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Abstract.—The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and
there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding
diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all
lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present
a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the
underlying birth–death process based on the fossil record. The rates are allowed to vary through time independently of each
other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of
each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification
models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the
underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method
with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent
temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group.
The estimated parameters of the birth–death process implemented here are directly comparable with those obtained from
dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information
to infer macroevolutionary processes.[BDMCMC; biodiversity trends; Birth–death process; incomplete fossil sampling;
macroevolution; species rise and fall.]

Global temporal patterns of species diversity are
governed by the complex interactions of biotic and
abiotic factors, but they are ultimately the result
of speciation and extinction. The dynamics of these
processes have traditionally been inferred using data
from the fossil record (Simpson 1944; Stanley 1979),
but advances in molecular phylogenetics have created
opportunities for estimating diversification rates from
the phylogenetic hypotheses of extant organisms
(Harvey et al. 1994; Sanderson and Donoghue 1996;
Paradis 2004). To disentangle the two components of
the diversification process, speciation and extinction
are usually modeled as a stochastic process. The most
commonly used model is the birth–death process
(Harvey et al. 1994; Nee et al. 1994; Bokma 2003) in
which speciation and extinction occur as random events
according to constant or varying rates (Rabosky 2006;
Maddison et al. 2007; Alfaro et al. 2009; FitzJohn et al.
2009; Morlon et al. 2011; Stadler 2011; Etienne et al. 2012;
Stadler and Bokma 2013). These rates and their variation
through time and across clades are usually estimated
by maximum likelihood methods, although Bayesian
approaches have also been implemented (Bokma 2008;
Ryberg et al. 2011; Silvestro et al. 2011; Rabosky et al.
2012).

When a birth–death process is estimated solely
from extant taxa, the inference of speciation and
extinction rates may be severely biased, in particular

if they vary through time or among lineages (Nee
2006; Quental and Marshall 2010; Rabosky 2010).
Part of these limitations have been overcome by
recent conceptual and methodological improvements,
providing significant progress towards understanding
past evolutionary dynamics (e.g., Antonelli and
Sanmartín 2011; Litsios et al. 2012; Drummond et al.
2012). For example, negative net diversification rates,
i.e., rates of extinction surpassing speciation, can now
be estimated from molecular phylogenies, despite the
fact that extinct lineages are generally not included
in these phylogenies (Morlon et al. 2011; Stadler et al.
2013). Yet, neglecting fossil data means discarding
useful information that can significantly improve the
inference of macroevolutionary dynamics, especially
when integrated with phylogenetic hypotheses of extant
taxa (Didier et al. 2012; Ronquist, Klopfstein, et al.
2012; Fritz et al. 2013; Slater et al. 2013; Hunt 2013). The
importance of using the fossil record to reconstruct the
dynamics of diversification is particularly evident in
the case of taxa that were very diverse in the past, but
are represented today by very few species, if any (e.g.,
Bapst et al. 2012).

There is a long history of inferring speciation (or
origination in the case of higher taxa) and extinction
rates, generally based on birth–death models, using first
and last appearances of taxa observed in the fossil record
(Kurtén 1954; Raup 1975, 1991; Sepkoski 1998; Foote 2000,
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2003; Ezard et al. 2011). Given that the times of first
and last appearances of fossil taxa cannot be assumed
to reflect the true times of speciation/origination and
extinction (Strauss and Sadler 1989; Marshall 1990),
various approaches have been developed to estimate
diversification rates from incomplete data (Foote and
Raup 1996; Foote 2000, 2003). In recent years, “internal”
occurrences sampled within the time between first and
last appearances of taxa have become available (Alroy
2010), which may be used to model the processes of fossil
preservation and sampling (Nichols and Pollock 1983;
Connolly and Miller 2001; Liow et al. 2008). Alternatively,
data may be standardized to reduce the confounding
effect of temporally heterogeneous sampling before
parameters of the birth–death or other models are
estimated (Alroy et al. 2008; Cermeno 2012). While the
volume of available fossil data available continues to
increase, most paleontological studies use genera as a
proxy for species in the inference of diversity dynamics
(Alroy 2010), although this might be inappropriate
(Lloyd et al. 2012). Diversification rates estimated with
this approach are therefore not directly comparable
with those derived from birth–death models used in
phylogenetics.

Understanding the dynamics of species diversification
and extinction through time and across clades is
of key importance in evolutionary biology, not least
because it will aid in identifying what drives these
processes. In order to facilitate direct comparisons
between extinct and extant clades and to integrate
paleontological and molecular data, it is desirable to
apply the same birth–death models on both fossil
and phylogenetic data. To this purpose, we develop a
Bayesian approach to investigate processes of speciation
and extinction based on all available fossil occurrences
identified at the species level for a given taxon. Fossil
occurrences are modeled as the result of two processes:
sampling and species diversification. Sampling, in
our definition, includes all historical and geological
conditions that led to the preservation of an organism in
the paleontological record and its subsequent sampling,
description, and identification. Species diversification
reflects the temporal changes in species richness due
to varying speciation and extinction rates through
time. The two processes are combined in a hierarchical
Bayesian framework that jointly estimates the times of
speciation and extinction of each sampled species and
derives the parameters of the underlying birth–death
process.

Our framework advances existing approaches by
combining several key features. First, we utilize all
available fossil occurrences, including those of extant
taxa and fossil species that are known only from a single
occurrence (hereafter referred to as “singletons”). Our
model allows for continuous time and avoids the use of
predefined, discrete time bins that are dictated by the
geological record and do not necessarily correspond to
biological processes (Foote and Miller 2007). The ages of
the fossil occurrences are randomly drawn from their

temporal ranges, and the procedure can be repeated
to account for the associated uncertainty. Second, we
explicitly model the temporal heterogeneity of sampling
for each individual species in the fossil record. For any
fossil species, there is a canonical pattern of decrease in
sampled occurrences at both the start and the end of its
lifetime (the “hat” trajectory; Liow, Skaug, et al. 2010),
such that its first and last appearances may severely
underestimate its true speciation and extinction times
(Foote et al. 2007; Liow and Stenseth 2007; Liow, Quental,
et al. 2010). We model this sampling pattern to estimate
the speciation (and extinction) times of each species in
the data set. In addition, we model the heterogeneity
of the preservation rate in a lineage-specific manner,
using a simple parameterization originally developed for
substitution models in molecular phylogenetics (Yang
1994), and show that this also captures temporal rate
variations. Third, in our birth–death model, extinction
can exceed speciation, the rates are allowed to vary
through time, and their changes are not assumed
to be temporally linked (Foote 2001; Stadler 2011;
Stadler et al. 2013). Furthermore, we do not assume
the phylogenetic relationships among the fossil taxa
to be known, thus greatly expanding the number of
potential data sets that can be examined. Nevertheless,
phylogenetic information could be used, if available,
for example to partition the fossil data and assess
differences in the diversification rates among subclades
of a higher taxon. Within the hierarchical structure
of the model, we include the probability that a clade
undergoing the estimated birth–death process results
in the number of species observed at the present. This
strategy uses a formulation developed in a molecular
phylogenetics context (Kubo and Iwasa 1995) and
therefore introduces a formal link between the analysis
of neontological and paleontological data. Finally, all
the aspects outlined above are integrated in a joint
Bayesian framework to estimate the model parameters
while incorporating several sources of uncertainty.
The resulting posterior distributions of the parameters
are therefore comparable to those obtained by the
standard (Bayesian) phylogenetic methods for molecular
dating (Thorne et al. 1998; Drummond et al. 2006;
Ronquist, Teslenko et al. 2012) and estimation of
diversification rates (Ryberg et al. 2011; Silvestro et al.
2011; Stadler et al. 2013).

We evaluate the robustness of the joint estimation
of the times of speciation and extinction of individual
species and rates of speciation and extinction using
simulations that reflect commonly observed diversity
dynamics. The data sets analyzed were simulated
under a range of potential biases, including violations
of the sampling assumptions, variable preservation
rates, and incomplete taxon sampling. Furthermore,
we demonstrate the application of our approach by
evaluating the temporal dynamics of diversification of
the mammal family Rhinocerotidae to explore how
shifts in speciation and extinction rates have shaped the
expansion and decline of this family.
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METHODS

Probabilistic Model
Fossil occurrence data is here modeled as the result of

two processes: the preservation that allows an organism
to fossilize and be sampled, and the speciation and
extinction that generate and shape species diversity.
The method described below uses a set of dated fossil
occurrences identified to species level as input data.
The data set can include all species with at least one
known fossil occurrence, including extant species. The
number of extant species, with or without a fossil record,
is also used as input data in the analysis. From these
data we estimate: 1) the parameters of the preservation
process, 2) the times of speciation and extinction of
each species in the data set, and 3) the speciation
and extinction rates and their variation through time.
Fossil preservation is modeled by a nonhomogeneous
Poisson process (NHPP), in which the rate parameter is
a function of time, whereas the species diversification
is modeled by a birth–death stochastic process. These
processes are combined for joint parameter estimation
in a hierarchical Bayesian framework. In the following,
we describe the different components of the model.

Times of speciation and extinction.—Let us assume that the
probability of a sampled fossil occurrence is a function
of a NHPP with a rate parameter Q(t) that represents the
probability of sampling at time t, and includes multiple
processes such as the death and subsequent fossilization
of an organism and its modern day sampling and
identification. Since the number of fossil occurrences is
known to decline close to the start and end of the lifetime
of a taxon (Liow, Skaug, et al. 2010), beta distributions
have been used to describe the probability of sampling a
species through time after rescaling its lifespan to a time
range of 0 to 1 (Liow, Quental, et al. 2010). To reproduce
this pattern, we model the sampling probability Q(t)
using a generalized form of the beta distribution that can
take any range of values between two boundaries, often
referred to as a PERT distribution (Program Evaluation
and Review Technique; Vose 2008). Let us consider a
species i that originates at an unknown time of speciation
si and becomes extinct at an unknown time of extinction
ei. In our notation, the ages of all events are measured as
time before the present, so that si >ei. The probability of
sampling at time t is:

Q(t)= (si −ei)qfPERT(t;si,ei) (1)

where q is the mean preservation rate, si −ei is the species
lifespan, and fPERT(t;si,ei) is the PERT distribution with
boundaries si and ei. The preservation rate q indicates the
average expected number of fossil records per species in
a time unit (e.g., 1 myr) and is at this point assumed to be
equal for all species in a given data set (but see below).
The sampling probability Q(t) resulting from Equation
(1) is Q(t)=0 for t �∈ [si,ei] and Q(t)>0 for t∈[si,ei].
In other words, this function approximates the “hat”
trajectory (Liow, Quental, et al. 2010) for the preservation

rate, with no fossil occurrence allowed outside of a
species lifespan (defined by si and ei). The probability
density function of a PERT distribution with maximum
c and shape parameter l is

fPERT(t|si,ei,c,l)= (si −ei)−1−l (si −t)a(−ei +t)b

�(a+1)�(b+1)/�(a+b+2)
(2)

where a= (c−ei)l/(si −ei) and b= (si −c)l/(si −ei). Here,
we use the simplified form of the PERT, i.e., we set the
maximum to c= (si −ei)/2 and the shape parameter to
l=4 to obtain a symmetric “hat”-shaped function with
density

fPERT(t|si,ei)= (si −t)2(−ei +t)2

(si −ei)5B(3,3)
(3)

where B(3,3) is the symmetric beta function with shape
parameters equal to 3. Based on the NHPP, the likelihood
of a species i with K fossil occurrences of ages t1 < t2 <
...< tK given t0 =si, tK+1 =ei , and a preservation rate q,
and conditional on at least one sampled fossil occurrence
is

PNHPP(t1,...,tK |si,ei,q)

=

K∏
j=0

exp

(
−q(si −ei)

∫ tj+1

tj

fPERT(u|si,ei) du

) K∏
j=1

Q(tj)

�i
(4)

where the first product describes the probability of
the waiting times in which no fossils are sampled and
the second product indicates the probability of the
sampled fossil occurrence. The denominator �i indicates
the probability that at least one occurrence is sampled
for the species i, i.e., given the NHPP process:

�i =1−exp
(

−q(si −ei)
∫ ei

si

fPERT(u|si,ei) du
)

(5)

where exp(·) represents the probability of zero fossil
occurrences in the time [si,ei]. Thus the likelihood of
a data set X, i.e., a set of N species each including Ki
occurrences, is:

P(X|s,e,q)=
N∏

i=1

PNHPP(ti
1,...,t

i
Ki

|si,ei,q) (6)

where s=s1,...,sN and e=e1,...,eN are the vectors of
speciation and extinction times, respectively.

Extant species.—A fossil data set can include extant taxa
(i.e. ti

K =0), in which case the reconstructed lifespan
[si,0] represents only an unknown fraction of the entire
species life. The PERT component of the fossilization rate
becomes truncated at time 0 and cannot be defined since
the parameter ei is missing. To overcome this problem
we use data augmentation (Tanner and Wing 1987) to
generate unobserved times of extinction (the latent data
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eDA
i ) based on the estimated extinction rate at time 0 i.e.

�J (see Equation 11). We assume here that the extinction
rate will remain constant in the future. The probability
of an extinction event in time t given �J , according to
the birth–death process (Kendall 1948, cf. Equation 9) is
described by the density:

P(t|�J)=�J exp(−�J t) (7)

from which the latent times of extinction can be
simulated. While the augmented data provide a measure
of the lifespan of an extant species (si,eDA

i ), the
fossil record remains incomplete because fossils can
be observed only in the past. Thus, the likelihood of
an extant species with at least one fossil occurrence
(Equation 4) is calculated only within the range [si,0]:

PNHPP(t1,...,tK =0|si,eDA
i ,q)

=

K−1∏
j=0

exp

(
−q(si −eDA

i )
∫ tj+1

tj

fPERT(u|si,eDA
i )du

)K−1∏
j=1

Q(tj)

1−exp

(
−q(si −eDA

i )
∫ 0

si

fPERT(z|si,eDA
i )dz

)

(8)

The process of data augmentation is performed
iteratively during the posterior sampling and the latent
data are generated from the current values of speciation
times and extinction rates. In our implementation,
simulated eDA

i are sampled from the distribution (7) at
the quantiles 0.125, 0.375, 0.625, 0.875 and likelihoods
obtained under each of the four latent extinction times
are averaged (Tanner and Wing 1987). This sampling
strategy was chosen, instead of e.g., randomly sampling
eDA
i from Equation (7), because it yielded better mixing

of the MCMC samples.

Diversification process: Birth–death prior.—The times of
speciation and extinction (si and ei) must be estimated
for each species (i) in order to use them directly in
Equation (6). A Bayesian estimation of the parameters
s,e, and q requires the definition of the respective prior
distributions. An appropriate prior for the times of
speciation and extinction is the birth–death stochastic
process that describes the tempo of species origination
and disappearance with two parameters: speciation and
extinction rates indicated with � and �, respectively.

The prior probability of s and e given � and � is
calculated, based on (Keiding 1975), as

P(s,e|�,�)∝�B�De−(�+�)S (9)

where B and D are the numbers of speciation and
extinction events, and S is the total time lived (Foote and
Miller 2007), which is summed over all species:

S=
N∑

i=1

si −ei. (10)

a)

b)

FIGURE 1. An example of fossil data set with four species. a) Fossil
occurrences (indicated by symbols) are found as randomly sampled
along each lineage according to a PERT-distributed rate. The lifespan of
a species is defined by the estimated times of speciation and extinction
(si,ei). b) All species are assumed to be connected by an underlying
(unknown) phylogeny, which we do not attempt to reconstruct, here
represented as a “broken tree” in analogy with Fig. 1 of Nee (2001).

In this formulation, the species are treated as lineages of
an underlying complete phylogeny (Fig. 1). The lineages
can be connected in many different topologies, but these,
as in the reconstructed process originally described by
Nee et al. (1994), do not affect the estimation of speciation
and extinction rates that is based exclusively on the times
of speciation and extinction (s,e). Hence, the topology of
the complete tree is here regarded as unknown.

The assumption of constant speciation and extinction
rates (Equation 9) can be relaxed by introducing rate
shifts through time (Stadler 2011; Stadler et al. 2013).
We indicate the times of rate shifts with the vectors ��

and �M of length I−1 and J−1 respectively to define
I time frames with speciation rates �=�1,...,�I and J
time frames with extinction rates M=�1,...,�J . We set
��

I =�M
J =0 and ��

0 =�M
0 =smax where smax is the time of

origin of the process (here defined as the speciation time
of the oldest taxon included in the analysis) Thus, we can
rewrite the log probability of speciation and extinction
times (Equation 9) as

logp(s,e|�,M,��,�M,smax)∝
I∑

i=1

(
log(�i)Bi −�iS[��

i−1,�
�
i ]
)

+
J∑

j=1

(
log(�j)Dj −�jS[�M

j−1,�
M
j ]
)

(11)

where Bi and Dj are the number of speciation and
extinction events in the time frames [��

i−1,�
�
i ] and

[�M
j−1,�

M
j ], respectively. Because the parameters of the

birth–death process are not known, they must be
estimated from the data, along with the number of
rate shifts and their temporal placement. Times of shift
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are sampled in continuous time and assumed to be
independent for speciation and extinction.

Taxon sampling and birth–death hyperprior.—The Bayesian
estimation of the speciation and extinction rates from the
data requires the definition of a hyperprior on the birth–
death parameters. The birth–death process described
above can be used to estimate the birth–death parameters
(�,M,��,�M) underlying the diversification of a clade
under the assumption that the number of speciation
and extinction events (B,D) and the total time lived
(S) are known. If all species of a clade are sampled,
i.e. they appear with at least one occurrence in the
fossil record, B and D are observed values and S is
obtained by estimating the speciation and extinction
times (s,e; Equations 4, 10). In the case of incomplete
taxon sampling, the observed number of speciation and
extinction events represents only a fraction of the total,
and an estimation of the birth–death rates might be
expected to be biased as observed in the case of extant
taxa phylogenies (Yang and Rannala 1997; Stadler 2009).
However, removing a random set of species from the
sample has the effect of reducing both the births and
deaths counts (B,D) as well as the total time lived S.
This results in a flatter likelihood surface, but leaves
the maximum likelihood point estimate of the rates
unchanged (Supplementary Fig. S1 available at Dryad
under http://dx.doi.org/10.5061/dryad.87d8s).

The effect of nonrandom incomplete sampling on the
birth–death rate estimation is more difficult to predict
and to correct for. In particular, the distribution of the
true species richness through time of a given clade that
includes the taxa not appearing in the fossil record, is
unknown (cf. Discussion). Nonrandom taxon sampling
can be generated by the preservation process itself,
which tends to overrepresent long-living species as the
preservation rate (q) decreases and short-living taxa are
more likely to disappear entirely from the fossil record
(Foote 2000). We investigated the potential bias deriving
from low preservation rates and consequent incomplete
taxon sampling empirically on simulated data sets (see
below). Nonrandom taxon sampling is also expected to
play an important role in particular if recently evolved
species might not have had time to fossilize. However,
we can assume that the true current species richness of a
clade is the number of observed extant species, indicated
by NOBS. We construct an informative hyperprior for the
birth–death parameters as the probability that a clade
originating at time smax results in NOBS extant species
after diversifying under a birth–death process defined
by �,M,��,�M. This is calculated using equations (1a–
c) of (Kubo and Iwasa 1995), assuming a single starting
lineage at time smax:

PNOBS =P(�,M,��,�M|NOBS,smax)

= �

	(1+	)

(
	

1+	

)NOBS

,NOBS >0 (12)

where

	=
∫ 0

smax

�uexp

[∫ 0

u

(
�z −�z

)
dz

]
du (13)

and

�=exp

[∫ 0

smax

(
�u −�u

)
du

]
. (14)

In the case of a clade that has gone completely extinct,
i.e., NOBS =0, the hyperprior of Equation (12) becomes
(Kubo and Iwasa 1995):

PNOBS =P(�,M,��,�M|NOBS =0,smax)

= 1+	−�

	(1+	)
,NOBS =0 (15)

The age of origin of the diversification process (smax),
i.e., the “root age” of the clade from a phylogenetic
perspective, is assumed here to be the time of speciation
of the oldest sampled species.

Posterior.—After assigning Gamma (hyper-)priors to the
preservation rate q and the time of origin of the process
smax (the latter truncated at the age of the oldest fossil
in the data set), we can write the joint posterior of all
parameters as:

P(s,e,�,M,��,�M,smax,q|X,NOBS)

∝P(X|s,e,q) P(s,e|�,M,��,�M)P(q)

P(�,M,��,�M|NOBS,smax)P(smax). (16)

Heterogeneity of preservation rates across species.—The
model of fossil preservation described by Equations
(1–8) is based on a preservation rate q that is assumed
constant through time and across species. While
the preservation rates could ideally be estimated
independently for each species in the data set, the
number of per-species fossil occurrences might be
insufficient for this estimation and the model of fossil
preservation would be likely over-parameterized.
Alternatively, the across-species variation of the
preservation rate can be incorporated without
attempting to estimate species-specific rates. This
approach has been used in molecular phylogenetics
to deal with the heterogeneity of mutation rates
among the sites of aligned sequences (Yang 1993).
We implemented the approximate method for rate
heterogeneity proposed by Yang (1994) to model the
variation of the preservation rates across species. That is,
we assumed the rates of preservation to vary according
to a Gamma distribution with an overall mean equal
q. The Gamma distribution was approximated by four
discrete categories with equal probabilities and the
rescaled median values were applied as multipliers of
the parameter q. The likelihood of each species was
then calculated using Equation (4) under each of the
four rates and averaged. The parameters of the Gamma

http://dx.doi.org/10.5061/dryad.87d8s
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distribution were assumed to be equal (Yang 1994),
assigned a uniform prior within the range [0, 20], and
estimated from the data.

Sampling Algorithms and Implementation
The Bayesian framework described above was

implemented using a Markov chain Monte Carlo
(MCMC) with an acceptance ratio based on Equation
(16) to sample the model parameters from their posterior
distribution. In MCMC analyses the number of rate
shifts is fixed a priori, but their temporal placement
(��,�M) is estimated from the data. Birth–death models
with different number of rate shifts can be compared
by their respective marginal likelihoods calculated by
thermodynamic integration (TI; Lartillot and Philippe
2006). While the estimation of marginal likelihood via
TI provides an accurate way to compare alternative
hypotheses of diversification, its application can be
time consuming and even inefficient considering the
potentially infinite number of models that can be
fitted to the data. Thus, an alternative algorithm called
birth–death MCMC (BDMCMC; Stephens 2000) was
developed to estimate the number of parameters of
the model (i.e., the number of rate shifts) and the
speciation and extinction rate in a joint analysis. This
method represented a great improvement over the
MCMC+TI algorithms in terms of computational time
(see Appendix), and was therefore used in all the
analyses presented below. The vectors of speciation and
extinction times (s and e) were assumed to derive from
an underlying model of diversification with unknown
number of speciation rates (k� ≥1) and extinction rates
(k� ≥1). The number of rate shifts (k�−1;k�−1) was
thus estimated from the data. More details on the
algorithms implemented for this study are provided in
the Appendix. Marginal rates within one myr time bins
were logged to obtain posterior estimates of speciation
and extinction rates through time. Posterior distributions
of individual rates (e.g., �i) or times of rate-shift (e.g., ��

i )
could not be obtained in BDMCMC analyses, because
the vectors �,M have variable lengths depending on
the currently estimated number of rate shifts. Note that
posterior distributions of individual rates or time of rate-
shift can be obtained instead by running a standard
MCMC analysis with fixed number of rates.

The methods described in this study were
implemented in an open-source command-line
program, PyRate, available at http://sourceforge.net/
projects/pyrate/. PyRate is written in Python version
2.7 (www.python.org) and supports multi-thread
computation of the likelihoods and parallel MCMC
runs. It has been developed and tested on UNIX
machines.

Simulations
The Bayesian framework described above was tested

using simulated data. Data sets were generated by

simulating the speciation and extinction of lineages (s,e)
based on a stochastic birth–death process and assuming
that new species are budding off the parent lineage
(asymmetric speciation). Simulated data sets were
generated based on six patterns of species diversification
chosen to yield scenarios of varying species richness
commonly observed in empirical data (Fig. 2 and Table 1;
Sepkoski 1981):

I. expanding diversity with constant speciation and
extinction rates (�>�);

II. expanding diversity followed by a decline with all
taxa going extinct before the present (�1 >�1, �2 <
�2);

III. expanding and then declining diversity followed
by turnover at equilibrium (�1 >�1, �2 <�2, �3 =
�3);

IV. expanding diversity followed by turnover at
equilibrium due to a decrease in speciation rate
(�1 >�1, �2 =�1);

V. expanding diversity followed by turnover at
equilibrium due to a decrease in speciation rate
and increase in extinction rate (�1 >�1, �2 =�2);
and

VI. constant speciation rate and a mass extinction
event (�1 >�1, �1 ��2, �1 >�1).

Based on the complete birth–death realizations, fossil
occurrences were simulated for each species. Along each
lineage i a number of occurrences Ki was derived from a
Poisson distribution with rate parameter qPOI =q(si −ei)
where q is the preservation rate (cf. Equation 1), and
si,ei are the true times of speciation and extinction.
The preservation rate was assumed q=3 unless stated
otherwise. A number of fossils Ki were then randomly
drawn from the PERT distribution for all species,
resulting in a synthetic data set that mimics the fossil
record. The shape parameter of the PERT distribution
was assumed to be l=4 (as in Equation 3) unless stated
otherwise. The number of occurrences K depended
only on the preservation rate q and on the species
lifespan, i.e., it was not conditioned on being greater
than 0. The lineages without a fossil record (K =0) were
disregarded in the analyses because of the condition
stated in Equation (4). All extant species were then
truncated at time 0 (i.e., the present). The number
of extant species based on the complete birth–death
realization (NOBS) was kept to construct the hyperprior
of Equations (12–15).

Sensitivity analyses.—To assess the robustness of our
approach to different violations of the assumptions and
quality of the data, a range of 14 settings were used
to sample the fossil occurrences from each birth–death
realization (Table 2).

http://sourceforge.net/projects/pyrate/
http://sourceforge.net/projects/pyrate/
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a) b) c)

d) e) f)

FIGURE 2. Simulated temporal patterns of species diversity. Six birth–death scenarios (a–f) were simulated to reproduce common patterns of
increasing and/or declining species richness observed in the fossil record. Different variations of speciation (solid line) and extinction (dotted
line) rates through time are shown on the left side of each panel (see text and Table 1 for details).

TABLE 1. Summary of birth–death simulations

Birth-death
scenario

root
age

Speciation
rates (�)

Extinction
rates (�)

Times of shift Species
min/max

Frac. extant
min/max

�� �M

I (1�,1�) 45 0.15 0.07 NA NA 106–270 0.50–0.63
II (2�,2�) 30 0.4, 0.1 0.05, 0.4 20 15 111–273 0–0.03
III (3�,3�) 35 0.4, 0.1, 0.01 0.05, 0.3, 0.01 20, 10 15, 10 119–289 0.10–0.18
IV (2�,1�) 35 0.5, 0.1 0.1 27 NA 100–300 0.18–0.31
V (2�,2�) 35 0.35, 0.1 0.01, 0.1 25 18 117–268 0.28–0.40
VI (1�,3�) 35 0.2 0.05, 0.6, 0.05 NA 15, 12 122–294 0.37–0.69

Notes: Numbers between parentheses indicate the number of rates between shifts (e.g., 1�,3�: 1 speciation rate, 3 extinction rates). The root age
and the times of rate shifts are given in Ma. Ten birth–death realizations were generated from each scenario and the resulting number of species
(and the fraction of extant) is reported as min and max values across replicates.

I. We varied the shape parameter (l) of the PERT
distribution and sampled occurrences under a
uniform distribution (l=0), a PERT distribution
with the same parameter l as assumed in the
model (l=4, cf. Equation 3), a PERT distribution
with greater convexity (l=10), and finally a PERT
distribution shape parameter randomly varying
across species l∈[0,10].

II. We allowed the preservation rate to change
across species by drawing species-specific rates
q from a gamma distribution. Three different
shape parameters were tested, namely �(5),�(3),
and �(1), to simulate various degrees of rate
heterogeneity, with variances equal to 0.2, 0.33, 1,
respectively. In addition, a varying-through-time
fossilization process was simulated by introducing
a 60-fold linear decrease in the preservation rate

from an initial value q=3 at the present to a value
of q=0.05 at the origin of the clade.

III. The number of fossil records was reduced by
decreasing the preservation rate that was set to
q=1,0.5, and 0.25. This resulted in data sets with
increasingly poor taxon sampling (below 50% in
the worst cases) and high fraction of singletons (up
to around 30% of the species; Table 2).

IV. Data sets with incomplete taxon sampling were
generated by removing from the complete birth–
death realizations entire lineages at random to
obtain sampling fractions of 
 =0.75,0.50, and
0.25. It is noted that the effective taxon sampling
might further decrease after excluding the species
that lacked a fossil record, i.e., with K =0 (Table 2).

For each of the 6 birth–death scenarios, 10 independent
realizations were generated, resulting in data sets of
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TABLE 2. Summary of the settings applied to sample fossil occurrences from each of the birth–death scenario

Sampling settings Effective sampling
fraction

Occurrences
per species

Proportion of
singletons

l q 	 


PERT shape 4 3 NA 1 0.76–0.98 10.77–29.49 0.05–0.14
0 3 NA 1 0.89–0.99 13.60–30.24 0.01–0.10
10 3 NA 1 0.70–0.98 9.50–30.35 0.01–0.13
0–10 3 NA 1 0.74–0.99 10.46–29.75 0.01–0.12

Rate 4 3 1 1 0.63–0.93 9.90–33.59 0.01–0.09
heterogeneity 4 3 3 1 0.75–0.98 8.89–29.14 0.01–0.11

4 3 5 1 0.79–0.98 9.98–32.81 0.01–0.10
4 3–0.05 NA 1 0.55–0.86 3.53–12.36 0.05–0.21

Preservation 4 1 NA 1 0.68–0.94 3.56–10.27 0.05–0.21
rate 4 0.5 NA 1 0.55–0.88 1.68–5.05 0.11–0.26

4 0.25 NA 1 0.43–0.75 0.97–2.65 0.16–0.34

Random taxon 4 3 NA 0.75 0.58–0.75 7.63–20.55 0.01–0.09
sampling 4 3 NA 0.50 0.40–0.50 5.36–15.99 0.00–0.06

4 3 NA 0.25 0.19–0.25 2.41–10.20 0.00–0.05

Notes: Fossil occurrences were obtained from PERT distributions with different shape parameters (l), a range of preservation rates (q), and under
different proportions of random taxon sampling (
). The preservation rate was also varied across species according to a gamma distribution
with shape parameter 	. Summary statistics for the resulting data sets are calculated over all birth–death scenarios and provided as min and
max values. “Effective sampling fraction” indicates the proportion of species that appear in the record with at least one occurrence.

100 to 300 species. Fossil occurrences were sampled for
each of the 60 realizations of the birth–death under the
14 preservation and taxon sampling settings described
above (Tables 1 and 2).

Statistical Evaluation
All simulated data sets (6 birth–death scenarios ×

14 preservation and sampling settings × 10 replicates)
were analyzed by BDMCMC with runs of 5,000,000
generations (see Appendix for more details). Efficient
chain mixing and effective sample sizes were assessed
by examining the log files in Tracer (Rambaut and
Drummond 2007). The sampling frequencies of different
numbers of rate shifts were estimated from the posterior
sample to assess the power of the method to find the
correct model of diversification. Marginal speciation and
extinction rates within 1 myr time bins were summarized
from the posterior samples as mean values and 95%
highest posterior densities (HPD). These were displayed
in rates-through-time plots and compared against the
rates used to simulate the data. The results of the
10 replicates were pooled in a single plot showing
the range of mean rate values and HPD upper and
lower boundaries across replicates. Mean and 95%
HPD of the preservation rate (q) were calculated for
the 14 sampling settings (Table 2) averaging over all
birth–death scenarios and over all replicates. A similar
approach was adopted to assess the accuracy of the
estimated age of origin of the data set (smax) in which
case the difference between the true values of smax and
the estimated values ŝmax was calculated and averaged
over data sets and replicates.

The BDMCMC analyses were repeated on all data
sets using the Gamma model for heterogeneity of the
preservation rate. Rate-through-time plots (RTT) of the

marginal rates were generated and the posterior sample
of Gamma’s shape parameter (	) was interpreted as a
measure of the rate heterogeneity and compared against
the true value used to simulate the data. While proper
model testing to choose between constant-rate and
Gamma models was not attempted, a much simpler (and
computationally cheaper) approach was taken instead.
Since increasing values of the shape parameter indicate
decreasing rate heterogeneity (rates are constant with	=
∞), we considered the Gamma model preferable over the
constant rate model whenever 	 was found significantly
smaller than the upper bound defined by the hyperprior
range [0,20]. With a shape parameter 	=20 the gamma
distribution has a variance of 0.05.

A Fossil Data Set of the Family Rhinocerotidae
We used our approach to evaluate the diversification

dynamics of the mammal family Rhinocerotidae. This
family was selected for its extensive fossil record
and long diversification history starting in the early
Eocene (Tougard et al. 2001; Steiner and Ryder 2011).
Rhinocerotidae also serve as an exemplary group for
which phylogeny-based methods are expected to have
limited analytical power due to the very little present
diversity, i.e., five extant species. Fossil occurrences were
assembled from the NOW database (Fortelius 2013),
the Paleobiology Database (http://paleodb.org) (both
downloaded on January 17th, 2013), and from Geraads
(2010). All undetermined species and genera were
removed from the data. The ages of most occurrences
were provided with a temporal range (of size 0–6.28 myr)
from which a random age was uniformly drawn for
each occurrence. The data set (deposited at Dryad,
http://dx.doi.org/10.5061/dryad.87d8s) comprised 164
species including the five extant species, with a total of

http://dx.doi.org/10.5061/dryad.87d8s
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TABLE 3. Sampling frequencies of the number of rates (k� and k�) estimated by BDMCMC for the different birth–death scenarios sampled
under preservation rate q=3 and averaged over ten replicates (standard deviation across replicates is given in parentheses if greater than 0.01)

Birth-death
scenario

Parameter Sampling frequency (number of rates k)

1 2 3 4 5

I (1�,1�) � 0.80 (0.13) 0.17 (0.11) 0.02 (0.02) 0 0
� 0.95 (0.03) 0.05 (0.02) 0 0 0

II (2�,2�) � 0.01 (0.01) 0.66 (0.19) 0.28 (0.15) 0.05 (0.04) 0
� 0 0.83 (0.12) 0.17 (0.12) 0.01 (0.01) 0

III (3�,3�) � 0.02 (0.01) 0.49 (0.11) 0.39 (0.07) 0.09 (0.05) 0.01 (0.01)
� 0.02 (0.01) 0.04 (0.03) 0.77 (0.21) 0.15 (0.13) 0.03 (0.05)

IV (2�,1�) � 0 0.79 (0.13) 0.20 (0.12) 0.02 (0.01) 0
� 0.97 (0.01) 0.03 (0.01) 0 0 0

V (2�,2�) � 0.02 (0.02) 0.78 (0.08) 0.18 (0.06) 0.02 (0.01) 0
� 0.02 (0.02) 0.92 (0.05) 0.05 (0.03) 0 0

VI (1�,3�) � 0.47 (0.19) 0.45 (0.16) 0.08 (0.03) 0.01 0
� 0 0 0.99 (0.02) 0.01 (0.02) 0

Note: Numbers in bold highlight the settings used to generate the data sets.

2,463 occurrences spanning 45 myr, with 35 species (21%)
being represented by a single sampled fossil occurrence.

The data set was first analyzed by 10,000,000
BDMCMC generations both assuming constant
preservation rate and under the Gamma model to
assess whether heterogeneity of the preservation rate
could be detected. The selection of the Gamma model
followed the procedure described above, and ten
additional BDMCMC analyses were performed after
randomizing the age of fossil occurrences within their
corresponding range intervals. The posterior samples
were finally compared and combined to estimate
the rates through time. This approach explicitly
incorporates the uncertainty associated with the age
of the fossil records, which generally relies on the
estimated boundaries of stratigraphic units (Gradstein
et al. 2012).

For comparison, phylogeny-based estimations of the
diversification rates were obtained by applying the
birth–death-shift model as implemented in TreePar
(Stadler 2011). Maximum-likelihood analyses were
carried out on the clade of extant rhinos extracted
from a recently published molecular phylogeny of
Perissodactyla dated with relaxed molecular clock and
fossil calibrations (Steiner and Ryder 2011). Because one
of the five extant rhino species was missing in the
tree, the analyses were corrected for incomplete taxon
sampling (Stadler 2011). The fit of birth–death models
with different number of rate shifts were compared
using the Akaike Information Criterion corrected by
sample size (AICc; Akaike 1973), Akaike weights were
used as measures of their respective relative likelihoods
(Burnham and Anderson 2002).

RESULTS

Model Selection
Our analyses on the simulated data sets using

BDMCMC show that the correct birth–death models
consistently received strong support (i.e., high sampling

frequency; Table 3 and Supplementary Table S2
available at Dryad under http://dx.doi.org/10.5061/
dryad.87d8s), indicating that the BDMCMC is robust
against over- or under-estimation of the number of
rate shifts. Nevertheless a considerable uncertainty
was detected in some cases around the number of
shifts in speciation and extinction rates, k� and k�,
respectively. For example, in data set III (Fig. 2c),
models with one or two shifts in the speciation
rate received similar support based on the sampling
frequencies of k� (Table 3). For data sets sampled
under strong violations of the model assumptions (e.g.,
under constant preservation rate along the species
lifespan, sampling scheme 2; Table 2) or under very
low preservation rates and taxon sampling, the accuracy
of the model selection tended to decrease (Table 3
and Supplementary Table S1 available at Dryad under
http://dx.doi.org/10.5061/dryad.87d8s). This led to a
failure to detect small rate changes, highlighted by the
second shift in the speciation rate of the birth–death
scenario III. In addition, the speciation rate in the birth–
death scenario VI was often estimated to undergo a
modest decrease after the mass extinction event (Table 1,
Fig. 3 and Supplementary Figs. S2–29 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s).
However, the highest sampling frequency was found
in favor of a false rate shift (thus representing “false
positives”) in only 3.5% of the analyses, and always with
low support (0.40–0.55).

Parameter Estimation
Speciation and extinction rates.—The estimation of
the birth–death parameters was accurate throughout
the simulations (Fig. 3), and the correct trends
of rate changes and their timing were always
recovered (e.g., rate increases/decreases, turnover
phases, negative/positive diversification). Cases of
spikes of rate changes, such as the sudden increase in
extinction rates causing a mass extinction (Fig. 3c,f), were
correctly identified. While the correct trend of decline

http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
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a) b) c)

d) e) f)

FIGURE 3. Rate-through-time plots. Marginal rates of speciation and extinction summarized over ten replicates for each simulated data
set obtained through BDMCMC sampling. Dark gray areas show the range of mean values obtained from the different replicates and the gray
shaded areas display the range of the associated 95% credibility intervals, black dashed lines indicate the parameters used in the simulations.
The inserts in the speciation rate plots represent simplified diagrams of the simulated species richness dynamics as shown in Figure 1.
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a) b) c) d) e)

FIGURE 4. Rate-through-time plots. Marginal rates of speciation and extinction summarized over ten replicates for birth–death scenario V
(cf. Fig. 2) under different sampling settings: a) variable shape parameter of the PERT distributed preservation rate (ranging from 0 to 10); b)
strong heterogeneity of the preservation rate on a species-specific basis or c) through time; d) severely decreased preservation rate (yielding
an effective sampling fraction of 43–75%); e) random incomplete taxon sampling (75% of the species removed). More details on the sampling
settings used for fossil occurrences are provided in the Table 2.

of the speciation rate was reconstructed for the birth–
death scenario III (Fig. 3c), identifying the two successive
rate shifts was difficult (as shown by the sampling
frequencies of the BDMCMC model selection; Table 3),
and the magnitude of the rate variation tended to be
slightly underestimated. The mean posterior rates were
found to be generally within 10–20% variation across
replicates and the size of the 95% HPDs was generally of
the same order of magnitude as the rates and similar for
both speciation and extinction (Fig. 3). It should be noted
that the gray-shaded areas in the RTT plots displays
the maximum extent of the credibility intervals over
ten replicates, thus overestimating the size of the actual
HPDs for a single analysis. Larger credibility intervals
were generally observed when clades had smaller sizes,
e.g., close to their origin (scenarios I and III) or close to
the present (scenario II; Figs. 2 and 3a,b,c).

The posterior speciation and extinction rates are
consistent throughout the different sampling settings,
although model violations and decreased quality of
the data had an impact on the accuracy of the
estimates. The assumption of uniform preservation
rates throughout a species’ lifespan, i.e., violating
the assumption of a PERT(4) “hat” distribution,
led to an underestimation of the birth–death rates
(Supplementary Figs. S3 and S17 available at Dryad
under http://dx.doi.org/10.5061/dryad.87d8s), while
variable shape parameters across species (ranging from
uniform to very convex distributions, PERT(0–10)) did
not affect substantially the accuracy of the posterior rates
(Fig. 4a Supplementary Figs. S5 and S19 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s).
Strong variations of the preservation rates across taxa or
through time resulted in increased uncertainty around

the rate estimates, hence yielding wider credibility
intervals (Fig. 4b,c). The marginal rate estimated under
the constant preservation rate model and under the
Gamma model were found to be very similar throughout
all simulations.

Analyses on data sets with low-average preservation
rate or with incomplete taxon sampling distributed
randomly across species showed that the marginal
rates were not affected by any consistent bias
(Fig. 4d,e and Supplementary Figs. S10–15 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s),
even with data sets with as many as 30% of singletons
and with taxon sampling below 25% (Table 2).
In particular, we did not find evidence of over-
/under-estimation of the rates or strong deviations
of their dynamics. With increasing incompleteness of
the data sets, however, the posterior rates showed
wider HPDs and the magnitude of the rate changes
often appeared smoothed out (Fig. 4d,e). While the
mass extinction event simulated in the birth–death
scenario VI was correctly detected under all sampling
settings, a spurious decline of the speciation rate
was observed under some conditions (Fig. 4 and
Supplementary Figs. S10, S15 available at Dryad
under http://dx.doi.org/10.5061/dryad.87d8s). This is
however limited in its magnitude and did not receive
significant support in the BDMCMC model sampling
(Table 3 and Supplementary Table S2 available at Dryad
under http://dx.doi.org/10.5061/dryad.87d8s).

Preservation rate.—Estimates of the mean preservation
rate q were found to be very accurate throughout most
of the simulations with credibility intervals centered on

http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
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TABLE 4. Posterior estimates of the preservation rates and accuracy of the root age estimate (expressed as difference from the true value, in
myr)

Simulation
settings

Constant q model Gamma model

q̂ smax (error) q̂ 	̂ smax (error)

PERT shape l = 4 2.69–3.14 −2.39–1.42 2.62–3.14 13.87–20 −2.60–1.48
l = 0 1.93–2.24 −10.39– −1.19 1.89–2.22 14.17–20 −10.83– −1.28
l = 10 3.56–4.12 −0.33–3.27 3.45–4.17 12.68–20 −0.45–3.29
l = 0–10 2.11–3.90 −5.24–3.03 2.06–3.94 13.17–20 −5.46–3.16

Rate 	 = 1 2.69–4.68 −5.66–4.65 1.44–6.74 0.56–1.77 −9.00–3.69
heterogeneity 	 = 3 2.60–3.63 −3.15–2.16 2.45–4.16 1.16–3.62 −4.02–2.05

	 = 5 2.70–3.46 −3.15–1.72 2.53–3.70 1.68–6.07 −3.33–1.81
q = 3–0.05 0.65–1.69 −2.35–5.40 0.61–2.20 0.78–16.03 −5.88–5.56

Preservation q = 1 0.82–1.11 −5.21–2.48 0.79–1.13 8.22–20 −6.27–2.62
rate q = 0.5 0.40–0.61 −8.62–2.71 0.38–0.61 7.78–20 −10.66–2.82

q = 0.25 0.19–0.35 −14.20–4.23 0.18–0.36 6.06–20 −16.70–4.72

Random taxon 
 = 0.75 2.64–3.16 −3.19–5.95 2.56–3.16 12.48–20 −3.70–4.65
sampling 
 = 0.50 2.63–3.19 −3.39–6.03 2.53–3.23 11.21–20 −3.74–6.41


 = 0.25 2.46–3.30 −3.62–8.29 2.26–3.36 6.86–20 −4.01–8.42

Notes: Results are provided from the constant rate and Gamma model. In the latter case estimates of the shape parameter (	) of the gamma
distribution are also provided. Parameter values are provided as 95% HPD ranges calculated over all birth death scenarios and respective
replicates. When the upper limit of this range equals 20 for the 	 parameter, the posterior distribution is truncated at the upper bound of the
prior, indicating constant rates (cf. text).

the correct values and limited degrees of uncertainty,
e.g., around ±10% of their true value (Table 4). The
preservation rate was underestimated (around 30%)
in the case of uniform fossil sampling (i.e., PERT(0))
and overestimated (by around 20%) under more convex
distribution of the preservation rate (i.e., PERT(10)),
whereas variable shapes of the PERT distribution
yielded correct rate estimates. The posterior values of
q obtained under the constant rate model and the
Gamma model were similar even in the cases of data
sets simulated under rate heterogeneity. However, the
Gamma model was able to capture the correct degree of
rate variation across species through the estimation of
the shape parameter 	. Indeed, in all data sets simulated
under constant rate, the 95% HPD of 	 included its upper
prior boundary (i.e., 20) indicating negligible variation.
Instead, 	 was found to be significantly lower in the
other cases, with the HPDs centered on their correct
values (Table 4). Preservation rates increasing through
time were also detected and resulted in values of 	<20,
although this led to a higher level of uncertainty around
the shape parameter.

Root age.—The age of the birth–death process, measured
as the oldest time of a speciation event in the clade
(smax), was found to be reconstructed with a high
degree of accuracy in the large majority of simulations
(Table 4). The correct root age was always found within
the 95% HPD, and errors ranged between ± 2 and
5 myr when the preservation rate and taxon sampling
were comparatively high i.e., q≥1, 
 ≥0.75. The only
consistent bias was observed in the case of uniform
fossil sampling (i.e., PERT(0)), in which case the root
age was estimated between 1 and 10 myr too old. With

lower preservation rates, more uncertainty was detected
toward older root ages whereas an opposite trend was
observed under very low random taxon sampling.

Diversification of Rhinocerotidae
The BDMCMC analyses of the Rhinocerotidae data

indicated that speciation and extinction rates are likely
to have varied throughout their evolutionary history. A
hypothesis of constant rate was rejected for speciation
(sampling frequencies of k� =1 smaller than 0.01)
and received low support for extinction (sampling
frequencies of k� =1 smaller than 0.50; Table 5). Our
analyses strongly support at least one shift in speciation
rate at around 23 Ma, with potentially one additional
rate shift earlier in the Oligocene. More uncertainty
was found in the case of the extinction rates with over
50% of the BDMCMC samples scattered between one
and three rate shifts. The marginal rates through time
(Fig. 5a) displayed wide credibility intervals during the
early stages of diversification of the family (at 40 Ma �=
0.344, 95% HPD: 0.135–0.671, �=0.177, 95% HPD: 0.056–
0.424). Between 35 and 25 Ma the extinction rate shows a
nearly 60% decrease (from 0.177 to 0.102) mainly due to a
reduction of the upper bound of the credibility interval
(from 0.412 to 0.163). Similarly, the size of the credibility
interval for speciation rate significantly decreased at
around 35 Ma and speciation was found constant around
�=0.285 (95% HPD: 0.139–0.423) until 23 Ma. A phase of
positive net diversification is observed at the transition
between the Oligocene and Miocene (29–21 Ma) with
extinction significantly lower than speciation (at 26 Ma
�−�=0.184; 95% HPD: 0.035–0.339; Fig. 5b). Around
20 Ma the speciation rate shows a 2.6-fold decrease
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TABLE 5. Diversification of Rhinocerotidae: Estimated number of rates (k� and k�)
obtained by BDMCMC (sampling frequencies) from the fossil record and by maximum
likelihood (Akaike weights) from phylogenetic data

Data set Parameter Sampling frequency (number of rates k)

1 2 3 4 5 6

fossil (164 spp.) � 0.011 0.690 0.255 0.039 0.005 0
� 0.446 0.257 0.204 0.076 0.016 0.002

Akaike weights (number of rates k)

phylogeny (4 spp.) � & � ≈1 ≈0 0 0 0 0

(from 0.285 to 0.109) and afterwards remains constant
until the present. Throughout most of the Miocene,
the Rhinocerotidae diversification is characterized by a
phase of stable species turnover, with both speciation
and extinction rates being comparatively low. Starting
from the late Miocene (around 10 Ma), a gradual increase
of the marginal extinction rates is inferred, culminating
at the Pleistocene, with �=0.177 (95% HPD: 0.062–
0.440). This pattern paired by constant speciation rates
results in negative mean diversification rates over the
past 11 myr, i.e., in the Pleistocene and Holocene �−�=
−0.067 (95% HPD: -0.344– 0.077).

Our analyses provide evidence for a very strong
heterogeneity of the preservation rate across species
with an estimated shape parameter 	=0.576 (95% HPD:
0.490–0.667) and the mean likelihood being over 800
log units higher for the Gamma model compared to
the constant rate model. The average preservation rate
was found to be equal to q=5.701 fossil occurrences per
species per myr (95% HPD: 5.197–6.206), but effectively
varying across species, based on the estimated Gamma
model, from ca. 0.25 to 15 estimated fossils per species
per myr. The root age of the Rhinocerotidae clade was
inferred at 47.33 Ma (95% HPD: 45.24–50.39 Ma; Fig. 5c).

Phylogeny-based analyses on the dated molecular tree
of extant taxa strongly favored a constant rate birth–
death against models with one or more rate shifts based
on AICc scores and Akaike weights (Table 5). Under
the constant rate model, the estimated speciation rate
was 0.026 and the extinction rate was found to be
approximately 0 (Fig. 5b).

DISCUSSION

We proposed a novel Bayesian framework to model
the sampling process and the dynamics of species
diversification and extinction. Our method uses all
available temporal occurrences assigned to a species,
including singletons and extant species with at least
one fossil occurrence, which are usually excluded
from fossil analyses, to infer the parameters of a
birth–death process while jointly estimating the times
of speciation and extinction. The joint parameter
estimation, in a hierarchical Bayesian context, provides a
natural way of incorporating the temporal uncertainties

of speciation and extinction events imposed by the
incompleteness of the fossil record, and reduces the
risk of error propagation (Lartillot and Poujol 2011).
Furthermore the use of mechanistic, process-based
priors such as the birth–death (hyper-)priors applied
here (Equations 9 and 12; Keiding 1975; Kubo and Iwasa
1995) renders their definition less subjective and easier to
interpret.

One advantage of our Bayesian method over
previously developed likelihood or nonprobabilistic
(fossil-based) approaches is the parameterization of
the model. New parameters, i.e., rate shifts, are
introduced in the model only if they significantly
improve the likelihood of the data. Moreover, the
BDMCMC approach has the ability to explore a virtually
infinite set of models that would not be feasible to test
using marginal likelihoods. This effectively corresponds
to model averaging and makes the estimates more
robust, particularly if several models have a similar fit
(Wasserman 2000), because the posterior marginal rates
through time incorporate the uncertainty of both the
time of rate shifts and their number.

Birth–death Process
Our analyses showed that the dynamics of speciation

and extinction rates, including sudden rate changes and
mass extinction, are correctly estimated under a wide
range of conditions, such as low levels of preservation
(down to 1–3 fossil occurrences per species on average),
severely incomplete taxon sampling (up to 80% missing),
and high proportion of singletons (exceeding 30% of the
taxa in some cases). Speciation and extinction rates can
appear to vary in a continuous fashion (e.g., Fig. 4c,d)
despite the discrete nature of the birth–death model
with shifts reflecting incompleteness of the data and
model and parameter uncertainty (Stadler et al. 2013). It
should be noted, however, that when the incompleteness
of the data reduced the power of the algorithm to find
the correct model of diversification, the analyses tended
to be conservative and yielded near-uniform rates with
wide credibility intervals, rather than spurious rate
shifts.

Our approach allows flexibility in model definition
and parameterization. For instance, we do not constrain
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a)

b)

c)

FIGURE 5. Diversification of Rhinocerotidae. a) Marginal rates
of speciation (green) and extinction (blue) through time for the
Rhinocerotidae. Light shaded areas show the 95% HPD around the
mean rate estimates. b) Net diversification rates through time based
on fossil data (black line) using BDMCMC, and from a molecular
phylogenetic tree of the extant taxa (orange line) using TreePar. c)
Posterior estimates of the root age (smax for the fossil data) and stem
age of the clade based on Steiner and Ryder (2011).

the net diversification rate to be positive, unlike in
several phylogeny-based methods (e.g., Rabosky 2006;
Alfaro et al. 2009; Didier et al. 2012) and we do not
assume that the temporal dynamics of speciation and
extinction are linked to each other. This flexibility
results in a high power to distinguish among different

diversification scenarios, as highlighted in the simulated
data sets IV and V. These were based on slightly
different extinction dynamics that resulted in virtually
identical patterns of species accumulation through time
(Fig. 2d,e). Nevertheless, the BDMCMC provided strong
positive support for the correct model in both cases
(Table 3). Given that speciation and extinction and their
temporal dynamics may be driven by different biotic and
abiotic factors (Ezard et al. 2011; Vamosi J.C. and Vamosi
S.M. 2011; Bapst et al. 2012; Peters et al. 2013; Quental
and Marshall 2013; Silvestro et al. 2013), it is important
to unlink these processes.

Arguably the strongest bias in birth–death rate
estimates is caused by incomplete data (in particular in
the case of molecular phylogenies), unless appropriately
corrected (Yang and Rannala 1997; Stadler 2009;
Morlon et al. 2011; Cusimano et al. 2012). The
reconstructed evolutionary process is biased by the
incompleteness of the data because missing lineages
alter the distribution of nodes in a dated tree (Ricklefs
2007). The incompleteness of the data in the fossil
record appears to have a less problematic effect
on the estimation of speciation and extinction rates
because in contrast to molecular phylogenies, removing
a random set of taxa does not affect the observed
occurrences of other lineages. Both the likelihood
surface plots (Supplementary Fig. S1 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s)
and our simulations confirm the absence of consistent
biases in the marginal rates beyond an increase of
parameter uncertainty as the taxon sampling decreases,
which can be attributed to the smaller size of the
data set (Liow, Quental, et al. 2010). Furthermore,
the use of the standing diversity of a clade (NOBS)
in constructing the birth–death hyperprior provides
additional information by implicitly correcting for
biases due to a possible under-sampling of extant
species that did not leave any fossil records yet.
Finally, as the formulation of (Kubo and Iwasa 1995)
was originally derived for application to phylogenies
of extant taxa, our model provides a direct link
between fossil and phylogeny-based macroevolutionary
analyses.

The time of origin of a clade (smax) was estimated with
comparatively high accuracy throughout the whole set
of simulations, even when the age of the oldest simulated
fossil occurrence was several million years younger
than the true age of the data set. Estimating the correct
age of origin of a clade is crucial for an accurate dating
of extant taxa phylogenies and combining analyses
of fossils and molecular data may constitute the best
solution for calibrating a tree (Ronquist, Klopfstein,
et al. 2012; Wilkinson et al. 2011; Steiper and Seiffert
2012; Heled and Drummond 2012; Nowak et al. 2013).
The posterior distribution of the time of origin of a clade
obtained by our method (e.g., Fig. 5c) might therefore
provide a valid alternative to often more arbitrary
(log-normal or exponential) distributions commonly
applied as calibration constraints in molecular
dating.

http://dx.doi.org/10.5061/dryad.87d8s
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Fossils, the preservation process, and the geological record
Heterogeneity in the temporal sampling of individual

fossil species could seriously compromise the estimation
of times of speciation and extinction. Specifically,
sampled fossil occurrences of individual species are
often “hat-shaped” in empirical data sets (Foote et al.
2007; Liow and Stenseth 2007; Liow, Skaug, et al.
2010). To account for this, the fossil occurrences were
modeled as the results of a stochastic process (the NHPP)
with a generalized symmetric beta distribution (the
PERT distribution) describing the varying probability
of preservation of a species during its lifespan.
We used a fixed shape parameter (l=4) because it
mimics other distributions previously used to described
such trajectories (Liow, Quental, et al. 2010; Pigot
et al. 2012) and because of mathematical convenience
(Equations 2 and 3). The accuracy of the rate estimates
is affected by strong deviations from this distribution,
but only when these are consistent throughout the
entire data set (for instance in the case of uniform
sampling; l=0, Supplementary Fig. S3 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s).
This bias becomes almost negligible under the more
realistic scenario of variable shapes of the preservation
process (Fig. 4a and Supplementary Fig. S5 available at
Dryad under http://dx.doi.org/10.5061/dryad.87d8s).
An estimation of the shape and skewness of the
preservation rates from empirical data might be difficult
due to the limited number of available fossil occurrences
per species. However, a relatively dense and continuous
fossil record (e.g., in marine plankton) allows the
estimation of these trajectories (Liow, Skaug, et al.
2010), and other, potentially asymmetric, curves can be
easily incorporated in our model to reproduce different
preservation trajectories.

Our probabilistic method can explicitly account for
different fossilization rates among taxa using the
Gamma model, which represents an equivalent of
Yang’s discrete model for molecular rate heterogeneity
(Yang 1994). While the Gamma model does not infer
species-specific preservation rates, it accounts efficiently
for rate variation across taxa as demonstrated by the
accurate estimation of the shape parameter of the gamma
distribution. This is in contrast to many existing studies
in which taxa within any given analysis are implicitly
or explicitly assumed to have the same preservation
potential (Foote 2000, 2003; Liow et al. 2008; Alroy
et al. 2008), even when preservation rates are allowed
to change over time. The lineage-specific preservation
rate introduced in our Gamma model accounts to some
extent for temporal changes of the preservation rates, as
indicated by the comparatively little bias observed from
data sets with strongly decreasing preservation rates
(Fig. 4c). Indeed, temporal variation of the preservation
rate partly translates into across-lineage variation, in
that e.g., older lineages have different average rates
from more recent ones. Nevertheless, the explicit
parameterization of different mean preservation rates
through time might further improve the accuracy of the
analyses (Foote 2001; Wagner et al. 2013).

The geological record associated with each fossil
is usually referenced to rock or sedimentary units
associated with estimated age bins with varying degrees
of uncertainty (Marshall 1990; Gradstein et al. 2012).
Fossil finds are usually grouped into either time bins
based on geological units (Foote 2003; Alroy 2010)
or equal duration time bins (Liow et al. 2008) for
diversification analyses (but see Ezard et al. 2011).
In modeling continuous time rather than interval-
to-interval changes in rates, we are able to reflect
the continuous nature of the biological processes
of speciation and extinction. Furthermore, we can
incorporate in our analyses the uncertainty around
the temporal placement of the fossil occurrences by
randomizing the ages within their min and max ranges
(i.e., the respective discrete bins) and running the
analyses multiple times.

Rhinocerotidae Diversification
The application of our Bayesian approach was

demonstrated on a data set of Rhinocerotidae, revealing
that their diversification was shaped by several changes
in speciation and extinction rates with a phase of
species accumulation (45–23 Ma), followed by species
turnover (23–10 Ma) and eventually net negative
diversification since the end of the Miocene (Fig. 5).
The greater width of the credibility intervals during
the early stage of diversification shows a similarity
with the patterns obtained by simulations under a
nonuniform preservation rate. This suggests that the
rate of preservation in Rhinocerotidae may be increasing
toward the present. Thus, the rate heterogeneity detected
by the Gamma model is likely to capture a strong
component of temporal rate variation, since modern
species tend to show a much richer fossil record than
older ones (as also observed in simulated data; Table 4).
The negative rates of diversification that are driven by
an increase in extinction rate toward the present have
caused a 10-fold decrease of species richness of the family
over the past 10 myr.

Diversification rate analyses of the Rhinocerotidae
family highlight the shortcomings of limiting the data
to extant species. A molecular phylogeny of the five
extant taxa can provide at most five data points (the
branch lengths) to inform a birth–death model about
the speciation and extinction dynamics of the family
in over 50 myr. Thus, as expected, phylogeny-based
analyses could not detect any rate variation. On the
contrary, our analysis of the over 160 species sampled
in the fossil record depicted a complex history of
expansion and decline of the family resulting from
repeated and temporally unlinked shifts of speciation
and extinction rates. On this basis, even if extant taxa
phylogenies of larger clades can be used to infer complex
diversification processes (e.g., Morlon et al. 2011; Stadler
2011), the analyses of the respective fossil record, when
available, should provide an important additional source
of information to reconstruct the dynamics of speciation
and extinction rates.

http://dx.doi.org/10.5061/dryad.87d8s
http://dx.doi.org/10.5061/dryad.87d8s
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Conclusion and Outlook
We have introduced with this study a novel approach

to infer diversification dynamics based on the fossil
record. Our method can be applied to a wide range
of data sets at various taxonomic ranks and temporal
scales, particularly considering the increasing amount
of data that are available in public databases (e.g.,
the Paleobiology Database, NOW). The approach also
offers the opportunity to investigate the diversification
dynamics of formerly species-rich clades that comprise
today a small extent of their past diversity. This may
allow evolutionary biologists to overcome the bias
towards studying predominantly large clades, while
often neglecting the less diverse ones (Ricklefs 2007).

Finally, rates of speciation and extinction are
estimated from fossil data using the same underlying
birth–death stochastic process usually applied in
molecular phylogenetics. This makes the estimated
rates comparable among data sets and represents an
important step towards integrating phylogenies and
fossils. For instance, the posterior distributions of
the speciation times can be potentially applied as
prior distributions for calibration in molecular dating.
Moreover, the birth–death process estimated from the
analysis of the fossil record should constitute a new
basis for a more informative prior to the branching times
in molecular clock analyses. In future developments,
molecular and fossil data should be analyzed together
(Ronquist, Klopfstein, et al. 2012; Slater et al. 2013; Fritz
et al. 2013) to jointly estimate speciation and extinction
times of fossil species, branching times of the phylogeny,
and a common underlying birth–death process.
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APPENDIX—MCMC IMPLEMENTATION

MCMC and model testing using marginal likelihoods.—In
the MCMC the Hasting ratio was maintained constant
by symmetric updates of the model parameters within
uniform windows centered on their current values, while
reflection at the boundary ensures that the parameter
values lie within the allowed ranges (e.g., �,�≥0). To
improve the chain mixing and reduce the length of the
burn-in phase, a Metropolis-coupled MCMC algorithm
(Geyer 1991; Altekar et al. 2004) was implemented by
pairing the “cold” chain with incrementally heated
chains that can move more easily through the parameter
space.

The fit of different birth–death models can be
measured by the respective marginal likelihood using
the thermodynamic integration (TI) originally described
by Lartillot and Philippe (2006). The approach uses
MCMC to sample a progression of distributions ranging
from the posterior to the prior, obtained by raising the
likelihood ratio to the power of a parameter �∈[0,1]. A
path of 10 � values is generated from a beta distribution
with shape B(0.3,1) to place more values close to 0, where
the acceptance probability changes more rapidly (Xie
et al. 2011). The marginal likelihoods LTI of a model is
obtained by integrating the likelihood along the path of
power values �1,...,�Z:

logLTI =
∫ 1

0
logLd� ∼

Z∑
z=2

(�z −�z−1)
(logLz +logLz−1)

2
(17)

where logLz is the mean log-likelihood obtained under
a power value �z (Baele et al. 2012). Because the model
testing is focused on the number of rate shifts, only
the birth–death term of Equation (16) is marginalized
during the process to improve the performance of the
MCMC sampling and reduce the computational cost (cf.
Lepage et al. 2007). To evaluate the relative support of a
model M1 against an alternative M0, log Bayes factors
can be calculated as BF=2

(
logLTI(M1)−logLTI(M0)

)
according to Kass and Raftery (1995).

Joint model testing and parameter estimation via
BDMCMC.—An alternative algorithm was developed
(and used for all the analyses presented in this study) to
jointly estimate the number of parameters of the model
and their values. We implemented the birth–death

http://dx.doi.org/10.5061/dryad.87d8s
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MCMC (BDMCMC; Stephens 2000) to estimate the
number of rate shifts in speciation and extinction rates.
The vectors of speciation and extinction times (s and e)
were assumed to derive from an underlying model of
diversification with a number of speciation rates (k� ≥1)
and extinction rates (k� ≥1). The number of rate shifts
(k�−1;k�−1) was considered as an unknown variable
and estimated from the data.

The diversification model is treated as a point process.
Each component of the model, indicated as (�,�), is a
point in the parameter space with mixture proportion
�∈[0,1] and parameter � (i.e., speciation or extinction
rates). The mixture proportion of one component is given
by the length of a time frame, e.g., between rate shifts,
expressed as a fraction of the total duration of the data
set (smax)

�i =
(��

i−1 −�
�
i )

smax
(18)

with the associated diversification parameter �i being
either �i or �i. Thus given a number k of rates, the
diversification model is composed by the components
(�1,�1),...,(�k,�k) with the constraint that �1 + ...+�k =
1. Vectors of speciation and extinction rates (�, and M; cf.
Equation 11) and the respective time frames defined by
�� and �M are considered as two independent families
of components.

With the BDMCMC algorithm the parameter space
is explored while moving across models and sampling
values of k� from the joint posterior distribution of
k�,�,�. This approach allows for “jumps” between
models with different dimensions by two types of moves:
births and deaths that add or remove one component
to the model, respectively. The birth event changes the
model y={(�1,�1),...(�k,�k)

}
by adding at a random

position one component y∪(�r,�r) and rescaling all
mixture proportions from �i to �i(1−�r). Similarly, a
death event causes the deletion of one component (�j,�j)
so that in the resulting model, indicated by y\(�j,�j), all
remaining components have rescaled proportions from
�i to �i/(1−�j). Thus, changing the dimension of the
model (k) does not affect the constraint �1 + ...+�k =1.
The BDMCMC approach assumes that births and deaths
occur as independent Poisson processes following a
continuous time Markov birth–death process. Unlike
analogous algorithms, e.g., the reversible-jump MCMC
(Green 1995), the BDMCMC moves across models are
not determined by an acceptance probability, but by
varying rates of the birth–death process. This simplifies
the implementation by avoiding the need for calculation
of the Jacobian (Stephens 2000). The birth rate is set to
a constant �(y)=�b whereas death rates vary for each
component of the model (�j,�j) and are calculated as:

j(y)=�b

L
(

y\(�j,�j)
)

L(y)
p(k−1)

kp(k)
(j=1,...k) (19)

where L(·) is the likelihood of the data, in this case (s,e),
for a given birth–death model (Equation 11), and p(k)

is the prior probability of a model with k components.
The continuous time birth–death process is used to jump
between models works as follows:

1. Initialize the model with k� =1 and k� =1 (i.e., no
rate shifts), and parameter values sampled from a
prior distribution.

2. Calculate death rates for each component of the
model (the vectors � and M) based on the
(constant) birth rate �(y) and using Equation (19).

3. Calculate the total death rate from the rates
assigned to each component (y)=∑k

j=1j(y).

4. Simulate the time for the next jump based on
the continuous time Markov birth–death process,
i.e., from an exponential distribution with mean
1/(�(y)+(y)). The jump will be either a birth or a
death with probabilities

p(birth)= �(y)
�(y)+(y)

, p(death)= (y)
�(y)+(y)

.

(20)
When a birth is selected, a new component
(�r,�r) is generated by randomly sampling �
from a symmetric Dirichlet distribution with k+1
dimensions (i.e., the prior applied to the length
of the time frames) and � from the gamma
distribution set as prior to the rates. The new
component is added to the vectors � or M
with equal probability. When a death occurs, one
component (�j,�j)∈y is selected to be deleted with
probability j(y)/(y) for j=1,...k. After a birth or
death of one component, all (remaining) mixture
proportions are rescaled as described above.

5. Return to step 2 until a fixed time t0 is reached.

The BDMCMC algorithm was incorporated in
the Bayesian framework described in the previous
paragraphs so that the numbers of rate shifts (k� and k�),
that define the components of the model, are sampled
as an unknown variables together with all the other
parameters (e.g., s,e,�,M). In our analyses, we set the
frequency of model updates to 0.04 (i.e., on average
every 25th MCMC generation) and the length of the
continuous time birth–death process to t0 =1, but higher
frequencies and a longer duration of t0 were tested to
improve the mixing of the parameters k� and k�. The
birth rate at which new components are added was set
to �b =1. The prior on the number of components pk was
set to a Poisson distribution with shape parameter equal
to the birth rate (�b), so that the calculation of the death
rates (Equation 19) conveniently reduces to a likelihood
ratio (Stephens 2000).

It is noted that a BDMCMC analysis requires about
10% of the CPU time that would be necessary to perform
model testing through thermodynamic integration
and subsequent MCMC for parameter estimation.
This highlights the efficiency of jointly exploring the
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parameter space and its dimensions (Green 1995;
Stephens 2000).
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