models allow us to test

the validity of this assumption. We find that in one of two semi-

analytic models that we have investigated, the Springel et al. (2001)

model, there is very little scatter in the relation between central
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galaxy luminosity and halo mass. A different semi-analytic model,

however, that by Cole et al. (2000), predicts considerable scatter in

this relation and this introduces large errors in the halo properties in-

ferred from a stacking analysis. Mocks constructed from this model

return an increasing satellite velocity dispersion as a function of pri-

mary luminosity which, however, deviates systematically from the

velocity dispersion of the host dark haloes. The reasons behind this

difference in the galaxy formation models are not investigated in de-

tail here but it serves to illustrate that significant theoretical uncer-

tainties remain in the kind of analysis that we have presented here.
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A P P E N D I X A : C O M PA R I S O N W I T H
S AT E L L I T E V E L O C I T Y D I S P E R S I O N
M E A S U R E M E N T S F RO M S D S S DATA

The studies of McKay et al. (2002) and Prada et al. (2003) are based

on different releases of SDSS data. In Fig. 13, their results are shown

by dot-connected open squares and by long-dashed connected filled

squares, respectively. At first sight their results appear in rather

good agreement with each other, and rather different to ours, which

are shown by large filled circles (all primaries), large open circles

(spiral primaries) and large open squares (elliptical/S0 primaries).

However, it is essential to consider the differences expected due to

the differing satellite selection criteria.

A1 McKay et al.: δms = 1.5 and δrb = 2 h−1 Mpc

McKay et al. (2002) (and also Prada et al. 2003 with their sample 3)5

use a much less stringent isolation criterion on the neighbourhood

of the primary. Our requirement for the primary to be at least eight

times more luminous than any of its satellites is relaxed to just four

times brighter. We recall that the role of this constraint is to avoid

including satellite systems in which the potential well and hence the

dynamics of the satellites is not dominated by the primary. To avoid

this being the case it is necessary to ensure that all the satellites

are much less massive than the primary. The recent mass-to-light

ratio measurements of Eke et al. (2004) indicate that for around

2 L�, which is the luminosity of our brighter primaries, a factor of 8

in luminosity corresponds to factor 10 in mass. However, for lower

luminosity primaries the corresponding mass factor is smaller and

this argues for having a large luminosity difference between satellite

and primary.

Another difference between our standard isolation criterion and

the one used by McKay et al. is the much larger outer exclusion

radius. Our requirement is to have all galaxies within 1 h−1 Mpc

be at least 0.8 mag fainter than the primary, whereas McKay et al.

require for the same magnitude difference a distance of 2 h−1 Mpc,

which is certainly a more restrictive criterion.

Therefore, in order to make the appropriate comparison, we need

to apply the same selection criterion as McKay et al. (2002). Fig. A1

compares the results of McKay et al. (2002) with new estimates we

have made from the 2dFGRS data after adopting their selection

criterion. Also shown in Fig. A1 are velocity dispersion estimates

we have made using sample 3 of Prada et al. (2003). Using the

same selection criterion, we now find results which are in better

agreement with the SDSS estimates, but with larger error bars. There

are two reasons why are our errors are larger. First, the much larger

velocity uncertainty of 2dFGRS redshift measurements (typically

85 km s−1 on an individual galaxy for the 2dFGRS, compared to

less than 30 km s−1 for SDSS) causes the errors from the maximum

likelihood method to be increased by 50 per cent, for systems with

a ‘true’ satellite velocity dispersion of 100 km s−1, instead of just

7 per cent in the case of SDSS. Secondly, the errors quoted by Prada

et al. (2003) are intrinsically smaller than those we obtain when

performing our maximum likelihood estimation on their sample 2.

This result can be partially explained if Prada et al. have assumed

Poisson statistics to derive their quoted error bars.

Comparing the results of applying this relaxed selection criterion

to the mock catalogues, with the distribution of the underlying satel-

lite velocity dispersions shown by the heavy solid and dashed lines

5 This sample is presented in their paper, but is not the sample for which

they derive their main results.
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Figure A1. Comparison of velocity dispersion estimates as function of ab-

solute magnitude, adopting the same criterion as McKay et al. (2002) and

Prada et al. (2003) in their sample 3. The labelling is the same as in Fig. 13,

with the exception that we have added our mock catalogue results (open

triangles and filled squares for real and redshift space, respectively) for this

new isolation criterion, where the velocity dispersion is measured for satel-

lites between 15 and 250 h−1 kpc using a cylinder depth of 500 km s−1. The

filled large points correspond to our measurement done on sample 3 of Prada

et al. (2003). Note that the connected filled squares from Prada et al. (2003)

are estimates using the selection criterion discussed in Fig. A2.

in Fig. A1, we see that there is a large bias. The velocity dispersion

recovered from the mocks lie outside the 16th to 84th percentile

band of the ‘true’ underlying galaxy velocity distribution. In our

analysis of the samples with relaxed isolation criterion we also note

that for both the 2dFGRS data and the mocks the stacked satellite

velocity distributions are no longer well fit by the ‘Gaussian plus a

constant’ model. The samples look much more like the real-space

velocity distributions shown in Fig. 7, i.e. there is just an upper limit

for the constant. In other words, with these satellite samples, fitting

the 2dFGRS data with a ‘Gaussian plus a constant’ is not appropri-

ate. On the other hand, the satellite velocity distribution of sample 3

of Prada et al. is well fit by a ‘Gaussian plus constant’. This indicates

some clear difference between the two satellite samples.

A2 Prada et al.: δmb = δms = 2.0 and δrb = 0.5 h−1 Mpc

The selection criterion proposed by Prada et al. (2003) are more

conservative than those of McKay et al. (2002), as they require a

factor of ∼6 in luminosity between the primary and any of the sur-

rounding galaxies. However, for the spatial isolation of the primary,

Prada et al. are much less restrictive with an outer isolation radius,

δrb, of 0.5 h−1 Mpc, compared to 2 h−1 Mpc for McKay et al. (2002).

Compared to our choice, this criterion is less restrictive, especially

as we require within δrs = 0.5 h−1 Mpc a factor of 8 in luminosity

difference, and within δrb = 1 h−1 Mpc the primary to be at least

twice as luminous as any other galaxy. However, this is not the only

difference between the two SDSS satellite analyses. The biggest

difference is that Prada et al. fit for the satellite velocity dispersion

and interloper fraction separately in each bin of projected radius.

Thus they allow both the interloper fraction and velocity dispersion

to vary with projected radius.

Figure A2. Comparison of velocity dispersion estimates as function of ab-

solute magnitude, adopting the same criterion as used by Prada et al. (2003).

The labelling is the same as in Fig. 13, with the exception that we have

added our mock catalogue results (open triangles and filled squares for real

and redshift space, respectively) for this new isolation criterion, where the

velocity dispersion is measured for satellite between 15 and 90 h−1 kpc us-

ing a cylinder depth is 500 km s−1. The filled large points correspond to

our measurement done on sample 2 of Prada et al. (2003). Note that the

dot-connected open squares from McKay et al. (2002) are obtained with the

selection criterion discussed in Fig. A1.

Including this extra freedom in their velocity dispersion calcula-

tions gives rise, as we show in Fig. A2, to a substantial difference

in the velocity dispersion estimates, compared to what is found

in Fig. A1, using the analysis method proposed by McKay et al.

(2002). From Fig. A2, we conclude that satellite velocity dispersion

estimates from 2dFGRS and SDSS (using sample 2 of Prada et al.

2003) agree with each other and that the criterion and method used

seem to be able to recover (within its large uncertainties) the un-

derlying velocity dispersion, which is not the case for the method

of McKay et al. (2002). Finally, we are able, but with larger errors,

to recover the velocity dispersion estimates found by Prada et al.

(2003). Only for the brightest galaxies is there any indication of a

discrepancy, and this is mainly related to error estimates from Prada

et al. (2003) which for those samples are clearly much smaller than

we find.

Regarding the statistics of the isolated satellite systems, we note

that adopting the selection criterion of Prada et al. (2003) causes

the number of systems with at least six satellites within 250 h−1 kpc

to increase drastically. This statistic is similar to the one we used

before, i.e. at least nine satellites within 400 h−1 kpc, to identify and

remove small groups from our sample. Table A1 compares these

statistics for the 2dFGRS data for our original selection criterion,

those of McKay et al. (2002) and those of Prada et al. (2003). Typ-

ically the Prada et al. (2003) selection criterion results in twice as

many ‘large systems’ as for our standard selection criterion, inde-

pendent of the value of Nviol and �Vs used. Hence the sample of

primaries might not be as well isolated as one hopes. Interestingly,

as long as Nviol = 0, the selection criterion of McKay et al. is very

comparable to ours as regards the number of ‘large systems’ identi-

fied. Nevertheless, we note that in all cases the fraction of satellite

galaxies that are in these ‘large systems’ is always small.
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Table A1. Properties of the combined NGP and SGP satellite samples around bright galaxies, for two values of Nviol and for different selection criteria, as

indicated by δms and �Vs. The McKay et al. selection criterion correspond to δms = 1.5, Prada et al. to δms = 2.0 and ours to δms = 2.2. All satellites are

within 250 h−1 kpc from the primary. The columns labelled ‘large systems’ indicate how many primaries and satellites are found in systems with six or more

satellites within 250 h−1 kpc. The last three columns show the total number of satellites within two cylindrical shells, where rp is expressed in h−1 kpc. These

numbers include the satellites belonging to ‘large systems’.

Selection criteria Nprim Nsat Large systems Nsat

δms �Vs Nviol Nprim Nsat 15 < rp < 90 90 < rp < 250 15 < rp < 250

2.2 600 0 299 425 3 21 133 289 422

2.0 600 0 513 754 7 52 244 499 743

1.5 600 0 233 370 3 18 102 267 369

2.2 1200 0 270 402 4 29 125 275 400

2.0 1200 0 482 747 9 68 232 505 737

1.5 1200 0 200 339 6 41 92 246 338

2.2 600 4 490 684 4 30 217 450 677

2.0 600 4 820 1160 8 58 359 786 1145

1.5 600 4 475 741 7 48 200 540 740

2.2 1200 4 415 610 6 45 186 420 606

2.0 1200 4 751 1121 12 87 322 785 1107

1.5 1200 4 365 627 11 78 163 463 626

A3 Results from mocks

With the comparisons of the two previous subsections, we have not

been able to really quantify the difference between the proposed

isolation criteria, even though our results hint towards the fact that

the isolation criterion proposed by McKay et al. is probably the least

appropriate of the three considered and that the one by Prada et al.

seems to identify slightly more ‘large systems’ than ours. Therefore,

in this section, we use the mocks and address the issue of the radial

dependence of the satellite velocity dispersion, which Prada et al.

found clear evidence for in their data.

In Fig. A3 we show a comparison between the different selection

criteria used by McKay et al. (left-hand panel), Prada et al. (central

panel) and us (right-hand panel). The aim is to show how well

each of these different selection criteria succeed in recovering the

‘underlying’ satellite velocity dispersion, for which the median is

given by the solid lines, and the dotted lines represent the 16th and

84th percentiles of the satellite velocity distribution as measured

from the simulation cube. For comparison purposes, we have chosen

to present in each panel the results within two different projected

Figure A3. Mock results using the isolation criteria of McKay et al. (left-hand panel), of Prada et al. (centre) and of this paper (right-hand panel). The symbols

with error bars correspond to the real (open triangle) and redshift (filled square) space satellite velocity dispersion measurements around mock primaries

identified using different selection criteria. The lines correspond to the median (solid) and 16th and 84th percentiles (dashed) of the underlying primary satellite

velocity dispersion. The different shadings correspond to two different cylindrical shells, whose ranges are given in the panel.

radii, as in Prada et al. (2003): 15 < rp/h−1 kpc < 90 and 175 <

rp/h−1 kpc < 250.

First of all we note that the different criteria are not all as success-

ful in recovering the underlying satellite velocity dispersion. Clearly

the one proposed by McKay et al. (i.e. left-hand panel of Fig. A3)

is the least successful, as it systematically gives an underestimate of

the satellite velocity dispersion. This is especially true for the outer

radial bin, for which the measured satellite velocity dispersion is

barely within the 16th percentile of the underlying satellite velocity

dispersion distribution. Moreover we note that for the mocks there

are not enough faint primary systems for which this satellite crite-

rion is satisfied, explaining why no velocity dispersion measurement

is given for primaries fainter or equal to M�. Interestingly, this is

not true for the real data, for which there are still several faint pri-

mary satellite systems satisfying the isolation criterion. With larger

number statistics, this could be a potential way of constraining cer-

tain galaxy formation models, an approach followed up by van den

Bosch et al. (2005).

The middle and right-hand panels of Fig. A3 look more similar, in

the sense that they both recover, within the errors, the ‘underlying’
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satellite velocity dispersion, for both projected radial bins. However,

three small differences can be noted. First, the velocity dispersion

errors around bright primaries are much larger using the isolation

criterion of Prada et al. (2003). We note that the consistency be-

tween expectation and measurement is only reached due to large

non-symmetrical errors. Secondly, the median satellite velocity dis-

persion in the outer projected radial bin is less accurately recovered

with the isolation criterion of Prada et al. (2003). Indeed, both real

and redshift-space measurements have a tendency to predict a much

flatter luminosity–velocity dispersion relation than the underlying

one. Thirdly, the real-space measurements obtained with the isola-

tion criterion of Prada et al. (2003) severely underestimate the true

underlying velocity dispersion, especially for the brighter primaries.

Finally, we note that, for our mock catalogue, there is virtually no

radial dependence of the satellite velocity dispersion on the choice of

radial shell (the distributions indicated by the bold and shaded lines

are all in very good agreement with each other). It is worth pointing

out that of the three proposed isolation criteria, only the one proposed

by Prada et al. hints at a radial dependence of the satellite velocity

dispersion. The trend is definitively weak and would be insignificant

if the errors happen to be underestimated, or even just assumed to

be symmetrical. The fact that this can happen is a potential worry

for the claim made by Prada et al. (2003) for a radial dependence of

the satellite velocity dispersion.

A4 Conclusions for SDSS comparison

We now have to address the question of whether our claim, that the

isolation criteria of Prada et al. and McKay et al. are more relaxed

than our standard ones, is consistent with the differences found be-

tween the estimated velocity dispersions. Looking at the systematic

difference between velocity dispersion measurements made with

the two criteria, what we find is quite counter intuitive. One would

probably expect that relaxing the isolation criterion would result in

measuring larger satellite velocity dispersions, whereas the opposite

is found. This can probably related to a third difference between our

nominal satellite selection criterion and the one used by Prada et al.:

the length of the cylinder, within which satellite galaxies need to

reside in order to be considered in the velocity dispersion estimate.

Using Monte Carlo realizations of satellite samples6 drawn from a

‘Gaussian plus a constant’ velocity distribution, we see that if one

uses exactly the same velocity criterion as in Prada et al. (i.e. �Vs

= 500 km s−1), one starts to systematically underestimate the ve-

locity dispersion of systems with intrinsic velocity dispersion larger

than 180 km s−1. At the same time, one systematically overestimates

the background for those systems. Taking into account the veloc-

ity errors, this translates, in the case of the 2dFGRS, to systems

which are best fit by a velocity dispersion of around or larger than

∼210 km s−1, corresponding to all primaries slightly brighter than

M� (see e.g. Fig. 7). On those grounds, we motivate therefore the

use of a deeper cylinder than Prada et al. in order to accurately mea-

sure the velocity dispersion of slightly larger systems. Our Monte

Carlo approach shows that we could have adopted a limiting veloc-

ity difference of 900 km s−1 for spiral primaries, whereas there is a

6 I.e. with same number of systems as in the 2dFGRS, with similar distribu-

tion of satellites per system and with the inclusion of an intrinsic maximal

10 to 20 per cent variation in the background and in the underlying velocity

dispersion, so as to mimic to some extent that all systems are not exactly

identical.

need, for elliptical primaries, to go out to ∼1200 km s−1, in order to

appropriately sample the satellite velocity distribution.

Therefore, most of the discrepancy between our analysis and the

two using SDSS data reside in the different selection criteria used.

From our results using the mock catalogues, from our Monte Carlo

simulations and from statistics of large systems discovered by the

isolation criteria, there is a hint in the direction that the relaxed

isolation criteria used by McKay et al. and Prada et al. are not as

appropriate for finding dynamically isolated systems as our more

stringent isolation criterion. Nevertheless, we have to point out that

the data is not yet good enough to be able to fully discriminate

between the methods chosen.

Finally, a closer inspection of the two SDSS works shows that

their findings are slightly different, something which was already

pointed out in the analysis of Prada et al. (2003). Indeed the outer

radii within which the velocity dispersions are measured are very

different. As Prada et al. claim a strong dependence of the satellite

velocity dispersion on radius, the agreement seen in Fig. 13 is not

as good as it looks. On this last point, we would like to add, that we

are not able, with our isolation criterion applied to the 2dFGRS, to

detect such a signal. We know that the behaviour for ellipticals and

spirals is rather different as function of luminosity, and therefore it

could be legitimate to ask whether the effect seen by Prada et al. as

function of projected radius could be due to a change in their sample

mix as function of luminosity. Indeed with our findings, for galaxies

of similar brightness, ellipticals will reside in much larger haloes

than spirals. Hence stacking galaxies together irrespective of their

morphological type, as done by Prada et al. (2003), could give rise

to a velocity dispersion which depends on the radius within which it

is measured. With our samples we are not able to reliably examine

this issue, as it requires the samples to be split by morphological

type, luminosity and projected radius. The only conclusion we can

draw from our samples is that we observe a trend indicating that

satellite velocity dispersion measurements of galaxies residing in

the range 175 � rp/h−1 kpc � 375 do not contain much information.

This is in perfect agreement with the fact that the measured satellite

velocity dispersions within 375 h−1 kpc are identical, to within the

errors, to those measured within 175 h−1 kpc.

A P P E N D I X B : C O M PA R I S O N W I T H
B R A I N E R D & S P E C I A N A N D B R A I N E R D

Regarding a comparison with the measurements of Brainerd &

Specian (2003), for which in Fig. 13 ellipticals and spirals are shown

by dashed-connected filled and open pentagons, respectively, we

first need to point out that they have used a similar selection cri-

terion to the one proposed in Prada et al. (2003). For that reason,

we expect, as explained above, to find differences between their re-

sults and our standard ones. However, like we did for Prada et al.,

we should be able to recover their results by assuming the same

selection criterion.

For their sample of satellites around spiral primaries, it is impos-

sible to recover their results for the following reasons. First, they

have forgotten to subtract the rms velocity measurement errors in

quadrature, which in their case are of the same order of magnitude

as ours, i.e. ∼110 km s−1 (as they use data from the 2dFGRS 100k

release). Secondly, in some way, the isolation criterion they have

applied have to be wrong, as it is impossible to understand how they

initially find an isolated system with more than 605 satellites. This

is even larger than the largest galaxy cluster found in the complete

2dFGRS by Eke et al. (2004). In all likelihood they must have for-

gotten to deal with effects due to 2dFGRS 100k window function,
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which is extremely patchy, and hence very unsuitable for this type

of study. Similarly, they have probably not used the full photometric

input catalogue to reject systems which were not fully observed. For

these reasons, their velocity dispersion measurements around spiral

galaxies, from data which is a subsample of what we used in this

analysis, are strongly erroneous.

Regarding their subsamples of elliptical primaries, there is no

reason not to believe that they are affected by the same problems

as their sample of spiral galaxies. However, due to the fact that the

intrinsic velocity dispersion of those systems is much larger, forget-

ting to subtract in quadrature the velocity errors does not influence

the results by more than 10 to 15 per cent systematically. On the

other hand, we believe, due to their problems with the isolation cri-

terion, that the errors they quote on the satellite velocity dispersion

around elliptical primaries is probably underestimated, and that the

very strong trend with luminosity is too large.

Finally, we note that we have not, at all, been able to repro-

duce their results using either the full 2dFGRS sample or the 2dF-

GRS 100k release sample. We suspect therefore some of the above-

mentioned problems to be the cause of these difference.

Recently, Brainerd (2005) made a new satellite analysis using the

full 2dFGRS survey. Like for the Brainerd & Specian (2003) work,

we are unable to reproduce in detail their findings, especially for

faint primaries.

A P P E N D I X C : C O M PA R I S O N W I T H
VA N D E N B O S C H E T A L .

Finally, the results from van den Bosch et al. (2004), shown by

dot-connected filled triangles in Fig. 13, clearly show that, with

an isolation criterion that is too relaxed, the proposed method no

longer finds a majority of dynamically isolated systems. Hence their

criteria, as already discussed in their paper, were not intended and

should not used for selecting systems for dynamical studies.

We note that the analytic method presented in van den Bosch

et al. (2004) for the luminosity–velocity dispersion relation, derived

for their conditional luminosity function model, is in very good

agreement with our measurements of that same relation from our

semi-analytic mocks. Moreover, applying our isolation criteria to

van den Bosch et al. (2004) conditional luminosity function mocks,

we recover the underlying luminosity–velocity dispersion relation

to great accuracy. This is a very strong consistency test for two

completely different sets of models, constructed and constrained by

different mechanisms.
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