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S U M M A R Y
We present a numerical method to compute 3-D elastic waves in fully anisotropic axisym-
metric media. This method is based on a decomposition of the wave equation into a series of
uncoupled 2-D equations for which the dependence of the wavefield on the azimuth can be
solved analytically. Four independent equations up to quadrupole order appear as solutions for
moment-tensor sources located on the symmetry axis while single forces can be accommo-
dated by two separate solutions up to dipole order. This decomposition gives rise to an efficient
solution of the 3-D wave equation in a 2-D axisymmetric medium. First, we prove the validity
of the decomposition of the wavefield in the presence of general anisotropy. Then we use it to
derive the reduced 2-D equations of motions and discretize them using the spectral element
method. Finally, we benchmark the numerical implementation for global wave propagation at
1 Hz and consider inner core anisotropy as an application for high-frequency wave propagation
in anisotropic media at frequencies up to 2 Hz.

Key words: Seismic anisotropy; Computational seismology; Theoretical seismology; Wave
propagation.

1 I N T RO D U C T I O N

Seismic anisotropy describes directional dependence of seismic
wave speeds and occurs in the Earth for various reasons: most im-
portantly, mantle flow tends to align intrinsically anisotropic crystals
causing lattice-preferred orientation which is expected to account
for the bulk of the upper mantle anisotropy (Long & Becker 2010).
Secondly, anisotropy can be caused by preferential alignment of
small scale heterogeneities, called shape-preferred orientation: 3-D
structure of purely isotropic material on a subwavelength scale can
cause apparent anisotropy, which was realized for layered media
by Backus (1962) and is used for computational benefits using ho-
mogenization techniques to upscale earth models (e.g. Guillot et al.
2010).

Anisotropy is globally observed in the upper mantle, where differ-
ent velocities for horizontally and vertically polarized shear waves
are needed to explain observed Love and Rayleigh wave speeds.
The upper mantle of the 1-D earth model PREM (Dziewonski &
Anderson 1981) has radial anisotropy while ak135 (Kennett et al.
1995) is isotropic. Wang et al. (2013) analyse whether the anisotropy
in 1-D models is due to intrinsic anisotropy or can be explained by
fine layering. The study by Auer et al. (2013) is the most recent ex-
ample of a tomographic model for shear wave anisotropy on a whole
mantle scale and compares various anisotropic models (Kustowski
et al. 2008; Panning et al. 2010) to identify regions in which the
anisotropic models have reached a certain maturity. Also, structures
above the core–mantle boundary (CMB) such as ultra low veloc-

ity zones (ULVZ) and large low shear velocity provinces (LLSVP)
are expected to be anisotropic (e.g. Panning & Romanowicz 2004;
Long 2009; Nowacki et al. 2011; Walker et al. 2011; Cottaar &
Romanowicz 2013). In the inner core, hexagonal anisotropy with
a fast axis in north–south direction is observed both with normal
modes (Deuss et al. 2010) and inner core body waves (Irving &
Deuss 2011).

To capture these diverse appearances of seismic anisotropy across
the scales, full waveform modelling is needed, preferably up to high
resolution (1–2 Hz) as observed in waveforms for lowermost mantle
and inner-core anisotropy. While anisotropy is included in many nu-
merical wave propagation solvers (e.g. Igel et al. 1995; Komatitsch
et al. 2000; de la Puente et al. 2007; Moczo et al. 2007), full 3-D
wave propagation is not feasible for the observed body wave fre-
quencies on the global scale due to its tremendous cost in solving
for up to 1012 degrees of freedom at these resolutions. In a series
of papers, Nissen-Meyer et al. (2007a,b, 2008) developed a novel
approach to global seismic wave propagation that is based on a de-
composition of the 3-D wave equation into a series of uncoupled
2-D equations that is valid for axisymmetric models. The axisym-
metric approach has three major advantages over full 3-D methods:
(1) it enables the storage of the wavefields that provide the ba-
sis for computing Fréchet sensitivity kernels (Dahlen et al. 2000),
which is not feasible with full 3-D methods due to disk space re-
quirements; (2) it allows the inclusion 2.5-D lateral heterogeneities
that are effectively modelled as ringlike structures around the sym-
metry axis giving rise to various applications in a high-frequency

880 C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

mailto:Martin@vanDriel.de


Waves in anisotropic axisymmetric media 881

approximation that are not tractable with 1-D methods and (3) it is
computationally several orders of magnitude less expensive than full
3-D methods and hence allows the simulation of higher frequencies.
Axisymmetric approaches have been presented earlier using finite
difference (Alterman & Karal 1968; Igel & Weber 1995, 1996;
Chaljub & Tarantola 1997; Thomas et al. 2000; Takenaka et al.
2003; Toyokuni et al. 2005) or pseudospectral methods (Furumura
et al. 1998), but most of these studies assume azimuthally symmetric
sources (monopoles) and hence cannot model arbitrary earthquake
sources, but rather resemble explosive sources or a certain geometry
for strike slip events (Jahnke et al. 2008). More recently, Toyokuni
& Takenaka (2006, 2012) generalized their method to include mo-
ment tensor sources, attenuation and the Earth centre. Furthermore,
these methods are all based on isotropic media and especially the fi-
nite difference methods have to deal with large dispersion errors for
interface sensitive waves like surface waves and diffracted waves.
Here we generalize the spectral element method by Nissen-Meyer
et al. (2007a) to fully anisotropic axisymmetric media to overcome
these issues. This in combination with (2) and (3) above enables the
simulation of high-frequency body waves in anisotropic structures
such as the D′ ′ and the inner core in a 2.5-D approximation.

The numerical implementation (AxiSEM) was recently published
under GNU general public license (www.axisem.info) and a
whole variety of applications is presented by Nissen-Meyer et al.
(2014). Stähler et al. (2012) use this method to compute finite
frequency sensitivity kernels for triplicated P waves, which is inac-
curate with other methods such as the one by Dahlen et al. (2000)
due to the strong influence of the upper-mantle discontinuities in
comparison to their sensitivity to mantle heterogeneity. Colombi
et al. (2012, 2013) compute boundary topography kernels, analyse
the sensitivity of different phases in comparison to there sensitivity
to mantel heterogeneity and invert for CMB topography. Boué et al.
(2013) use AxiSEM to compute synthetic reference seismograms to
interpret noise correlations.

This paper is structured as follows: in the first section, we discuss
analytically that the decomposition of the elastic wave equation
into a multipole series remains valid in the presence of general
anisotropy by means of two arguments based on normal mode cou-
pling and commuting operators. In the second section we apply this
decomposition to derive the 2-D weak form of the reduced wave
equations and discretize them spatially based on a spectral element
method (SEM). In the third section, we benchmark the new im-
plementation at high (1 Hz) and low frequency (normal modes ob-
served at frequencies of a few mHz) against reference solutions and
find excellent agreement. In the last section, we apply our method
to inner-core anisotropy at 2 Hz as an example of the anisotropic
parameter regime covered by AxiSEM. Comprehensive appendices
list the full discretized stiffness terms for the multipole expansion
explicitly.

2 M U LT I P O L E E X PA N S I O N

For clarity and generality, we outline two different approaches which
show that the decomposition into a multipole series remains valid
and still results in a series of uncoupled equations in the presence
of general anisotropy: The first one takes a normal mode perspec-
tive and generalizes the argument by Nissen-Meyer et al. (2007a)
that is valid for spherically symmetric non-rotating elastic isotropic
(SNREI) earth models by expressing the wavefield in the normal
mode basis and anlysing the mode coupling selection rules. The
second approach is more abstract and general as it is based on two

Figure 1. The cylindrical coordinate system (s, ϕ, z) and the reduced semi-
circular 2-D domain �D for global wave propagation in axisymmetric media.

essential properties of the physical system under consideration:
invariance under rotation and linearity, thereby dropping the
necessity for a spherical domain and including a variety of other
equations.

2.1 Statement of the problem

In the cylindrical coordinate system (s, ϕ, z), any square integrable
function u defined on a domain � symmetric with respect to the
polar axis êz (Fig. 1) can be decomposed by applying a Fourier
transform in the angular coordinate ϕ as

u(s, z, ϕ) =
∞∑

m=−∞

[
um

s (s, z)ês(ϕ) + um
ϕ (s, z)êϕ(ϕ) + um

z (s, z)êz

]
︸ ︷︷ ︸

=:um (s,ϕ,z)

eimϕ.

(1)

Equivalent expressions with sin ϕ and cos ϕ as used by Nissen-
Meyer et al. (2007a) can be found by summing over pairs of ±m
and using the fact that u is real. The question is whether the wave
equation

K̂u + ρ∂2
t u = f (2)

in the expansion eq. (1) can be split into a series of independent
equations, that is if there exist operators K̂m such that the set of
equations

K̂mum + ρ∂2
t um = fm (3)

is equivalent to the wave equation eq. (2), where fm denotes an
expansion corresponding to eq. (1). While this is a well known fact
for spherically symmetric earth models (which are a special case
of axial symmetry and only include transversely isotropic media,
see e.g. Dahlen & Tromp 1998), we prove here that this expansion
is valid for a fully anisotropy medium, as long as it is azimuthally
invariant:

ci jkl (s, ϕ, z) = ci jkl (s, z), (i, j, k, l = s, ϕ, z). (4)

In the normal mode context, this type of symmetry is often referred
to as zonal symmetry (Dahlen & Tromp 1998).
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2.2 Proof 1: Normal mode coupling due to zonally
symmetric anisotropy

Nissen-Meyer et al. (2007a) show that the decomposition eq. (3)
is valid for SNREI earth models and derive the series of equations
explicitly for moment tensor and single force point sources on the
polar axis, where m takes values between −2 and 2. Their argument
was based on identification of the angular dependence in eq. (1)
with analytic solutions of the wave equation using a normal mode
expansion.

The strategy in this proof is to show that the angular dependence
of the wavefield is not altered by the zonally symmetric anisotropy
and hence the argument by Nissen-Meyer et al. (2007a) remains
valid. After introducing the normal-mode solution, what remains
to be shown is that only singlets with the same azimuthal depen-
dence are coupled, as this leaves the total dependence on azimuth
unchanged. This is equivalent to the selection rule m = m′, where
m is the azimuthal order.

2.2.1 A solution to the wave equation

Consider the elastic wave equation eq. (2) where

K̂u = −∇ · (c : ∇u) . (5)

As K̂ is self-adjoint, it is diagonalizable in the space of square
integrable functions L2 on the domain � and the basis of eigenfunc-
tions is orthogonalizable and countable (for more details refer to
Woodhouse & Deuss 2007). Now assume any countable basis s(k)

of the L2 that is orthonormal in the sense∫
�

ρs(k)∗ · s(k′) d3x = δkk′ . (6)

In this basis, eq. (2) can be written as an infinite dimensional matrix
equation (Woodhouse 1983)

Ku + ∂2
t u = F, (7)

with the coupling matrix K having elements

Kkk′ =
∫

�

s(k)∗ · K̂s(k′) d3x (8)

and the source vector F and u being the vector of coefficients for
the displacement u in this basis. For an instantaneous point source,
the coefficients of the source vector F are

Fk =
⎛
⎝∑

i

Fi s
(k)
i (rs) +

∑
i j

Mi j∂ j s
(k)
i (rs)

⎞
⎠ h(t), (9)

where Fi are the components of a force vector, Mij a moment tensor
and h(t) the Heaviside function. To avoid confusion, summation
over repeated indices is always written explicitly throughout the
paper. The solution to eq. (7) can then be written as (Woodhouse
1983)

u(t) = K
−1

[
1 − cos

(√
Kt

)]
F. (10)

This time evolution is trivial, if s(km) are eigenvectors of K̂, that is

K̂s(km) = ρω2
k s(km), (11)

because then the coupling matrix K is diagonal. The additional index
m accounts for possible degeneracy of the eigenfrequencies ωk. In
the case where K̂ is the elastic operator corresponding to the SNREI
Earth, the set of eigenfunctions s(km) corresponding to a degener-
ate eigenfrequency ωk is called normal mode or the multiplet k.

k then incorporates the angular order l, the overtone number n and
the mode type (spheroidal or toroidal) and m is called the azimuthal
order.

The problem of finding solutions to the wave equations is then
reduced to finding eigenfrequencies and eigenvectors of the operator
K̂, followed by application to a specific source and summation of
the eigenfunctions according to eq. (10).

2.2.2 Mode coupling selection rule m = m′

While in the SNREI Earth the spherical parts of the eigenfunctions
are found to be spherical harmonics, it is impractical to compute
them explicitly in an Earth with lateral perturbations. A numerically
exact solution can still be found by expressing K̂ in the normal mode
basis and diagonalizing K numerically (Deuss & Woodhouse 2001).
Once this is done, the eigenfunctions can be expressed in a normal
mode sum as well. The time evolution is then nontrivial, because it
is affected by coupling between modes.

To evaluate the elements of the coupling matrix, it is useful
to express the strain E and the perturbed elastic stiffness tensor
cijkl(r, θ , ϕ) in terms of generalized spherical harmonics Y N

lm

(Phinney & Burridge 1973; Dahlen & Tromp 1998, (C.164)):

E(km)(r) = 1

2

[
∇s(km)(r) + (∇s(km)(r)

)T
]

=
∑
αβ

Eαβ

km(r )Y N
lm(θ, ϕ) êα êβ (12)

with α, β = −1, 0, 1 and N = α + β and l is determined by k (see
above). êα,β are the canonical basis functions (Dahlen & Tromp
1998, (C.50))

ê−1 = 1√
2

(θ̂ − iϕ̂), ê0 = r̂, ê+1 = − 1√
2

(θ̂ + iϕ̂). (13)

Similarly, we can write for the elastic tensor (Dahlen & Tromp 1998,
(D.100)):

c(r) =
∑
lm

∑
αβγ δ

cαβγ δ

lm (r )Y N
lm(θ, ϕ) êα êβ êγ êδ (14)

with α, β, γ , δ = −1, 0, 1 and N = α + β + γ + δ. Zonal symmetry
is then defined by cαβγ δ

lm (r ) = 0 if m �= 0, that is the elastic tensor is
independent of azimuth ϕ. The coupling matrix elements can then
be written as (Woodhouse & Dahlen 1978; Dahlen & Tromp 1998,
(D.115)):

〈km|K̂|k ′m ′〉

=
∫

�

s(km)∗ · K̂s(k′m′) d3x

=
∫

�

E(km)∗ : c : E(k′m′) d3x

=
∑
αβγ δ

∑
γ ′δ′

∑
st

∫ r0

0
Eαβ∗

km cαβγ δ
st Eγ ′δ′

k′m′ gγ γ ′ gδδ′r 2 dr

×
∫

Y N∗
lm Y N+N ′

st Y N ′
l ′m′ d�, (15)

where N = α + β, N′ = γ ′ + δ′ and g the metric tensor with
g00 = 1, g−11 = g1−1 = −1 and gαβ = 0 if α + β �= 0 and d� the
solid angle. Using the zonal symmetry (t = 0) and the definition
of the generalized spherical harmonics (Phinney & Burridge 1973,
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eq. (1.5)) the angular integral in eq. (15) can be expressed as∫
Y N∗

lm Y N+N ′
s0 Y N ′

l ′m′ d�

=
∫ π

0
P Nm∗

l (cos θ )P (N+N ′)0
s (cos θ )P N ′m′

l ′ (cos θ ) sin θ dθ

×
∫ 2π

0
ei(m′−m)ϕ dϕ︸ ︷︷ ︸

= 0, if (m �=m′)

= 0 (m �= m ′). (16)

As no assumption about the elastic tensor cijkl was made apart from
zonal symmetry, the selection rule m = m′ is a direct consequence
of this symmetry independent of anisotropy. The advantage of this
first proof is its rather intuitive perspective of mode coupling, but it
has the disadvantage of relying on the decomposition into spherical
harmonics and is hence limited to spherical domains.

2.3 Proof 2: Commuting operators

The second proof is more abstract but also more general as it is
valid for all linear equations defined in the space of square inte-
grable functions L2 on domains �, if both the domain and the equa-
tion are invariant under rotations around a symmetry axis. For the
seismic wave equation, this includes local domains as needed, for
example for seismic exploration (suggested for explosive sources
and isotropic media by Takenaka et al. 2003) and especially, as
self-adjointness is not required, it readily includes linear viscoelas-
ticity as well. Furthermore, this approach is applicable to a variety of
other equations, for example the anisotropic acoustic wave equation
that is frequently used in exploration geophysics (Alkhalifah 2000)
or the Poisson and incompressible Stokes equations, see Bernardi
et al. (1999) for a rigorous mathematical treatment. The method
by Fournier et al. (2004) for the nonlinear Navier–Stokes equation
is different in that it only treats axisymmetric solutions, while the
solutions discussed here can take arbitrary form and the equation
needs to have the symmetry.

Let � ⊂ R
3 and T̂ψ a rotation of the coordinate system by the

angle ψ and � is invariant under the rotation. The action of T̂ψ on
a function u : � → R

3 then is

T̂ψu(x) = Rψu
(
R

T
ψx

)
, (17)

where Rψ is the rotation matrix corresponding to the rotation around
the symmetry axis of �. As stated above, any function u : � → R

3

that is square integrable can be expanded as in eq. (1). The basis
vectors of the cylindrical coordinate system are symmetric with
respect to the axis, that is T̂ψ ê{s,ϕ,z} = ê{s,ϕ,z}. The action of the
rotation operator in this decomposition therefore simplifies to

T̂ψ (um(s, ϕ, z)eimϕ) = e−imψum(s, ϕ, z)eimϕ. (18)

Now consider the equation

Ĥu = f, (19)

where the operator Ĥ is linear, the equation has a unique non-trivial
solution u and Ĥ commutes with T̂ψ , that is

ĤT̂ψu = T̂ψ Ĥu, for all u ∈ L2. (20)

In other words, whether the function is first rotated and Ĥ is applied
subsequently or Ĥ is applied first and the resulting function then
rotated does not affect the final result. In the case of the elastic wave
equation, Ĥ is the elastodynamic operator K̂ + ρ∂2

t which fulfills

these criteria if the medium is symmetric with respect to the z-axis,
see eq. (4).

Similar to u, the source f has a decomposition as in eq. (1) with
f = ∑

m′ fm′ eim′ϕ and the behaviour under rotation as in eq. (18).
Because of the linearity of Ĥ, we can first consider solutions for
Ĥu = fm′ eim′ϕ and sum over m′ later. If we apply the rotation T̂ψ to
the linear wave equation and use the commuting property, we have

ĤT̂ψu = e−im′ψ fm′ eim′ϕ. (21)

Using the uniqueness of the solution and linearity of Ĥ this implies

T̂ψu = e−im′ψu = e−im′ψ
∞∑

m=−∞
umeimϕ. (22)

On the other hand, using eq. (18):

T̂ψu =
∞∑

m=−∞
e−imψumeimϕ. (23)

Because of the orthogonality of e−imψ , both relations can hold at
the same time and for all ψ if and only if

um = 0, (for all m �= m ′). (24)

In conclusion, eq. (19) can be separated into a series of independent
equations

Ĥumeimϕ = fmeimϕ, (m ∈ N). (25)

An equivalent set of reduced equations with functions ũm(s, z) and
f̃m(s, z) defined on �D with � = �D⊗[0, 2π ] can be defined such
that

Ĥm ũm(s, z) = f̃m(s, z), (m ∈ N). (26)

These are derived explicitly for m = 0, ±1, ±2 (as these are the only
contributions for a moment tensor or single force point source on
the symmetry axis) for the wave equation in the isotropic elastic and
fluid cases in sections 4.5–4.6 and appendix in Nissen-Meyer et al.
(2007a) and will be presented in the next section for the anisotropic
elastic case.

3 T H E A X I S Y M M E T R I C S Y S T E M

3.1 Equations of motion

In this section, we derive the equations of motions of the reduced
2-D equations in the weak form explicitly. This step essentially
consists of projecting the wave equation onto test functions hav-
ing the azimuthal dependence of monopole, dipole and quadrupole
sources as defined in eq. (1). Taking the dot product of eq. (2) with
a test function w, integrating over the domain � and using partial
integration and the free surface boundary condition yields∫

�

(
ρw · ü︸ ︷︷ ︸

mass

+ ∇w : (c : ∇u)︸ ︷︷ ︸
stiffness

)
d3x =

∫
�

w · f︸︷︷︸
force

d3x. (27)

If this equation holds for all w, this so called weak form is equivalent
to the original wave equation. When inserting the specific depen-
dence of the wavefield u and the test function w on the azimuth ϕ,
the integral in ϕ can be solved analytically leaving only the integral
over the 2-D semicircular domain �D, see Fig. 1. The domain �

of interest here is the solid part of the Earth, for the full solid-fluid
system see Nissen-Meyer et al. (2008). Both source and mass term
are independent of the elastic tensor c, so we only consider the stiff-
ness terms to generalize eqs (5)–(7) in Nissen-Meyer et al. (2007b)
to anisotropic earth models.
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3.1.1 Stiffness terms

For the monopole (m = 0), integrating the stiffness terms over ϕ

results in (omitting the integral over �D on both sides)

1

2π

∫ 2π

0
∇w : (c : ∇u) dϕ

= ∂sws

(
C11∂sus + C13∂zuz + C15(∂suz + ∂zus) + C12

us

s

)
+ ∂zws

(
C15∂sus + C35∂zuz + C55(∂suz + ∂zus) + C25

us

s

)

+ 1

s
ws

(
C12∂sus + C23∂zuz + C25(∂suz + ∂zus) + C22

us

s

)
+ ∂swz

(
C15∂sus + C35∂zuz + C55(∂suz + ∂zus) + C25

us

s

)
+ ∂zwz

(
C13∂sus + C33∂zuz + C35(∂suz + ∂zus) + C23

us

s

)
,

(28)

where Cij is the elastic tensor cijkl in Voigt notation with the index
mapping

{ss} → 1, {ϕϕ} → 2, {zz} → 3,

{ϕz} → 4, {zs} → 5, {sϕ} → 6. (29)

Equivalent expressions for dipole and quadrupole sources can be
found in the Appendix A. At this point we have carried out the
integration in azimuth in eq. (27) and end up with an equation of
motion in the weak form with a domain of definition that spans the
semi-circular domain �D, see Fig. 1.

3.1.2 Effective elasticity tensor

Inspection of eqs (28, A2, A3) reveals that 8 out of the 21 indepen-
dent coefficients in the elasticity tensor drop out in the integration
of the stiffness terms over ϕ for all source types, namely C14, C24,
C34, C16, C26, C36, C45, C56. These are exactly the coefficients that
are antisymmetric with respect to the s-z plane, that is change sign
under coordinate transform ϕ → −ϕ. By setting these coefficients
to zero, an effective elasticity tensor can be defined that is symmet-
ric with respect to the s–z plane, that is invariant under coordinate
transform ϕ → −ϕ.

In practice, this means that recorded seismic waveforms of a spe-
cific source–receiver combination are fundamentally insensitive to
these antisymmetric coefficients so long as the 2.5-D approximation
is valid, that is for structural variations on a larger scale than the
Fresnel zone. To image full anisotropy using high-frequency body
waves, multiple crossings of a certain region are therefore necessary
not only for spatial resolution as in isotropic imaging, but also to
resolve the full elastic tensor.

3.2 Discretization

The next step is to generalize the spatial discretization of the stiffness
terms from the isotropic case presented in Nissen-Meyer et al.
(2007b) to the anisotropic case. The approach is the same as in the
isotropic case and we refer the reader to section 3 in Nissen-Meyer
et al. (2007b) for details and restrict ourselves to a short summary
of the method and important aspects of the notation in the interest
of brevity.

The collapsed 2-D domain �D is divided into non-axial elements
�e and axial elements �ē. The mapping between reference coordi-
nates ξ , η ∈ [−1, 1] in each element and the physical coordinates s,
z is provided by the Jacobian determinant

J (ξ, η) = det

(
sξ sη

zξ zη

)
, (30)

where the subscript denotes partial derivation, sξ = ∂ξ s etc. Both the
test function w and the displacement u are expanded in Lagrangian
polynomials li of order N (defined on the integration points, see
below) within each element

uα(ξ, η, t) =
∑

i j

uα
i j (t)li (ξ )l j (η) (31)

for each component α ∈ (s, ϕ, z) and equivalently for w. For the
axial elements ξ = 0 is the axis. The integral over the domain �D

is then split into a sum of integrals over elements and approximated
using the Gauss Lobatto integration rule∫

�e

u(s, z)s ds dz ≈
∑

pq

σpσq s(ξp, ηq )u pqJ (ξp, ηq ) (32)

with Gauss Lobatto Legendre (GLL) integration weights σ p and
integration points ξ p and ηq. For the axial elements, Gauss Lobatto
Jacobi (GLJ) quadrature is used for the ξ direction with∫

�ē

u(s, z)s ds dz ≈
∑

pq

σ̄p(1 + ξ̄p)−1σq s(ξ̄p, ηq )u pqJ (ξ̄p, ηq )

(33)

and GLJ integration weights σ̄p , integration points ξ̄p and the
Lagrangian interpolation polynomial on these points l̄(ξ ). This al-
lows to use l’Hospital’s rule to calculate derivatives at the axis where
needed.

Applying this discretization to eq. (27), choosing the set of test
functions to be 1 in one component at a specific integration point
and 0 at the others and summing over all elements we obtain the
global set of ordinary differential equations in time

Mü(t) + Ku(t) = f(t), (34)

with the global mass matrix M and stiffness matrix K. While the
assembled mass matrix is diagonal in the GLL/GLJ basis (hence
trivial to invert), it is unnecessary to compute K explicitly and we
only evaluate its action on the displacement (Ku). This term only
appears on the right hand side of the second order system

ü(t) = M
−1[f(t) − Ku(t)] (35)

which is solved by explicit numerical time integration schemes. The
stiffness terms Ku are solved in each element first and the global
stiffness is assembled subsequently (Nissen-Meyer et al. 2007b,
section 4).

The only difference compared to the isotropic case is in the el-
emental stiffness terms, which we derive here for the anisotropic
case. We split the original elemental stiffness integral into contri-
butions from each component β of the vectorial test function w,
denoted by the subscript β. Furthermore, we split the contributions
from terms in eq. (28) with two (‘leading order’) or less (‘lower
order’) partial derivatives, denoted by superscripts ∂∂ and ∂ . The
full elemental stiffness for the monopole is hence split as

Ku =
∑

β∈{s,z}

(
(Ku)∂∂

β + (Ku)∂β
)
. (36)
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Furthermore, we revert to a tensorial notation instead of elemental
sums and define the matrix–matrix products

X = A ⊗ B: Xi j =
∑

k

Aik Bkj

X = A � B: Xi j = Ai j Bi j (37)

and vector–matrix and vector–vector products

X0 = A0 ⊗ B: X0 j =
∑

k

A0k Bkj

X0 = A0 � B0: X0 j = A0 j B0 j

X = A0B0: Xi j = Ai0 B0 j . (38)

The leading order terms have contributions from the components
α of the displacement u, where the ϕ component vanishes for the
monopole source, thus

(Ku)∂∂
β =

∑
α∈{s,z}

(Ku)∂∂
βα , (39)

with

(Ku)∂∂
βα = Dξ ⊗

[
C � E(1)

βα � (
uα ⊗ Dη

)]
+ Dξ ⊗

[
C � E(2)

βα � (
DT

ξ ⊗ uα

)]
+

[
C � E(3)

βα � (
DT

ξ ⊗ uα

)] ⊗ DT
η

+
[
C � E(4)

βα � (
uα ⊗ Dη

)] ⊗ DT
η . (40)

with C and D from Table 1 and E(k)
βα defined as:

E(k)
ss = C11 Gss

k + C15 Gsz
k + C15 Gzs

k + C55 Gzz
k

E(k)
sz = C15 Gss

k + C13 Gsz
k + C55 Gzs

k + C35 Gzz
k

E(k)
zs = C15 Gss

k + C55 Gsz
k + C13 Gzs

k + C35 Gzz
k

E(k)
zz = C55 Gss

k + C35 Gsz
k + C35 Gzs

k + C33 Gzz
k (41)

with εGxy
k from Table 1. Defining

M1 = C12 Bzη
+ C25 Bsη M2 = C12 Bzξ

+ C25 Bsξ

M3 = C25 Bzη
+ C23 Bsη M4 = C25 Bzξ

+ C23 Bsξ

Mw1 = C22 A

M0
w1 = (2C12+C22)A

0 M0
w2 = C25 A0

M0
w3 = C25 B0

zξ
+ C23 B0

sξ
(42)

with εA and εBxζ
from Table 1 the lower-order terms read:

(Ku)∂s = Dξ ⊗ (M1 � us) + (M2 � us) ⊗ DT
η

+ M1 � (
DT

ξ ⊗ us

) + M3 � (
DT

ξ ⊗ uz

)
+ M2 � (

us ⊗ Dη

) + M4 � (
uz ⊗ Dη

)
+ Mw1 � us

+ δeēD0
ξ

[
M0

w3 � (
u0

z ⊗ Dη

)
+ M0

w1 �
((

D0
ξ

)T ⊗ us

)
+ M0

w2 �
((

D0
ξ

)T ⊗ uz

) ]
(43)

(Ku)∂z = Dξ ⊗ (M3 � us) + (M4 � us) ⊗ DT
η

+ δeē

{
D0

ξ

[
M0

w2 �
((

D0
ξ

)T ⊗ us

) ]
+

[
M0

w3 �
((

D0
ξ

)T ⊗ us

)]
⊗ DT

η

}
. (44)

Here δeē is 1 in axial elements and 0 otherwise and is used to
denote the additional terms that occur from the special treatment of
derivatives at the axis.

Importantly, the computational cost is not increased measur-
ably within the time-evolution compared to the isotropic version:
in the monopole case the only additional term is the 1-D axial
term with M0

w2. Eβα receives additional contributions, but these are

Table 1. Definitions for pre-computable matrices (that is, prior to the costly time extrapolation) of the stiffness
terms, ± takes its value depending on the combination of xζ as in the lower right table. Subscript reference coordi-
nates denotes partial derivation, xζ = ∂ζ x. For consistency with the summation notation in Nissen-Meyer et al. (2007a),
we use indices i, j and I, J, which all take the values in [0, N].

Matrix Non-axial elements Axial elements (i > 0) (i = 0) Axial vectors

(εA)i j εi j σi σ j (si j )−1J i j εi j σ̄i (1 + ξ̄i )−1σ j (si j )−1J i j 0 (εA0) j = ε0 j σ̄0σ jJ 0 j
(

s0 j
ξ

)−1

(εBxζ
)i j ±εi j σi σ j x i j

ζ ±εi j σ̄i (1 + ξ̄i )−1σ j x i j
ζ 0

(
εB0

xζ

) j = ±ε0 j σ̄0σ j x0 j
ζ

(C)i j σi σ j si j (J i j )−1 σ̄i σ j si j (1 + ξ̄i )−1(J i j )−1 0 (C0) j = σ̄0σ j s
0 j
ξ (J 0 j )−1

(Dξ )I i ∂ξ lI(ξ i) ∂ξ l̄ I (ξ̄i ) ∂ξ l̄ I (ξ̄0)
(

D0
ξ

)I = ∂ξ l̄ I (ξ̄0)(
Dη

)J j
∂ηlJ(ηj) = ∂ξ lJ(ξ j) ∂ηlJ(ηj)

(
εGxy

k

)i j
k = 1 k = 2 k = 3 k = 4 ±(xζ ) ζ = ξ ζ = η

x = s, y = s −zi j
ξ zi j

η εi j zi j
η zi j

η εi j −zi j
ξ zi j

η εi j zi j
ξ zi j

ξ εi j x = s
x = z

+
−

−
+

x = s, y = z zi j
η si j

ξ εi j −zi j
η si j

η εi j zi j
ξ si j

η εi j −zi j
ξ si j

ξ εi j

x = z, y = s si j
η zi j

ξ εi j −si j
η zi j

η εi j si j
ξ zi j

η εi j −si j
ξ zi j

ξ εi j

x = z, y = z −si j
ξ si j

η εi j si j
η si j

η εi j −si j
ξ si j

η εi j si j
ξ si j

ξ εi j
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pre-computed before the time loop (Table 1). This is similar for
dipole and quadrupole sources (see Appendix), so we dropped the
isotropic implementation and use the new anisotropic version as
well for entirely isotropic models.

4 B E N C H M A R K S

Solving the full 3-D wave equation for arbitrary earthquake sources
in axisymmetric models, AxiSEM seems to be unique among the
available codes. For benchmarking we thus have to revert to spher-
ically symmetric models, but as the code is written in cylindrical
coordinates, even transversely isotropic media lead to a stiffness
tensor that is fully populated (those elements that are nonzero in
the effective stiffness tensor, see above) and the full stiffness matrix
is tested. As a reference, we use Yspec by Al-Attar & Woodhouse
(2008), which is a generalization of the direct radial integration
method (Friederich & Dalkolmo 1995) including self-gravitation
(switched off for the benchmark).

4.1 High frequency seismograms

While Nissen-Meyer et al. (2008) could only perform benchmarks
down to 20 s period due to limitations in the reference normal mode
solution, this limit is overcome using Yspec. Also, AxiSEM since
then has experienced some substantial development (Nissen-Meyer
et al. 2014), specifically the improved parallelization allows us to
perform production runs up to the highest frequencies observed for
global body waves.

Fig. 2 shows a record section of seismograms computed for the
anisotropic PREM model (Dziewonski & Anderson 1981) with con-
tinental crust computed with Yspec and AxiSEM. The source is a
strike slip event with a moment magnitude Mw = 5.0 in 117 km
depth under Oaxaca, Mexico. The traces recorded at some selected
GSN stations are filtered between 5 and 1 s. Due to the high-
frequency content, it is necessary to zoom in to see any differences
at all: the agreement between the two methods is remarkable even
though the highest frequencies have traveled more than 1000 wave-
lengths (given the low pass filter at 1 s, the time axis is equivalent
to the number of travelled wavelengths).

We use the phase and envelope misfit (PM and EM as defined
by Kristekova et al. 2009) for quantitative comparison within the
zoom windows and find phase misfits well below 1 per cent for all
windows and envelope misfits below 1.1 per cent for all windows but
the extremely small amplitude phase ScS at JTS, where it reaches
a maximum of 2.3 per cent. Errors in amplitude and phase are
therefore negligibly small compared to other errors when comparing
these synthetics to data like, for example noise or the assumption
of a 1-D model.

The total cost of this run with AxiSEM was about 70 K CPU
hours using a fourth order symplectic time scheme (Nissen-Meyer
et al. 2008) on a Cray XE6. The mesh was built for periods down to
0.8 s and the time step chosen 30 per cent below the CFL criterion,
as this run was meant to prove convergence to the same result as
Yspec. In applications where less accuracy is necessary one could
either use the same traces at higher frequencies or reduce this cost
substantially by choosing a larger time step and a coarser mesh.

4.2 Low frequency spectra

Normal mode eigenfrequency and phase spectra are extremely sen-
sitive to Earth’s structure, so they also provide a good benchmark
at the low frequency end of the spectrum. For the comparison,

48 hr of synthetic seismogram were tapered with a cosine func-
tion and transformed to the frequency domain. Fig. 3 shows both
amplitude and phase spectra with a zoom on the frequencies just
above 5 mHz. The agreement in the amplitude spectrum is strik-
ing and there is essentially no visible difference. The phase spectra
agree slightly less well compared to the amplitudes due to accumu-
lated dispersion errors in the time stepping of AxiSEM (1.7 million
time steps with a 2nd order Newmark time scheme, equivalent
to 2000 propagated wavelengths at ≈10 mHz), but the most visi-
ble differences (e.g. around 5.4 mHz) arise from phase wrapping
at π , −π .

In summary, our validation against an entirely different approach
(frequency versus time domain, 1-D versus 2.5-D modelling) at the
high- and low end of the relevant frequency spectrum of global
seismology is outstanding. To the best of our knowledge no such
benchmarks between two entirely different codes for both 1 Hz wave
propagation or for mode spectra have been published.

5 A P P L I C AT I O N S

Hemispherical structure in the inner core of the Earth is well doc-
umented (e.g. Morelli et al. 1986; Creager 1992; Irving et al.
2008, 2009; Deuss et al. 2010; Waszek & Deuss 2011), where the
Eastern Hemisphere is nearly isotropic and faster on average and
the Western Hemisphere is anisotropic and slower than average.
The observed anisotropy is of hexagonal symmetry with a fast axis
approximately parallel to the rotation axis of the Earth and a slow
plane parallel to the equator. Anisotropy is an important diagnostic
property of the inner core since it allows to impose constraints on
super-rotation (Waszek et al. 2011) and the history of inner core
formation.

Inner core body waves are typically observed at frequencies
around 0.5–2.0 Hz, which is unfeasible for 3-D-discretized global
seismic wave simulations. On the other hand, due to the high fre-
quencies, the Fresnel zones are very narrow and for the early ar-
riving inner core phases off-path scattering can be neglected. The
2.5-D approximation is hence likely valid, if the medium parame-
ters vary slowly perpendicular to the source receiver plane. Using
high-frequency synthetics computed with AxiSEM one can study the
problem in terms of waveform effects, potentially allowing for ad-
ditional insights compared to solely analysing ray-theoretical trav-
eltimes. Furthermore, there is an epicentral distance region around
146◦ where PKPab, PKPbc and PKiKP phases arrive at the receiver
at the same time, see Fig. 4. This distance region corresponds to a
depth region of turning rays, where traveltime cannot be extracted
with classical ray-theoretical methods. Having full waveforms com-
puted with AxiSEM at hand, extracting additional information
about this depth region could help further constrain inner core
structure.

Fig. 4 shows a record section zoomed in to the inner core phases
for an explosive source beneath the North pole, bandpass filtered
from 1 to 2 Hz. The background model is isotropic PREM for the
black traces and includes hexagonal anisotropy in the inner core
with the fast axis in north–south direction for the red traces. This
represents a model according to results for uniform anisotropy by
Irving & Deuss (2011). This model is represented exactly in the
2.5-D modeling of AxiSEM, the validity of the 2.5-D approximation
for more general models will be subject to future parameter studies.
As a reference, major ray-theoretical arrivals in PREM are indicated
with blue lines, PKIKP and pPKIKP for the anisotropic core with
green lines.
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Figure 2. Comparison of vertical displacement seismograms (band pass filtered from 5 to 1 s period) for a strike slip event with a moment magnitude Mw = 5.0
in 117 km depth under Oaxaca, Mexico, computed with AxiSEM and Yspec in the anisotropic PREM model without ocean. The traces are recorded at the GSN
stations indicated in the map. The zoom windows are indicated with red rectangles in the record section and the time scale is relative to the ray-theoretical
arrival. EM and PM denote the envelope and phase misfit in the time window plotted (Kristekova et al. 2009).
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Figure 3. Comparison of amplitude- and phase-spectra of 48 hr time-series generated with AxiSEM and Yspec, lower two are zooms into the region marked
with the red rectangle. Most differences that appear to be large in the phase spectrum (e.g. just below 5.3 mHz) are actually small and are visible only because
of phase wrapping at π , −π .

Ray-theoretical traveltimes for PKIKP and pPKIKP in the
anisotropic model can be computed using the small anisotropy ap-
proximation for the perturbation of the P-wave velocity as a function
of the ray angle ζ between the fast axis and the direction of wave
propagation (Morelli et al. 1986):

δvp(ζ )

vp
= a + b cos2 ζ + c cos4 ζ, (45)

where vp is the P-wave velocity in the isotropic background model.
To define the whole elastic tensor, we use the relation of these to
the Love coefficients which can be found in first order as

A = ρv2
p (1 + a)2,

L = N = ρv2
s ,

F = ρv2
p (1 + a)(1 + a + b),

C = ρv2
p (1 + a)(1 + 2a + 2b + 2c). (46)

The good agreement between this simple ray theoretical pertur-
bation method and the moveout of the body wave packets in Fig. 4
suggests that this is a feasible method to obtain full synthetic wave-
forms to study inner core anisotropic structures up to 2 Hz as shown
here.

6 C O N C LU S I O N A N D O U T L O O K

This paper shows how the 2.5-D method by Nissen-Meyer et al.
(2007a) is extended to include fully anisotropic structure. Two
analytical arguments are provided to show that the terms in the
expansion of the wave equation into a multipole series are still
uncoupled: the first one was based on evaluation of the normal

mode coupling matrix which has an intuitive interpretation in the
global seismology context. The second one generalizes the idea
to all linear equations that are invariant under rotation around
an axis.

The resulting reduced equations are discretized using the spectral
element method and the numerical implementation is benchmarked
against a reference solution, showing excellent agreement both for
high-frequency body waves and the low frequency normal mode
spectra. Inner core anisotropy is suggested as one interesting appli-
cation taking advantage of the specific parameter regime covered
by this new version of AxiSEM.

Future work includes benchmarks for 2.5-D anisotropy and the
application to more complex inner core anisotropy models as well
as anisotropic D′ ′ structures.
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Figure 4. Vertical-displacement record section zoomed in to the inner-core phases for an explosive source bandpass filtered from 1 to 2 Hz. Normalization is
global. Black traces for an isotropic PREM model, red traces for a PREM with anisotropic inner core (hexagonal symmetry, fast axis in north–south direction).
Major ray theoretical arrivals in PREM are indicated with blue lines, PKIKP and pPKIKP for the anisotropic core with green lines computed according
to eq. (45).
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A P P E N D I X A : D I P O L E A N D
Q UA D RU P O L E S T I F F N E S S T E R M S

This section contains the results for the weak form of the stiffness
term for dipole and quadrupole sources, equivalent to the results
presented in Section 3.1 for the monopole source and Nissen-Meyer
et al. (2007a, Section 4.6–7) for the isotropic case.

A1 Dipole (m = 1)

For the dipole source, we define

u± = 1

2
(us ± uϕ) ⇒ us = u+ + u−, uϕ = u+ − u− (A1)

as this facilitates easier implementation of the axial boundary con-
ditions (compare Nissen-Meyer et al. 2007a, Section 4.8). The stiff-
ness terms integrated over ϕ then read

1

π

∫ 2π

0
∇w : (c : ∇u) dϕ

= ∂sw+
(

(C11 + C66)∂su+ + (C11 − C66)∂su− + C15∂suz

+ (C15 + C46)∂zu+ + (C15 − C46)∂zu− + C13∂zuz

+ 1

s
(2(C12 + C66)u− + C46uz)

)
+ ∂zw+

(
(C15 + C46)∂su+ + (C15 − C46)∂su− + C55∂suz

+ (C55 + C44)∂zu+ + (C55 − C44)∂zu− + C35∂zuz

+ 1

s
(2(C46 + C25)u− + C44uz)

)
+ ∂sw−

(
(C11 − C66)∂su+ + (C11 + C66)∂su− + C15∂suz

+ (C15 − C46)∂zu+ + (C15 + C46)∂zu− + C13∂zuz

+ 1

s
(2(C12 − C66)u− − C46uz)

)
+ ∂zw−

(
(C15 − C46)∂su+ + (C15 + C46)∂su− + C55∂suz

+ (C55 − C44)∂zu+ + (C55 + C44)∂zu− + C35∂zuz

+ 1

s
(2(−C46 + C25)u− − C44uz)

)
+ 2

s
w−

(
(C12 + C66)∂su+ + (C12 − C66)∂su− + C25∂suz

+ (C25 + C46)∂zu+ + (C25 − C46)∂zu− + C23∂zuz

+ 1

s
(2(C22 + C66)u− + C46uz)

)

+ ∂swz

(
C15∂su+ + C15∂su− + C55∂suz

+ C55∂zu+ + C55∂zu− + C35∂zuz + 2

s
C25u−

)
+ ∂zwz

(
C13∂su+ + C13∂su− + C35∂suz

+ C35∂zu+ + C35∂zu− + C33∂zuz + 2

s
C23u−

)
+ wz

s

(
C46∂su+ − C46∂su− + C44∂zu+

− C44∂zu− + 2

s
C46u−

)
. (A2)

A2 Quadrupole (m = 2)

In the quadrupole case we remain with the same basis as for the
monopole (us, uϕ , uz) and find the stiffness terms integrated over ϕ

as

1

2π

∫ 2π

0
∇w : (c : ∇u) dϕ

= ∂sws

(
C11∂sus + C15∂zus + C15∂suz + C13∂zuz

+ 1

s
(C12us − 2C12uϕ)

)
+ ∂zws

(
C15∂sus + C55∂zus + C55∂suz + C35∂zuz

+ 1

s
(C25us − 2C25uϕ)

)
+ 1

s
ws

(
C12∂sus + 2C66∂suϕ + C25∂suz

+ C25∂zus + 2C46∂zuϕ + C23∂zuz

+ 1

s
((C22 + 4C66)us − 2(C22 + C66)uϕ + 4C46uz)

)
+ ∂swϕ

(
C66∂suϕ + C46∂zuϕ + 1

s
(2C66us

− C66uϕ + 2C46uz)
)

+ ∂zwϕ

(
C46∂suϕ + C44∂zuϕ + 1

s
(2C46us

− C46uϕ + 2C44uz)
)

+ 1

s
wϕ

(
−2C12∂sus − 2C25∂suz − C66∂suϕ

− 2C23∂zuz − 2C25∂zus − C46∂zuϕ

+ 1

s
(−2C22us + 4C22uϕ + C66uϕ

− 2C66us − 2C46uz)
)

+ ∂swz

(
C15∂sus + C55∂zus + C55∂suz + C35∂zuz

+ 1

s
(C25us − 2C25uϕ)

)
+ ∂zwz

(
C13∂sus + C35∂zus + C35∂suz + C33∂zuz

+ 1

s
(C23us − 2C23uϕ)

)
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+ 2

s
wz

(
C46∂suϕ + C44∂zuϕ

+ 1

s
(2C46us − C46uϕ + 2C44uz)

)
. (A3)

A P P E N D I X B : D I P O L E A N D
Q UA D RU P O L E D I S C R E T I Z AT I O N O F
T H E S T I F F N E S S T E R M S

These stiffness terms are then discretized in the SEM using the
notation defined in Section 3.2.

B1 Dipole

For the dipole, we define E(k)
βα for the leading order terms as

E(k)
++ = (C11+C66)G

ss
k + (C15+C46)G

sz
k

+ (C15+C46)G
zs
k + (C55+C44)G

zz
k

E(k)
+− = (C11−C66)G

ss
k + (C15−C46)G

sz
k

+ (C15−C46)G
zs
k + (C55−C44)G

zz
k

E(k)
+z = C15 Gss

k + C13 Gsz
k + C55 Gzs

k + C35 Gzz
k (B1)

E(k)
−+ = E(k)

+− E(k)
− = E(k)

++ E(k)
−z = E(k)

+z (B2)

E(k)
z+ = C15 Gss

k + C55 Gsz
k + C13 Gzs

k + C35 Gzz
k

E(k)
z− = E(k)

z+

E(k)
zz = C55 Gss

k + C35 Gsz
k + C35 Gzs

k + C33 Gzz
k . (B3)

The leading order terms then are

(Ku)∂∂
β =

∑
α∈{+,−,z}

(Ku)∂∂
βα , (B4)

with (Ku)∂∂
βα from eq. (40). For the lower order and axial terms we

define

M1 = (2C12+2C66)Bzη
+ (2C25+2C46)Bsη

M2 = (2C12+2C66)Bzξ
+ (2C25+2C46)Bsξ

M3 = C46 Bzη
+ C44 Bsη

M4 = C46 Bzξ
+ C44 Bsξ

M5 = (2C12−2C66)Bzη
+ (2C25−2C46)Bsη

M6 = (2C12−2C66)Bzξ
+ (2C25−2C46)Bsξ

M7 = 2C25 Bzη
+ 2C23 Bsη

M8 = 2C25 Bzξ
+ 2C23 Bsξ , (B5)

Mw1 = (4C22+4C66)A Mw2 = 2C46 A

Mw3 = C44 A (B6)

and

M0
w1 = (2C12+2C66)A

0 M0
w2 = (2C12+2C66)B

0
zξ

M0
w3 = C46 A0 M0

w4 = C46 B0
zξ

M0
w5 = (2C25+2C46)A

0 M0
w6 = (2C25+2C46)B

0
sξ

M0
w7 = C44 A0 M0

w8 = C44 B0
sξ

M0
w9 = (4C12+4C22)A

0 M0
w10 = (2C25+C46)A

0. (B7)

The lower order terms can then be written as

(Ku)∂+ = Dξ ⊗ [
M1 � u− + M3 � uz

]
+ [

M2 � u− + M4 � uz

] ⊗ DT
η

+ δeē

{
D0

ξ

[
M0

w1 �
((

D0
ξ

)T ⊗ u−
)

+ M0
w3 �

((
D0

ξ

)T ⊗ uz

) ]
+

[ (
M0

w2 + M0
w6

) �
((

D0
ξ

)T ⊗ u−
)

+ (
M0

w4 + M0
w8

) �
((

D0
ξ

)T ⊗ uz

) ]
⊗ DT

η

}
,

(B8)

(Ku)∂− = M1 � (
DT

ξ ⊗ u+
) + M2 � (

u+ ⊗ Dη

)
+ M5 � (

DT
ξ ⊗ u−

) + M6 � (
u− ⊗ Dη

)
+ M7 � (

DT
ξ ⊗ uz

) + M8 � (
uz ⊗ Dη

)
+ Dξ ⊗ [

M5 � u− − M3 � uz

]
+ [

M6 � u− − M4 � uz

] ⊗ DT
η

+ Mw1 � u− + Mw2 � uz

+ δeēD0
ξ

[
M0

w1 �
((

D0
ξ

)T ⊗ u+
)

+ M0
w6 � (

u0
+ ⊗ Dη

)
+ M0

w9 �
((

D0
ξ

)T ⊗ u−
)

+ M0
w2 � (

u0
− ⊗ Dη

)
+ M0

w10 �
((

D0
ξ

)T ⊗ uz

)]
(B9)

and

(Ku)∂z = M3 � (
DT

ξ ⊗ (u+ − u−)
)

+ M4 � (
(u+ − u−) ⊗ Dη

)
+ Dξ ⊗ [

M7 � u−
] + [

M8 � u−
] ⊗ DT

η

+ Mw2 � u− + Mw3 � uz

+ δeēD0
ξ

[
M0

w3 �
((

D0
ξ

)T ⊗ u+
)

+ (
M0

w4 + M0
w8

) � (
u0

+ ⊗ Dη

)
+ M0

w10 �
((

D0
ξ

)T ⊗ u−
)

+ M0
w7 �

((
D0

ξ

)T ⊗ uz

)]
. (B10)

B2 Quadrupole

For the quadrupole source, we define additionally to the definitions
from the monopole, eq. (41)

E(k)
ϕϕ = C66 Gss

k + C46 Gsz
k + C46 Gzs

k + C44 Gzz
k

E(k)
ϕs = 0 E(k)

ϕz = 0 E(k)
sϕ = 0 E(k)

zϕ = 0. (B11)

The leading order terms then are

(Ku)∂∂
β =

∑
α∈{s,ϕ,z}

(Ku)∂∂
βα . (B12)
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Additionally to M1, M2, M3, M4 as in the monopole case, eq. (42)
we define:

M5 = C66 Bzη
+ C46 Bsη M6 = C66 Bzξ

+ C46 Bsξ

M7 = C46 Bzη
+ C44 Bsη M8 = C46 Bzξ

+ C44 Bsξ (B13)

and partly redefine:

Mw1 = (C22+4C66)A Mw2 = −2(C22+C66)A

Mw3 = 2C46 A Mw4 = (4C22+C66)A

Mw5 = 4C44 A

M0
w1 = (2C12+C22+4C66)A

0 M0
w2 = −2(C12+C22)A

0

M0
w3 = (C25+4C46)A

0 M0
w4 = (4C22−C66)A

0

M0
w5 = −2C25 A0 M0

w6 = 4C44 A0. (B14)

The lower order terms can then be written as

(Ku)∂s = M1 � (
DT

ξ ⊗ us

) + M2 � (
us ⊗ Dη

)
+ M3 � (

DT
ξ ⊗ uz

) + M4 � (
uz ⊗ Dη

)
+ 2 · M5 � (

DT
ξ ⊗ uϕ

) + 2 · M6 � (
uϕ ⊗ Dη

)
+ Dξ ⊗ (

M1 � (us − 2uϕ)
) + (

M2 � (us − 2uϕ)
) ⊗ DT

η

+ Mw1 � us + Mw2 � uϕ + 2Mw3 � uz

+ δeē · D0
ξ

[
M0

w1 �
((

D0
ξ

)T ⊗ us

)
+ M0

w2 �
((

D0
ξ

)T ⊗ uϕ

)
+ M0

w3 �
((

D0
ξ

)T ⊗ uz

) ]
(B15)

(Ku)∂ϕ = −2 · M1 � (
DT

ξ ⊗ us

) − 2 · M2 � (
us ⊗ Dη

)
− 2 · M3 � (

DT
ξ ⊗ uz

) − 2 · M4 � (
uz ⊗ Dη

)
− M5 � (

DT
ξ ⊗ uϕ

) − M6 � (
uϕ ⊗ Dη

)
+ Dξ ⊗ [

M5 � (2us − uϕ) + 2 · M7 � uz

]
+ [

M6 � (2us − uϕ) + 2 · M8 � uz

] ⊗ DT
η

+ Mw2 � us + Mw4 � uϕ − Mw3 � uz

+ δeē · D0
ξ

[
M0

w2 �
((

D0
ξ

)T ⊗ us

)
+ M0

w4 �
((

D0
ξ

)T ⊗ uϕ

)
+ M0

w5 �
((

D0
ξ

)T ⊗ uz

) ]
(B16)

(Ku)∂z = 2 · M7 � (
DT

ξ ⊗ uϕ

) + 2 · M8 � (
uϕ ⊗ Dη

)
+ Dξ ⊗ (

M3 � (us − 2uϕ)
)

+ (
M4 � (us − 2uϕ)

) ⊗ DT
η

+ Mw3 � (2us − uϕ) + Mw5 � uz

+ δeē · D0
ξ

[
M0

w3 �
((

D0
ξ

)T ⊗ us

)
+ M0

w5 �
((

D0
ξ

)T ⊗ uϕ

)
+ M0

w6 �
((

D0
ξ

)T ⊗ uz

) ]
. (B17)


