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SUMMARY

We introduce and analyze a waiting time model for the accumulation of genetic changes. The
continuous-time conjunctive Bayesian network is defined by a partially ordered set of mutations
and by the rate of fixation of each mutation. The partial order encodes constraints on the order in
which mutations can fixate in the population, shedding light on the mutational pathways underly-
ing the evolutionary process. We study a censored version of the model and derive equations for
an EM algorithm to perform maximum likelihood estimation of the model parameters. We also
show how to select the maximum likelihood partially ordered set. The model is applied to ge-
netic data from cancer cells and from drug resistant human immunodeficiency viruses, indicating
implications for diagnosis and treatment.
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1. INTRODUCTION

Pathogen evolution is characterized by recurrent phases of evolutionary escape from opposing
selective pressure. During these stages several mutations are available to the population that in-
crease fitness. Adaptive evolution proceeds by accumulating these beneficial genetic changes. For
example, in HIV infection, the virus acquires mutations in cytotoxic T lymphocyte epitopes that
interfere with the human immune response, while drug resistant mutations develop under antiviral
treatment. Similarly, the genetic progression of cancer is characterized by the accumulation of
mutations in oncogenes and tumor suppressor genes, which confer a selective advantage.

Evolutionary escape dynamics have been analyzed from a population genetics perspective.
This approach clarified the influence of basic parameters such as population size and mutation
rate on the risk of escape. It also highlighted the importance of the topology of escape, i.e. the
structure of the possible mutational pathways (Iwasa et al., 2003; Beerenwinkel et al., 2006).

Here we introduce a model for the accumulation of genetic changes that allows for infer-
ence about the topology and the speed of evolutionary escape. The continuous-time conjunctive
Bayesian network is a continuous-time Markov chain model, defined by a partially ordered set of
advantageous mutations and their rates of fixation. The partial order encodes constraints on the
succession in which mutations can occur and fixate in the population. We assume that the fixation
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times follow independent exponential distributions. The waiting process for a mutation starts
only when all of its predecessor mutations have occurred. The order constraints and waiting times
reveal important information on the underlying biological process with implications for diagnosis
and treatment. We exemplify the use of these Bayesian network models with the development of
drug resistance in HIV and the genetic progression of prostate cancer.

The continuous-time conjunctive Bayesian network is a continuous-time analogue of the dis-
crete conjunctive Bayesian network introduced by Beerenwinkel et al. (2006), which was shown
to have very desirable statistical and algebraic properties (Beerenwinkel et al., 2007). Both net-
works are natural exponential families with closed-form expressions for maximum likelihood
estimation and model selection. We argue that the continuous-time network is the more natural
model for accumulating mutations, and we explore the connection to the discrete network.

One difference between the discrete and the continuous-time model is the state space. A state
for the continuous-time model is a vector of time-points of the mutational events, while a state for
the discrete model is a vector of binary indicators of the mutations. Despite the biological realism
of the continuous-time model, the observed data rarely consist of the time-points of the genetic
changes. Instead, we typically observe discrete genotypes at randomly sampled time-points. To
address this discrepancy, we study a censored version of the continuous-time conjunctive Bayesian
network and we derive an iterative algorithm for maximum likelihood estimation.

A special case of the discrete model, where the partially ordered set is a tree, is known
as the oncogenetic or mutagenetic tree model (Desper et al., 1999; Beerenwinkel et al. 2005b,
2005c; Beerenwinkel & Drton, 2007). It has been applied to the somatic evolution of cancer
(Radmacher et al., 2001; Rahnenführer et al., 2005) and to the evolution of drug resistance in HIV
(Beerenwinkel et al., 2005a). A related tree model by von Heydebreck et al. (2004) represents the
genetic changes at the leaves of the tree and regards the interior vertices as hidden events. Several
authors have considered larger model classes, including general Bayesian networks (Simon et al.,
2000; Deforche et al., 2006) and more general Markov chain models (Foulkes & DeGruttola,
2003; Hjelm et al., 2006). As compared to trees and partially ordered sets, these models are
more flexible in describing mutational pathways, but parameter estimation and model selection
is considerably more difficult. In fact, the number of free parameters of these models is typically
exponential in the number of mutations, whereas in the continuous-time conjunctive Bayesian
network, it is equal to the number of mutations. We demonstrate that parameter estimation and
selection of an optimal partially ordered set can be performed efficiently for continuous-time
conjunctive Bayesian networks which thus provide an attractive framework for modelling the
accumulation of mutations, even if the number of mutations is moderate or large.

2. CONTINUOUS-TIME CONJUNCTIVE BAYESIAN NETWORKS

In this section, we introduce and describe some of the basic properties of continuous-time
conjunctive Bayesian networks. These models are continuous-time Markov chain models on
the distributive lattice of a partially ordered set. We first review some background material from
combinatorics; see also the introductory sections of Beerenwinkel et al. (2006) or Stanley (1999).

A partially ordered set P has a binary relation ≺, which is reflexive, antisymmetric and
transitive. In our models, the set P will be a set of genetic events, and the relation specifies
constraints on the order in which they occur: p ≺ q means that event p happens before or at
the same time as event q. We assume throughout that events that occur simultaneously have
been collapsed in a pre-processing step. We say that p is a parent of q if p ≺ q and there is no
element r ∈ P such that r � p, q and p ≺ r ≺ q. We use the notation p → q to denote that p is
a parent of q and call p → q a cover relation. The set of all parents of an element q is denoted
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Partially ordered set, P Waiting times, T Lattice of order ideals, J(P )

1 2

3 4

Zi ∼ Exp(λi) (i = 1, 2, 3, 4)

T1 = Z1

T2 = Z2

T3 = max(T1, T2) + Z3

T4 = T2 + Z4

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4}

{1, 2} {2, 4}

{1} {2}

∅

Fig. 1. Running example of a continuous-time conjunctive Bayesian network model.

by pa(q). The set of cover relations is used to visualize a partially ordered set by means of its
Hasse diagram.

The distributive lattice of order ideals of P , denoted by J (P), consists of all subsets S ⊆ P , that
are closed downward, i.e. S ∈ J (P) if and only if, for all q ∈ S and p ≺ q, we have that p ∈ S.
The order ideals of P correspond to the genotypes, or mutational patterns, that are compatible
with the order constraints. We refer to ∅ ∈ J (P) as the wild type.

Example 1. As a running example, consider the partially ordered set P on the four element
set [4] = {1, 2, 3, 4} subject to the order relations 1 ≺ 3, 2 ≺ 3, 2 ≺ 4. The distributive lattice
J (P) of order ideals of P consists of eight elements. Both sets are displayed in Fig. 1.

Let P be a partially ordered set that equals [n] as a set. For each event i ∈ P , we define a
random variable Zi ∼ Exp(λi ). Then we define the random variables Ti = max j∈pa(i) Tj + Zi

(i = 1, . . . , n). The random variable Ti describes how long we have to wait until event i occurs,
assuming that we start at time zero with no events. Mutation i cannot occur until all the mutations
preceding it in the partial order P have occurred. The family of joint distributions of T defined
in this manner is the continuous-time conjunctive Bayesian network. It has state space R

n
>0

consisting of vectors of waiting times and parameters λ = (λ1, . . . , λn) ∈ R
n
>0.

The family of conjunctive Bayesian networks is not an a priori Bayesian family of models. The
terminology Bayesian network comes from the graphical models community. For brevity, we will
often refer to the continuous-time conjunctive Bayesian network as the continuous-time network,
and to the discrete conjunctive Bayesian network as the discrete network.

The recursive definition of the discrete model implies that its probability density function is

fP,λ(t) =
{∏n

i=1 λi exp{−λi (ti − max j∈pa(i) t j )}, ti > max j∈pa(i) t j , i ∈ [n],
0, otherwise,

(1)

The continuous-time network is a regular exponential family, with minimal sufficient statistic
consisting of the vector of time differences (ti − max j∈pa(i) t j )i∈[n].

One instance of the random variable T is a vector of time-points t = (t1, . . . , tn) that satisfy
the inequality relations implied by P , i.e. ti > max j∈pa(i) t j for all i ∈ [n]. A set of time-points
satisfying these constraints is compatible with the partially ordered set. The data for the model is
a matrix of time-points (tki )k∈[N ], i∈[n], where N is the number of observations.

PROPOSITION 1. Let P be a partially ordered set and (tki ) be a collection of data. If any of
the observations tk · are incompatible with P, then the likelihood function is identical to zero.
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Otherwise, the maximum likelihood estimate of λ is

λ̂i = N∑N
k=1(tki − max j∈pa(i) tk j )

, i ∈ [n].

Proof . If t1 ·, . . . , tN · are compatible with P , then the loglikelihood function is

�(λ1, . . . , λn) =
N∑

k=1

n∑
i=1

{
log λi − λi

(
tki − max

j∈pa(i)
tk j

)}
.

Differentiating with respect to λi yields the equations

N∑
k=1

{
1

λi
−

(
tki − max

j∈pa(i)
tk j

)}
= 0,

and the claimed formula follows by solving for λi . �

THEOREM 1. Given data (tki ), the maximum likelihood partially ordered set is the largest
partially ordered set that is compatible with the data.

Proof. Suppose that the data is compatible with two partially ordered sets (P1,≺1) and
(P2,≺2), and that P1 is a refinement of P2 (i.e. every relation that holds in P2 also holds in P1).
We show that the likelihood function at the maximum likelihood estimate is larger for P1 than
for P2. This implies that adding relations compatible with the data increases the likelihood.

According to Proposition 1, the maximum likelihood estimates λ̂1 for P1 and λ̂2 for P2 are

λ̂l
i = N∑N

k=1(tki − max j∈pal (i) tk j )
, i ∈ [n], l ∈ [2].

We can replace pal(i) with the set { j ∈ Pl | j ≺l i}. Since P1 has more relations than P2, this
implies that the maximum is taken over a strictly larger set, and thus λ̂1

i � λ̂2
i for all i .

However, the loglikelihood function evaluated at λ̂l is

�l(λ̂
l) =

N∑
k=1

n∑
i=1

{
log λ̂l

i − λ̂l
i

(
tki − max

j∈pal (i)
tk j

)}

=
n∑

i=1

{
N log λ̂l

i − λ̂l
i

N∑
k=1

(
tki − max

j∈pal (i)
tk j

)}

=
n∑

i=1

(
N log λ̂l

i − N
)
.

Since the logarithm is a monotone function, we deduce that �1(λ̂1) � �2(λ̂2). �

One of the most interesting quantities we can compute using the continuous-time network
is the expected waiting time until a particular pattern S ∈ J (P) is reached. Assuming that the
parameters λ are known, we are asking how long it takes until a set of genetic events have occurred.
The expected waiting time is an important measure of genetic progression. Rahnenführer et al.
(2005) have shown that it is a prognostic factor of survival and time to relapse in glioblastoma
and prostate cancer patients, respectively, even after adjustment for traditional clinical markers.

Since the exponential distribution is memoryless, calculating the waiting time from the wild
type will also determine the waiting time between any two patterns. Furthermore, the nature of
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the conditional factorization for the joint density of T implies that we can restrict attention to the
case where S = P , i.e. to determining the waiting time until all events have occurred.

Let S ∈ J (P) be an observable genotype. We define Exit(S) = { j ∈ P | j /∈ S, S ∪ { j} ∈
J (P)} to be the set of events that have not occurred in S, but could occur next. For any subset
T ⊆ P , we set λT = ∑

j∈T λ j . A chain in the distributive lattice J (P) is a collection of subsets
C0, C1, . . . , Ck ∈ J (P) that satisfy Ci ⊂ Ci+1 and Ci � Ci+1, for all i . A chain is maximal, if
it is as long as possible. All maximal chains in the distributive lattice J (P) have length n + 1
with n = |P| and start with C0 = ∅ and end with Cn = P . Let C{J (P)} denote the collection of
maximal chains in J (P); a typical element is denoted by C = (C0, . . . , Cn).

THEOREM 2. The expected waiting time until all events have occurred is

E
(

max
i∈P

Ti

)
= λ1 · · · λn

∑
C∈C{J (P)}

(
n−1∏
i=0

1

λExit(Ci )

) (
n−1∑
i=0

1

λExit(Ci )

)
.

Before proving Theorem 2, we sketch the idea of the proof, which is a common technique for
proofs throughout the paper. The indicated expectation involves the integral of a function that
depends on maxima, which are not simple to integrate directly. We first decompose the integral
into a sum of integrals over many different regions, one for each maximal chain in J (P). Over
these simpler regions, the maximum function disappears. Furthermore, these regions are each
simplicial cones and the integral can then be computed by a simple change of coordinates.

Proof. Let f (t) be the density function from equation (1). We must compute∫
R

n
�0

max
i∈P

ti f (t) dt . (2)

Let Sn denote the symmetric group on n letters with σ = (σ1, . . . , σn) a typical element. The
integral (2) over the positive orthant breaks up as the sum∑

σ∈Sn

∫ ∞

tσ1=0

∫ ∞

tσ2=tσ1

· · ·
∫ ∞

tσn =tσn−1

tσn f (t)dt .

That is, the sum breaks up the integral into smaller integrals over regions 0 < tσ1 < · · · < tσn .
The integrand is zero unless σ1, . . . , σn is a linear extension of P . In other words, the integrand
is zero unless the sets Ci = ∪i

j=1{σ j } for i = 0, . . . , n form a maximal chain in the distributive
lattice J (P). So suppose that σ is a linear extension of P . Without loss of generality, we may
suppose that this linear extension is 1 ≺ · · · ≺ n. We must compute the integral∫ ∞

t1=0

∫ ∞

t2=t1
· · ·

∫ ∞

tn=tn−1

tn f (t) dt,

where, over this restricted region, f (t) now has the form

f (t) =
n∏

i=1

λi exp{−λi (ti − t j(i))},

where j(i) is the largest number with j(i) ≺ i in P .
Now introduce the change of coordinates u0 = t1, ui = ti+1 − ti , i ∈ [n − 1]. The determinant

of this linear transformation is one, so the integral becomes∫ ∞

u0=0
· · ·

∫ ∞

un−1=0
(u0 + · · · + un−1)

n∏
i=1

λi exp {−λi (ui−1 + ui−2 + · · · + u j(i))}du. (3)
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The multiple integral is now over a product domain, and involves a function in product form, so
we want to break (3) into the product of integrals. To do this, we must collect the λi terms that go
with the various uk terms. In the exponent, we have that λi appears as a coefficient of uk if and
only if i > k � j(i). This, in turn, implies that when all the events 1, . . . , k have occurred, all
the predecessor events of i have occurred. This means that i ∈ Exit(Ck), where Ck = {1, . . . , k}.
Thus, the transformed integral breaks up as a sum of n integrals that have the form:

λ1 · · · λn

∫ ∞

u0=0
· · ·

∫ ∞

un−1=0
u j

n−1∏
i=0

exp
{ − λExit(Ci )ui

}
du.

The integral is over a product domain of a product function, so equals

λ1 · · · λn
1

λExit(C j )

n−1∏
i=0

1

λExit(Ci )
,

which completes the proof. �

Theorem 2 yields a formula for the expected waiting time until all mutations have occurred,
which, at first glance seems to require the enumeration of all maximal chains in the distributive
lattice J (P). However, this sum can be computed by a dynamic programming algorithm.

PROPOSITION 2. For each S ∈ J (P) define PS and ES by

PS =
∑

j∈S:S\{ j}∈J (P)

λ j

λExit(S\{ j})
PS\{ j},

ES =
∑

j∈S:S\{ j}∈J (P)

(
λ j

λExit(S\{ j})
ES\{ j} + λ j

λ2
Exit(S\{ j})

PS\{ j}

)
,

subject to the initial conditions P∅ = 1 and Ei
∅ = 0. Then E(maxi∈P Ti ) = E[n].

We omit the proof of Proposition 2, which closely follows the proof of Proposition 4 below.

3. RELATION TO THE DISCRETE CONJUNCTIVE BAYESIAN NETWORK

In this section, we explore the connection between the continuous-time and the discrete network
(Beerenwinkel et al., 2007). We want to understand how the models relate to each other and how
structural information from one model yields information about the other. We are naturally led to
study discrete models because we rarely have access to the times at which the individual events
occurred, but can only observe which events have occurred after a certain sampling time.

We will show that the discrete network gives a first-order approximation to the transition
probabilities in the continuous-time network. This suggests that the discrete network is not
optimal from a modelling standpoint as the nature of our applications is to wait until mutations
occur. However, the discrete model is much simpler to work with, and its maximum likelihood
estimates can be used as an initial step in iterative algorithms for maximum likelihood estimation
in the censored versions of the continuous-time network described in § 4.

To derive this result, we consider the continuous-time network as a continuous-time Markov
chain on the distributive lattice J (P). See Norris (1997) for background on Markov chains. The
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rate matrix for the Markov chain is the m × m matrix Q, where m = |J (P)|, defined by

QS,T =
⎧⎨
⎩

λ j , S ⊂ T, T \S = { j},
−λExit(S), S = T,

0, otherwise,

for all S, T ∈ J (P). If we fix a linear extension of J (P) and order the rows and columns of Q
according to this linear extension, Q will be an upper triangular matrix.

Let p(t) be the m × m matrix where, for S, T ∈ J (P), the entry pS,T (t) denotes the probability
that the continuous-time Markov chain with state space J (P), is in state T at time t starting from
state S at time 0. This quantity can be calculated by integrating the density function from the
continuous-time model. However, it is simpler to use standard theory of Markov chains. The
matrix p(t) is the solution of the system of differential equations dp(t)/dt = Qp(t) subject to
the initial conditions p(0) = I , the identity matrix. The solution to this first-order differential
equation is the matrix exponential p(t) = exp(Qt). It satisfies dk p(t)/dtk |t=0 = Qk . So a first-
order approximation to p(t) is a function p̃(t) that satisfies p̃(0) = I and d p̃(t)/dt |t=0 = Q.

The first-order approximation can be derived as follows. Associated to the discrete network are
n parameters θ1, . . . , θn , where θi is the conditional probability that event i has occurred, given
that all its predecessor events have occurred. By setting θi = 1 − exp(−λi t) and defining

p̃S,T (t) =
{∏

i∈T \S θi
∏

i∈Exit(T )(1 − θi ), S ⊆ T,

0, otherwise,

the discrete model is naturally interpreted as a continuous-time model, where p̃S,T (t) is the
probability that the discrete model is in state T at time t given an initial state S at time 0.

PROPOSITION 3. The model p̃(t) derived from the discrete conjunctive Bayesian network is
a first-order approximation to the continuous-time conjunctive Bayesian network p(t).

Proof. Diagonal entries of p̃(t) have the form
∏

exp(−λi t), and off-diagonal entries are either
identical to zero or are a product of terms, at least one of which is of the form 1 − exp(−λi t).
This implies that p̃(0) = I .

If T = S, then p̃S,S(t) = ∏
i∈Exit(S) exp(−λi t). So, by the product rule

d

dt
p̃S,S(t) =

∑
i∈Exit(S)

−λi p̃S,S(t)

and thus d p̃S,S(t)/dt |t=0 = −λExit(S) = QS,S . If S ⊂ T then

p̃S,T (t) =
∏

i∈T \S

{1 − exp(−λi t)}
∏

i∈Exit(T )

exp(−λi t)

and thus

d

dt
p̃S,T (t) =

∑
i∈T \S

λi
exp(−λi t)

1 − exp(−λi t)
p̃S,T (t) −

∑
i∈Exit(T )

λi p̃S,T (t).

If T \S has cardinality greater than one, then d p̃S,T (t)/dt |t=0 = 0 = QS,T , because every
term in the sum involves at least one expression of the form 1 − exp(−λi t). On the other hand,
if T = S ∪ { j}, then d p̃S,T (t)/dt |t=0 = λ j = QS,T , because only the first term in the sum does
not contain an expression of the form 1 − exp(−λi t). As all other entries in p̃(t) and Q are zero,
this proves that p̃(t) is a first-order approximation to p(t). �
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Given that the discrete model is a first-order approximation to the continuous-time model, it
seems natural to conjecture that these two models are equal. If P is the partially ordered set
with no relations, then the two models coincide. However, if P contains at least one relation, the
models are no longer the same, and the discrete network is not even a second-order approximation
to the continuous-time network. This is illustrated in the following example.

Example 2. Let P be the partially ordered set on two elements with one relation 1 ≺ 2 and fix
the natural order ∅, {1}, {1, 2} in J (P). If λ1 � λ2, then

p̃(t) =
⎧⎨
⎩

e−λ1t (1 − e−λ1t )e−λ2t (1 − e−λ1t )(1 − e−λ2t )
0 e−λ2t 1 − e−λ2t

0 0 1

⎫⎬
⎭ ,

p(t) =
⎧⎨
⎩

e−λ1t {λ1/(λ1 − λ2)}(e−λ2t − e−λ1t ) 1 − (λ1e−λ2t − λ2e−λ1t )/(λ1 − λ2)
0 e−λ2t 1 − e−λ2t

0 0 1

⎫⎬
⎭ .

In particular, d2 p̃∅,{1}(t)/dt2 |t=0 = −λ2
1 − 2λ1λ2, whereas (Q2)∅,{1} = −λ2

1 − λ1λ2.

The discrepancies exhibited in this example become more dramatic as P develops longer
chains. While the discrete network is not identical to the continuous-time network, its nice
properties can be exploited at various points during optimization.

4. CENSORING

In this section, we define and analyze the censored continuous-time conjunctive Bayesian
network model that we will apply to genetic data in § 5. The reason for introducing censoring is
that we typically do not know the time-points t1, . . . , tn at which the events have occurred. Often
we can only measure, at a particular time, which of the events have occurred so far. It is natural to
assume that the observation times are also random. For example, HIV drug resistance mutations
can only be detected after therapy failure.

We introduce a new event s for the sampling process, such that the random variable Ts is an
independent, exponentially distributed waiting time (the sampling time, or observation time),
Ts ∼ Exp(λs). We define a new partially ordered set Ps = P ∪ {s} by adding the element s with
no relations to the other elements in P . An observed mutational pattern S ⊆ [n] results from the
event Ti < Ts for all i ∈ S and Ts < Ti for all i ∈ [n] \ S.

An observed set of events, S, imposes extra relations i ≺ s for i ∈ S and s ≺ i for i ∈ [n] \ S
on the partially ordered set Ps , and we are led to study this refined poset QS .

A realization of the random vector T is said to be compatible with Q, denoted by T � Q,
if Ti < Tj whenever i ≺ j in Q. We can directly compute the probability of the event T � Q
in terms of the distributive lattices J (Q) and J (Ps). Throughout this section, we abuse notation
and say that T ∼ Ps if T = (Ts, T1, . . . , Tn) is distributed according to the continuous-time
conjunctive Bayesian network associated to Ps with parameter vector λ = (λs, λ1, . . . , λn).

THEOREM 3. The probability that T ∼ Ps is compatible with the partially ordered set Q is

pr(T � Q) = λsλ1 · · · λn

∑
C∈C(J (Q))

n∏
i=0

1

λExit(Ci )
, (4)

where the sum runs over all maximal chains in the distributive lattice J (Q).
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Remark 1. In this formula, and in all formulae throughout this section, the expression Exit(S)
always refers to the underlying partially ordered set Ps and not to the refinement Q.

Proofof Theorem 3. We must compute the integral∫
R

n+1
�0

IQ(t) f (t)dt,

where IQ(t) is the indicator function of compatibility with Q. The integral breaks up into a
sum over the linear extensions of Q over regions over the form tσ0 < · · · < tσn . Without loss of
generality and after renaming the elements of Ps , we can assume that the linear extension of
interest is 0 ≺ · · · ≺ n. We must calculate the integral∫ ∞

t0=0

∫ ∞

t1=t0
· · ·

∫ ∞

tn=tn−1

f (t)dt,

where over the restricted region, the integrand has the form

f (t) =
n∏

i=0

λi exp{−λi (ti − t j(i))}.

With the change of variables u0 = t0 and ui+1 = ti+1 − ti , i ∈ [n], the integral becomes
n∏

i=0

∫ ∞

ui =0
exp(−λExit(Ci )ui )dui ,

where Ci = {0, 1, . . . , i − 1}. This yields the desired contribution to the integral. �

Example 3. Let P be the partially ordered set from Example 1 with relations 1 ≺ 3, 2 ≺ 3 and
2 ≺ 4, and consider the partially ordered set Ps = P ∪ {s} with no additional relations. Suppose
we want to calculate the probability of mutations 2 and 4 occurring before measurement. The
refinement Q2,4 corresponding to the genotype {2, 4} is a chain 2 ≺ 4 ≺ s ≺ 1 ≺ 3, and so the
distributive lattice J (Q2,4) is also a chain. From equation (4), the probability of T � Q2,4 is

λ1λ2λ3λ4λs
1

λ1 + λ2 + λs

1

λ1 + λ4 + λs

1

λ1 + λs

1

λ1

1

λ3
.

On the other hand, the distributive lattice J (Q1,2) has four chains and pr(T � Q1,2) is the sum of
four terms of product form. The expression can be written as

λ1λ2λ3λ4λs

(λ1 + λ2 + λs)(λ3 + λ4 + λs)(λ3 + λ4)

(
1

λ2 + λs
+ 1

λ1 + λ4 + λs

) (
1

λ3
+ 1

λ4

)
.

A general recursive formula for this probability is given in Proposition 4.

We now consider binary random variables X1, . . . , Xn , each indicating the occurrence of a
genetic event. Given a partially ordered set P , we define the discrete censored continuous-time
conjunctive Bayesian network as the family of probability distributions

pr(X1 = x1, . . . , Xn = xn) = pr(T � QS),

where xi ∈ {0, 1}, T ∼ Ps and S = {i ∈ [n] | xi = 1}. This model has state space {0, 1}n , the
set of all genotypes of length n, and parameters λ = (λs, λ1, . . . , λn) ∈ R

n+1
>0 . Although n + 1

parameters specify the model, it has dimension n, because λ can be rescaled.
Unlike in the fully observed continuous-time network or the discrete network, we have found

no general closed-form expressions for the maximum likelihood estimates of the parameters of
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the censored model. However, as the censored model is a marginalization of the continuous-time
network, which is a regular exponential family, we can use the EM algorithm to find maximum
likelihood estimates. While the EM algorithm is only guaranteed to find a local maximum of the
likelihood function, our computational experience has been that using exact maximum likeli-
hood estimates from the discrete conjunctive Bayesian network for θi and solving for λi in the
approximate expression θi = λi/(λi + λs) works as a good starting guess.

In the EM algorithm, we start with a guess for the maximum likelihood parameters λ∗ and
compute the expected values of the sufficient statistics of the fully observed model, given the
data. Specifically, for each observed S ⊆ [n] and each i ∈ [n], we compute the expected value

E
(

Ti − max
j∈pa(i)

Tj | T � QS

)
. (5)

This is the E-step of the algorithm. In the M-step, the expected sufficient statistics are used
to compute maximum likelihood estimates for λ in the fully observed model. The EM algorithm
iterates alternations of the E-step and the M-step. In each iteration, the likelihood function increases
and a fixed point is a critical point of the likelihood function. The M-step is calculated by
Proposition 1, while, in the E-step, we have the following formula for the expected value (5).

THEOREM 4. The expected value of Ti − max j∈pa(i) Tj given that T is compatible with Q is

E
(

Ti − max
j∈pa(i)

Tj | T � Q
)

= λsλ1 · · · λn

pr(T � Q)

∑
C⊂C{J (Q)}

(
n∏

k=0

1

λExit(Ck )

) {
n∑

l=0

ι(i, Cl)

λExit(Cl )

}
,

where the first sum is over all maximal chains in J (Q) and

ι(i, Ck) =
{

1, i /∈ Ck, pa(i) ⊆ Ck,

0, otherwise.

Proof. The proof follows the pattern of the proof of Theorem 2. The expected value is

E
(

Ti − max
j∈pa(i)

Tj | T � Q
)

= 1

pr(T � Q)

∫
R

n+1
�0

(
ti − max

j∈pa(i)
t j

)
IQ(t) f (t)dt .

We can calculate the integral by decomposing it into a sum over the linear extensions of Q, i.e.
the chains in the distributive lattice J (Q). Without loss of generality, we can suppose that the
linear extension is called 0 ≺ · · · ≺ n. For this linear extension, the integral becomes∫ ∞

t0=0

∫ ∞

t1=t0
· · ·

∫ ∞

tn=tn−1

(
ti − t j(i)

)
f (t)dt

and over this region f (t) = ∏n
k=0 λk exp{−λk(tk − t j(k))}. Applying the usual change of coordi-

nates, we can rewrite the integral in product form as∫ ∞

u0=0
· · ·

∫ ∞

un=0

(
ui−1 + · · · + u j(i)

) n∏
k=0

λk exp
{−λk

(
uk−1 + uk−2 + · · · + u j(k)

)}
du.

Breaking this integral up as a sum yields a collection of integrals we have already computed in
the proof of Theorem 2. However, each term

n∏
k=0

1

λExit(Ck )

1

λExit(Cl )

contributes to the sum, if and only if i ∈ Exit(Cl), i.e. if and only if ι(i, Cl) = 1. �
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Rather than computing the expectation from Theorem 4 by explicitly listing all maximal chains
in the distributive lattice J (Q), the expected value can be computed recursively, by summing up
the distributive lattice. This dynamic programming approach reduces the computational burden
of computing the expectation, because one need not enumerate all maximal chains in J (Q).

PROPOSITION 4. For each S ∈ J (Q) define PS and Ei
S by the formulae

PS =
∑

j∈S:S\{ j}∈J (Q)

λ j

λExit(S\{ j})
PS\{ j},

Ei
S =

∑
j∈S:S\{ j}∈J (Q)

{
λ j

λExit(S\{ j})
Ei

S\{ j} + ι(i, S \ { j}) λ j

λ2
Exit(S\{ j})

PS\{ j}

}
,

subject to the initial conditions P∅ = 1 and Ei
∅ = 0, where

ι(i, S \ { j}) =
{

1, i /∈ S \ { j}, pa(i) ⊆ S \ { j},
0, otherwise.

Then pr(T � Q) = P{s}∪[n] and E(Ti − max j∈pa(i) Tj | T � Q) = Ei
{s}∪[n]

/
P{s}∪[n].

Proof. Both results follow from writing down a closed-form expression for PS and Ei
S , proving

that these formulae hold inductively, and showing that P{s}∪[n] = pr(T � Q) and Ei
{s}∪[n]/

P{s}∪[n] = E(Ti − max j∈pa(i) Tj | T � Q).
To this end, let Q |S be the induced sub-partially ordered set of Q with element set S. Then

PS =
∏
i∈S

λi

∑
C∈C{J (QS)}

|S|−1∏
i=0

1

λExit(Ci )

with P∅ = 1. The recurrence

PS =
∑

j∈S:S\{ j}∈J (Q)

λ j

λExit(S\{ j})
PS\{ j}

is satisfied because every maximal chain in J (Q |S) comes from a maximal chain in exactly one
of the J (Q |S\{ j}) by adding j to Q |S\{ j} as the last element. Also, P{s}∪[n] has the desired form.

Similarly, it is straightforward to show that

Ei
S =

∏
k∈S

λk

∑
C⊂C{J (QS)}

⎛
⎝|S|−1∏

k=0

1

λExit(Ck )

⎞
⎠

⎧⎨
⎩

|S|−1∑
k=0

ι(i, Ck)

λExit(Ck )

⎫⎬
⎭ ,

which, together with PS , above, satisfies the desired recurrence relation. �

5. APPLICATIONS

5·1. Noise model

Theorem 1 states that the structure of the maximum likelihood continuous-time conjunctive
Bayesian network is given by the maximal partially ordered set that is compatible with the data.
In practice, however, the observations are subject to noise, either due to deviations of the data
generating process from the model, or due to technical limitations in assessing genetic changes
experimentally. Thus, for most biomedical datasets, the maximum likelihood partially ordered
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set will have few relations, although many observations might support more order constraints.
We address this problem using a simple mixture model (Beerenwinkel et al., 2007).

For the censored model (4) and observed data u : {0, 1}n → N� 0, where ug denotes the count
of genotype g in the data, we define a family of partially ordered sets Pε , 0 � ε � 1, as follows.
We consider all possible relations in ascending order of the number of observations that they
violate. Starting with the partially ordered set Pε with no relation, we add, in a greedy fashion,
each relation i ≺ j , if the number of its violations is smaller than N ε and if j ≺ i is not in Pε .

We assume that incompatible genotypes are generated with uniform probability qε = 1/(2n −
|J (Pε)|) and consider the extended censored model with probabilities

pr(Tε � Q | α, λ) =
{

α pr(Tε � Q | λ), if Q refines Pε,

(1 − α) qε, otherwise,

where Tε ∼ Pε and α = ∑
g∈J (Pε ) ug/

∑
g∈2[n] ug denotes the fraction of data compatible with Pε .

The model can be regarded as a mixture model with α the maximum likelihood estimate of the
mixing parameter.

In the applications, we construct partially ordered sets Pε for various values of ε and select
the one that maximizes the likelihood of the extended model. A software implementation of
the model including the algorithms for model selection and parameter estimation is available at
http://www.cbg.ethz.ch/software/ct-cbn.

5·2. Cancer data

We first use the extended censored model to analyze the genetic progression of prostate cancer.
The random variables Ti denote the times of fixation of genetic changes in the population of
cancer cells. Genetic changes were assessed by comparative genome hybridization experiments.
This technique detects large-scale genomic alterations, namely the gain or loss of chromosome
arms.

For example, the event 4q+ denotes the gain (+) of additional copies of the large (q) arm
of chromosome 4. Likewise, 8p– refers to the loss (–) of the small arm (p) of chromosome 8.
We consider 54 prostate cancer samples, each defined by the presence or absence of the nine
alterations 3q+, 4q+, 6q+, 7q+, 8p–, 8q+, 10q–, 13q+ and Xq+ (Rahnenführer et al., 2005).

In Fig. 2(a), the loglikelihood is shown as a function of the fraction of incompatible genotypes.
The partially ordered set that maximizes the likelihood explains 89% of the data and is displayed
in Fig. 2(b). Four of the nine genetic changes do not obey any relation, two events have one direct
predecessor and one event occurs only after two parent events have occurred. The second best
partially ordered set is the one with no relations, corresponding to α = 1.

In order to assess the uncertainty associated with parameter estimation and model selection,
we performed two independent bootstrap analyses comprising 10 000 samples, each of size
N = ∑

g ug = 54. First, we fixed the optimal partially ordered set, Fig. 2(b), and re-estimated
the model parameters λi . The quartiles of the distributions are displayed in Table 1. The stability
of optimal partially ordered sets was assessed by repeated model selection with a fixed tolerance
parameter of ε = 0·05, the value that had given rise to the optimal partial order with α = 0·89.
Figure 3 summarizes separately the cover relations and all relations that appeared in the bootstrap
partially ordered sets. This analysis supports exactly the relations encoded in the partially ordered
set of Fig. 2(b), especially the sequence 4q+ ≺ 8q+ ≺ 13q+, and 3q+ as a late event.

5·3. HIV data

Our second application is concerned with the evolution of drug resistance in HIV. We study the
accumulation of amino acid changes in the viral target protein reverse transcriptase. The seven
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Fig. 2. Maximum likelihood estimation of the discrete censored continuous-time conjunctive
Bayesian network model for the prostate cancer data. In (a), the loglikelihood is displayed as a
function of the fraction of data that is incompatible with the partially ordered set. The curve has
been generated by densely sampling ε from the unit interval and estimation of the extended models
Pε . The optimal prostate cancer partially ordered set corresponding to the maximum of the graph
is displayed in panel (b). An arrow p → q between two genetic events represents the cover relation

p ≺ q in the Hasse diagram.

Table 1. Bootstrap analysis of model parameters for the optimal
prostate cancer partially ordered set of Fig. 2. The partially ordered
set structure is repeated by listing the parents of each genetic event,
i.e. chromosomal alteration. The quartiles of the distribution of each
parameter λi are given in columns Q1, 25% quantiles; Q2, 50%

quantiles, median; and Q3, 75% quantiles

Event Parents Q1 Q2 Q3

10q– 0·09 0·13 0·17
8p– 0·17 0·21 0·27
13q+ 8q+ 1·17 1·82 2·92
3q+ 6q+, 8q+ 0·95 1·68 2·98
4q+ 0·27 0·35 0·44
6q+ 0·27 0·35 0·43
7q+ 0·15 0·20 0·26
8q+ 4q+ 2·20 3·35 6·45
Xq+ 0·26 0·33 0·41

resistance-associated mutations 41L, 67N, 69D, 70R, 210W, 215Y and 219Q (Johnson et al.,
2008) are considered, where, for example, 41L indicates the presence of the amino acid leucine
at position 41 of the reverse transcriptase. A total of 364 viruses are analyzed that have been
isolated from infected patients under antiretroviral therapy. Here the random variables Ti denote
the fixation times of the mutations in the virus population.

The optimal partially ordered set for the HIV drug resistance data explains 87% of the ob-
servations, Fig. 4(a). Its Hasse diagram has two connected components, Fig. 4(b). The first one
represents the linear pathway 215Y ≺ 41L ≺ 210W, and in the second one, mutations 70R, 67N,
219Q and 69D, form a rhombus beginning with 70R and ending with 69D. This finding supports
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Fig. 3. Bootstrap analysis of partially ordered set structures for the prostate cancer comparative genome
hybridization data. The entry and the degree of shading in matrix cell (i, j) denote the relative frequency in
percent of the relation i ≺ j among the bootstrap samples. In panel (a) only cover relations are recorded,
whereas in panel (b) all relations are considered. Diagonal entries and entries identical to zero have been

omitted.
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Fig. 4. Maximum likelihood estimation of the continuous-time conjunctive Bayesian network model
for the HIV drug resistance data (a), and optimal HIV drug resistance partially ordered set corresponding

to the maximum of the graph (b).

previous studies in which the same clustering of mutations has been described (Boucher et al.,
1992). The two groups of mutations are known as the ‘215-41 pathway’ and the ‘70-219 path-
way’, respectively. They provide alternative but not exclusive routes to resistance for HIV. The
continuous-time conjunctive Bayesian network model captures this escape behaviour and suggests
order constraints within each group.

A similar bootstrap analysis was performed for the HIV data and the results are summarized in
Table 2 and Fig. 5. We find high stability of the maximum likelihood partially ordered set under
re-sampling. All cover relations of Fig. 4 are supported with high confidence, and additional
relations reach only less than half of these values. Overall, these findings strengthen the picture
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Table 2. Bootstrap analysis of model parameters for the optimal HIV
partially ordered set of Fig. 4. Events are amino acid changes in the

HIV reverse transcriptase. See caption of Table 1 for further details

Event Parents Q1 Q2 Q3

41L 215Y 1·78 2·06 2·36
67N 70R 0·92 1·03 1·16
69D 67N, 219Q 0·55 0·69 0·86
70R 0·59 0·62 0·67
210W 41L 0·61 0·72 0·85
215Y 0·52 0·55 0·59
219Q 70R 0·78 0·88 1·00
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Fig. 5. Bootstrap analysis of partially ordered set structures for the HIV mutation data. See caption of
Fig. 3 for further details.

of two separate groups of mutations, one occurring in a linear order, 215Y ≺ 41L ≺ 210W, and
the other exhibiting two intermediate branches, 70R ≺ (67N, 219Q) ≺ 69D.

For both applications, the best tree model shows inferior performance as compared to the
more general model based on partially ordered sets. For example, the mutagenetic tree model for
prostate cancer found in Fig. 2 of Rahnenführer et al. (2005) explains only 56% of the data at a
loglikelihood of only −248·4. Unlike mutagenetic trees, continuous-time conjunctive Bayesian
networks can model the requirement of multiple parent mutations. This type of order constraint
was found in both the prostate cancer and the HIV data set.

6. DISCUSSION

Conjuctive Bayesian networks are statistical models for the accumulation of mutations. They
are defined by a partially ordered set of mutations, which encodes constraints on the order in
which mutations can occur. Here we have introduced the continuous-time conjunctive Bayesian
network, a continuous-time version of this model in which each mutation appears after an
exponentially distributed waiting time, provided that all predecessor mutations have occurred.
In an evolutionary process, this waiting time includes the generation of the mutation plus the
time it takes for the allele to reach fixation in the population. Since we consider only mutations
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with a selective advantage, the waiting time will be dominated by the mutation process in large
populations and by the fixation process in small populations. The parameters λ correspond to the
rate of evolution, i.e. the product of population size, mutation rate and fixation probability.

The continuous-time conjunctive Bayesian network gives information on the order in which
mutations tend to occur. For a set of n mutations, the number of possible pathways to evolve the
wild type into the type harbouring all n mutations is the number of linear extensions of the partially
ordered set. This cardinality increases rapidly with n (Brightwell & Winkler, 1991). However,
protein evolution appears to use few mutational pathways (Weinreich et al., 2006). Thus, we
can expect to find partially ordered sets with much smaller lattices of order ideals than the full
Boolean lattice. In this reduced genotype space, evolution can be modelled more efficiently.

Knowledge of the partial order of genetic events helps our understanding of the phenotypic
changes and biological mechanisms driving the evolutionary process. Furthermore, it allows for
identifying early and essential mutational steps that may be predictive of clinical outcome or
point to promising drug targets. In cancer research, Fearon & Vogelstein (1990) have proposed
linear pathways of genetic alterations as a model of tumorigenesis. These models are known
as Vogelgrams (Gatenby & Maini, 2003; Jones et al., 2008). The continuous-time conjunctive
Bayesian network can be regarded as a generalization of the Vogelgram that is equipped with a
statistical methodology for model selection and parameter estimation. In particular, it allows for
multiple evolutionary pathways and makes explicit the timeline for the genetic alterations.

We have derived equations for the maximum likelihood estimates of the model parameters
and for the expected waiting time of any genotype. These results are used in the EM algorithm
for the censored model. Censoring is modelled by an exponentially distributed sampling time
of the observed genotypes. This model appears most relevant for the data sets available, which
often comprise cross-sectional data sampled after unknown time periods with respect to the
evolutionary process. Other censoring schemes might be applicable in the future. For example,
the sampling time, but not the time of appearance of each mutation, can be observed in some
situations, giving rise to a different marginalization of the continuous-time network.

Because model selection relies on a simple combinatorial criterion and the number of model
parameters is only linear in the number of mutations, we expect the continuous-time conjunctive
Bayesian network to scale well with increasing data sets both in the number of observations and
the number of mutations. In the cancer and HIV applications presented here, there are between
7 and 12 genetic events and 35–364 observations. It is likely, however, that the number of genes
associated with cancer progression is much larger than currently known. Because the running
time of the EM algorithm is dominated by the size of the genotype lattice, many mutations can be
modelled as long as the number of mutational pathways is limited.
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