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SUMMARY  Cluster randomized trials (CRTs) use as the unit of randomization clusters, which are usually 
defined as a collection of individuals sharing some common characteristics. Common examples of clus-
ters include entire dental practices, hospitals, schools, school classes, villages, and towns. Additionally, 
several measurements (repeated measurements) taken on the same individual at different time points are 
also considered to be clusters. In dentistry, CRTs are applicable as patients may be treated as clusters con-
taining several individual teeth. CRTs require certain methodological procedures during sample calcula-
tion, randomization, data analysis, and reporting, which are often ignored in dental research publications. 
In general, due to similarity of the observations within clusters, each individual within a cluster provides 
less information compared with an individual in a non-clustered trial. Therefore, clustered designs require 
larger sample sizes compared with non-clustered randomized designs, and special statistical analyses 
that account for the fact that observations within clusters are correlated. It is the purpose of this article 
to highlight with relevant examples the important methodological characteristics of cluster randomized 
designs as they may be applied in orthodontics and to explain the problems that may arise if clustered 
observations are erroneously treated and analysed as independent (non-clustered).

Introduction

Clinical trials in dentistry aim to prospectively evaluate which 
treatment modalities are most beneficial to patients. Some 
common research scenarios are the survival of various types 
of implants (Telleman et al., 2011), the effectiveness of differ-
ent interventions for guided tissue regeneration for periodon-
tal infra-bony defects (Needleman et al., 2006), effectiveness 
of fluoride mouthrinses (Ganss et al., 2010) and interventions 
that compare risk of failure for different etching methods used 
in orthodontic bonding (Pandis et al., 2006). Depending on 
the unit of randomization, clinical trials can be described as 
individually or cluster randomized trials (CRTs). Clinical tri-
als where groups of individuals or clusters are randomized to 
receive the same treatment are known as CRTs. Clusters may 
be aggregates of individuals such as schools or communities, 
or even multiple measurements on the same person.

There are a number of reasons why a cluster randomized 
design would be preferred to an individually randomized 
design:

1.	 Trial management: From a design perspective, it may be 
logistically preferable to randomize to clusters consist-
ing of a few, several or many persons who share some 
common characteristics (Altman and Bland, 1997; Wang 
and Bakhai, 2006; Hayes and Moulton, 2009a). In a trial 

evaluating the effectiveness of supervised tooth brushing 
at daycare, it would be logistically difficult and resource 
intensive to administer both intervention to children on 
an individual basis within each centre.

2.	 Reduce bias: In certain situations, the internal validity of 
a trial is optimized when treatments are randomly allo-
cated to clusters rather than to individuals. In a trial eval-
uating the anti-caries effectiveness of a toothpaste, all 
children within a family (the cluster) may be randomized 
to receive either toothpaste A or toothpaste B. It would 
be possible to randomize individually in this instance, but 
compliance is likely to be better when all members of 
the family receive the same intervention rather than inter-
ventions that differ within a family. Similarly, the poten-
tial for contamination can be reduced. In the context of 
a CRT, contamination is the potential biasing of results 
when participants in the various arms of a trial come into 
contact, leading to an exchange of information between 
participants and possible dilution (underestimation) of 
the effect of the active intervention if participants in the 
control group benefit from the active treatment (Puffer 
et al., 2003). Interventions evaluating oral hygiene meth-
ods have been delivered in a clustered design in a simi-
lar manner to other educational interventions (Lawrence 
et al., 2008; Blinkhorn, 2010; Harrison et al., 2010).

mailto:npandis@yahoo.com


670	 N. Pandis ET AL.

3.	 Clinical trials where multiple outcome data are recorded 
for each participant may be considered as clustered. 
Such scenarios are common in dentistry where the 
individual patient is the cluster, contributing a number 
of observations, such as multiple measurements on the 
same patient or multiple teeth on which the treatment is 
applied. For example, in the assessment of the effective-
ness of two different antibiotic regimens A or B in chil-
dren with one or more abscessed teeth, the child (cluster) 
is randomized to receive either antibiotic A or B, gen-
erating multiple observations (abscessed teeth) for the 
outcome within the same patient.

4.	 A patient’s mouth, jaw, quadrant, or repeated measure-
ments on the same patient can be considered as a cluster 
because they include a collection of related observa-
tions (individual teeth or a series of measurements). 
Furthermore, in certain occasions, especially in ortho-
dontics, matching may be utilized as it is often feasible 
for different quadrants (clusters) within the same patients 
to receive the interventions under investigation (split 
mouth design). In this situation, the quadrant is the clus-
ter, which contains several tooth units. The matching has 
the benefit of decreasing the required sample size com-
pared with a CRT in which each patient receives only 
one intervention on all of his teeth. The smaller sample 
size requirement in the matched design stems from the 
decreased variance, which results from patients acting 
as their own controls (Hayes and Moulton, 2009b,c). 
However, matching requires availability of similar units 
within patients who will receive the different interven-
tions, something that is usually difficult in some fields 
of dentistry (Lesaffre et al., 2009).

Clustered trials require specific design, analysis, and 
reporting in order for the methods to be credible and 
the results valid (Kerry and Bland, 1998a, 1998b, 1998c;  
Campbell et  al., 2004). The value of an observation 
within a cluster will be more similar to the value of an 
observation in the same cluster than a different cluster. 
It is this absence of independence among observations 
in the same cluster or the within-cluster correlation, 
which creates methodological challenges. As observa-
tions within clusters are more similar, each observation 
within a cluster provides less information compared 
with an observation in a non-clustered trial. Therefore, 
CRTs require larger sample sizes compared with indi-
vidual randomized trials, and statistical analyses that 
account for the fact that observations within clusters 
are more similar (Campbell and Grimshaw, 1998; Kerry 
and Bland, 1998c; Hayes and Bennett, 1999; Donner and 
Klar, 2000; Hayes and Moulton, 2009d). Applying meth-
ods for individually randomized trials to CRTs is inap-
propriate and can lead to incorrect inferences (Campbell 
and Grimshaw, 1998; Murray et al., 2004; Varnell et al., 
2004; Hayes and Moulton, 2009e).

The purpose of this educational article is to explain the 
areas that need special attention when designing clustered 
trials in orthodontics and to illustrate the problems that may 
arise if clustered observations are erroneously treated and 
analysed as independent. This topic will be approached with 
the use of two relevant examples.

Example #1: Orthodontic bracket failure after 
bonding with conventional phosphoric acid etching 
versus self-etching primer in adolescent patients 
over the course of orthodontic therapy adapted from 
Pandis et al., 2006

In this clinical study, the authors compared the risk of 
failure of brackets bonded with a self-etching adhesive 
and conventional phosphoric acid in patients followed for 
12 months of active treatment. This study included multi-
ple observations per patient, and in this design, there are 
clearly clustering effects, which were not accounted for 
during the analysis. We will use this study as a starting 
point and utilize simulated data in order to show the effect 
on the results of treating the collected data as independ-
ent (incorrect approach) or as clustered data (the correct 
approach).

Sample size calculations

Sample size calculations for individual randomized trials 
are appropriately adjusted to account for clustering (Kerry 
and Bland, 1998c; Hayes and Bennett, 1999; Eldridge 
et  al., 2006). The degree of variability between clusters 
can be given by one of two measures, the coefficient of 
variation (k) or the intracluster correlation coefficient 
(expressed as ICC or rho or ρ). In the context of CRTs, 
both the coefficient of variation and the ICC are ways of 
measuring the same thing, i.e. the degree of clustering in 
the data.

•• Coefficient of variation (k): This is the ratio of the data’s 
standard deviation to the mean (or the proportion or the 
rate) of the cluster level outcomes. As the value of the 
standard deviation can be greater than the mean, values 
of k can exceed 1.

•• ICC: This is a measure of the within-cluster correlation 
and is defined as the proportion of the total variation 
(between and within clusters), which can be attributed 
to the variation between clusters. The value of the ICC 
can range from −1 to +1, though values in the 0 to +1 
range are usually observed. An ICC of 0 indicates that 
there is no within-cluster similarity in measurements, i.e. 
that the observations within a cluster can be considered 
to be independent; an ICC of 1 indicates perfect correla-
tion. Even small ICC values are important. In CRTs, an 
increase in the sample size is required in order to com-
pensate for loss of information (loss of precision/power) 
due to the correlated nature of the data. The required 
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sample size must be increased by a factor related to the 
degree of correlation or similarity of the outcome within 
clusters (Kerry and Bland, 1998c; Killip et  al., 2004; 
Eldridge et al., 2006).

The ICC can be used in the calculation of the design 
effect to determine the effect of clustering on the sample 
size of a trial. This is the factor by which the sample size 
of a trial without clustering effects must be increased in 
order to give equivalent power for a cluster randomized 
design.

D = 1 + (m‒1)ρ.

Formula 1. Design effect (Hayes and Bennett, 
1999) as a function of cluster size and ICC, where 
m = number of units per cluster and ρ = ICC. For 
example, number of m teeth contributed by each 
patient (cluster)

The larger the ICC (with m being the same), the larger the 
design effect and the required sample size for the CRT 
compared with the individually randomized trial with simi-
lar power (Figure 1).

In the example trial evaluating the proportion of fail-
ures for the two etching methods, if we erroneously ignore 
clustering of teeth within a patient and consider bond 
failures within patients as independent events, 800 teeth  
(40 patients) would have almost 80% power to detect a 5% 
difference in the proportion of failures (5% failure acid 
etching, 10% failures self-etching). If we take into account 
the clustering of on average 20 teeth within each patient and 
randomize patients to either acid etching or self-etching, 
assuming an ICC of 0.01, the design effect is 

D = 1 + (m ‒ 1)ρ = 1 + (20 ‒ 1) * .01 = 1.19.

Increasing the original sample size by the design effect 
results in a sample size of 952 teeth, approximately 50 
patients, assuming that all patients/clusters contribute 
20 teeth. This is almost a 20% increase in the number of 
patients in order to maintain the same level of significance 
and power. The ICC value of 0.01 is merely used for illus-
trative purposes and to indicate that even small clustering 
effects are sufficient to have an important impact on the 
size of the trial. Figure 1 shows the dramatic effect of the 
ICC on the design effect and consequently the required 
sample size. Unfortunately, ICC is rarely reported in the 
literature and especially in dental literature. A recent study 
in orthodontics indicated that clustering effects are con-
sidered in the analysis in only a quarter of the studies, 
which have clustering due to their designs (Koletsi et al., 
2012). If clustering is not identified as a problem in ortho-
dontics, then suboptimal reporting of ICC values is to be 
expected.

Randomization

The number of clusters available for randomization may 
be extensive or small. Where the number of clusters avail-
able for study is limited, methods such as restricted rand-
omization, matching, and stratification may be employed in 
order to achieve balance in baseline characteristics between 
treatment arms and adjusted analyses can address unavoid-
able imbalances of baseline characteristics (Campbell and 
Grimshaw, 1998). In CRTs in orthodontics, matching can 
be easily and successfully achieved when all interventions 
(per jaw or quadrant) are applied within each patient, result-
ing in more precise estimates and greater study power. In 
our working example, cluster randomizing to acid etching 
or self-etching can be applied in three ways:

•• Randomize patients to one etching method, conventional 
etching or self-etching. Each patient (cluster) contrib-
utes outcomes from 20 teeth (observations). Each patient 
receives one intervention.

•• Randomize conventional etching to one jaw and 
self-etching to the other jaw. Each jaw (cluster) contrib-
utes outcomes for 10 teeth (observations). Each patient 
receives both interventions with the benefit of decreased 
variability achieved through matching. Etching method is 
randomly not systematically allocated to the maxilla or 
mandible. 

•• Randomize each one of the four quadrants (clusters), 
each contributing five teeth (observations). The advan-
tages of matching, as stated above, are evident because 
both interventions are delivered for each patient. 
Allocation of etching method is randomly allocated to 
quadrants.

In our example, patients are randomized to receive one 
etching method either conventional or self-etching.

Figure  1    The effect of the intracluster correlation coefficient (ICC or 
rho) on the design effect and consequently on the required sample size. 
The sample size shows number of teeth and the assumption was that each 
patient contributed 20 teeth.
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Analysis

CRTs can be analysed at the cluster level, taking the cluster 
as the unit of analysis, or at the unit level accounting for 
clustering, where analysis is carried out on the observations 
within a cluster. Analysis at a cluster level is based on the 
calculation of a summary value per cluster followed by sim-
ple statistical tests to compare the effect estimate between 
treatment arms (Hayes and Moulton, 2009a). For variable 
cluster size, a weighted average for proportions or odds, 
when binary outcomes are utilized, and weighted t-test are 
available.  As the analysis is based on cluster summaries, 
there is some loss of information; analysis at the unit (tooth) 
level where the clustered nature of the data is taken into 
account is generally preferred, providing the number of 
clusters is reasonable (more than 15–20 per arm).

Analyses using the unit (in our example the unit is the 
tooth) are most commonly undertaken using regression 
models that adjust for clustering such as robust standard 
errors, generalized estimating equations (GEE), and ran-
dom effects (Mollison, 2000). In these approaches, analy-
sis is carried out at the unit level (tooth level) taking into 
account to a lesser or greater degree the clustering present 
in the data.

Analysis of the etching method data (simulated data) 
was undertaken using a variety of different methods, to 
illustrate the similarities and differences in results, and how 
inferences made from the analyses can differ. To recap, 
50 patients (clusters) were randomly allocated to receive 
bonding with either conventional etching or self-etching on 
20 units-teeth. The outcome of interest was the proportion 
of failures with each of the etching methods, and it was 
measured at tooth level. A null hypothesis of no difference 
in the proportions or odds of bracket failure between etching 
methods was specified.

The number of bond failures by etching method at the 
tooth level is presented in Table 1; however, this does not 
indicate the number of failures per cluster. The simulated 
data set included failures that were highly clustered in 21 
out of 50 patients (Figure 2). All failures were concentrated 
on 11 patients for conventional etching and 10 for self-etch-
ing, with the other 29 patients having no failures at all.

The results of the various analytical approaches are given 
in Table 2. The result of treating the teeth as independent 
observations with a sample size of 500 teeth per adhesive 
group generates small standard errors and consequently 
small P-values and statistically significant results [odds 
ratio (OR) = 0.61, Chi-squared = 5.68, df = 1, P = 0.02; 
unconditional logistic regression OR  =  0.61, 95% confi-
dence interval (CI): 0.40, 0.92, P = 0.02]. Failing to take 
into account the clustering inherent in the data, treating the 
teeth as independent observations and carrying out an anal-
ysis treating bond failures within patients as independent, 
has resulted in a standard error smaller than it should be, 
leading to an increased value of the test statistic and CIs that 

are too narrow, with a real possibility of incorrect inferences 
being made. The fact that failures are concentrated to only 
a portion of patients is masked and disregarded because all 
observations (one per tooth) are treated as independent.

Analyses taking into account the clustering of teeth 
within a patient give different results. As the contribution of 
each individual observation has decreased relative to inde-
pendent observations, so has the effective sample size. The 
standard errors are now greater and consequently a smaller 
test statistic and larger P-values. This phenomenon explains 
the fact that when the correlated data were analysed as if it 
were uncorrelated (no clustering present in the data), the 
results were significant, and when correctly treated as cor-
related (accounting for teeth belonging to the same patient) 
are no longer statistically significant (Hayes and Moulton, 
2009d). Cluster level analysis gives non-significant results 
(OR = 0.58, 95% CI: 0.15, 2.14, P = 0.18). Logistic regres-
sion with robust standard errors ignores clustering when 
generating the effect estimates but not when estimating 
standard errors, and so produces the same effect estimate as 
unconditional logistic regression, but a larger standard error 
and statistically non-significant results (OR  =  0.61, 95% 

Table 1  Example #1: Frequency of bond failure per etching 
method at tooth level.

Adhesive

Outcome A B Total

No failure 436 459 895
Failure 64 41 105

500 500 1000

Figure 2    Scatterplot showing clustering of failures within a few patients. 
The x-axis shows the patient id and the y-axis indicates the number of bond 
failures per patient. 
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CI: 0.27,1.36, P = 0.23). Unlike the previous approaches, 
GEE logistic regression, with exchangeable correlation 
matrix, with robust standard errors takes account of cluster-
ing in generating both the estimates and the standard errors 
(OR = 0.61, 95% CI: 0.27, 1.36, P = 0.23). In this particular 
example, the results using logistic regression with robust 
standard errors gives the same results with GEE logistic 
regression; however, this is not always the case and it also 
depends on the chosen correlation matrix. The random 
effects logistic regression model incorporates the variation 
between clusters in the likelihood. Clustering is accounted 
for in the effect estimates and standard errors (OR = 0.48, 
95% CI: 0.11, 2.11, P  =  0.33). From all the analyses 
accounting for clustering, it is inferred that there is insuffi-
cient evidence to reject the null hypothesis of no difference 
in proportion of failures according to etching method.

The above problem, where different analyses produce 
different results in terms of significance, is exacerbated 
when interpretation is based solely on P-values, and con-
clusions are reduced to significant or non-significant dis-
regarding the clinical relevance of the treatment effects 
(Savitz,1993; Chia, 1997; Rothman et al., 2008). A study 
published by Petracci et  al. on assessing bond failures 
using survival methods for clustered observations is a good 
example of how this type of data can be analysed. (Petracci 
et al., 2009).

Example 2. Is there evidence of an effect of extraction 
of primary maxillary canines versus non-extraction 
on permanent maxillary canine impaction resolution?

The null hypothesis is that there is no difference on the 
resolution of canine impaction between extraction and 
non-extraction of primary canines. The number of primary 
impacted canines in each treatment group along with the 
success/failure for permanent canine resolution is shown 
in Table 3. There were 23 successful impaction resolutions 
(77%) in the extraction group compared with 15 successful 

impaction resolutions (50%) in the non-extraction group. In 
the patients with two impacted canines, clustering effects 
are expected. This is a simulated data set consisting of 
46 patients with 60 impacted canines and with a higher 
prevalence of successful outcomes among the patients 
with two impacted canines. Figure 3 shows the number of 
impacted canines per patient.

The results of the various analytical approaches are 
given in Table 4. Results of after using chi-square testing 
and unconditional logistic regression assuming independ-
ent observations give statistically significant results. As it 
was pointed out in this simulated data set, several patients 
have two impacted canines, and that most patients with two 
impacted canines have a successful or unsuccessful out-
come for both. In other words, success or failure is clus-
tered on patients with two canines. If we analyse the data 
using methods that account for clustering, our inferences 
are likely to be different compared with analyses that do 
not account for clustering. Failing to account for the clus-
tering in the data leads us to the conclusion that there is evi-
dence of beneficial effect of the intervention (OR = 3.29, 
chi-squared = 4.52, df = 1, P = 0.03; unconditional logis-
tic regression OR = 3.29, 95% CI: 1.08, 9.95, P = 0.03); 
analyzing the data appropriately leads us to the opposite 
conclusion (cluster level analysis RR = 1.50, 95% CI: 0.99, 
2.6, P  =  0.12, robust standard errors logistic regression: 
OR = 3.29, 95% CI: 0.99, 10.83, P = 0.05, GEE logistic 

Table 2  Example #1: Analyses for bond failure by etching method.

Effect estimate 
(odds ratio)

95% Confidence 
interval

Standard error ICC P-value

Not accounting for correlated data
  Chi-squared 0.61 n/a n/a n/a 0.02 Significant
  Logistic regression 0.61 0.40, 0.92 0.13 n/a 0.02 Significant

Accounting for correlated data
  Cluster level 0.58 0.15, 2.14* 0.66* n/a 0.18** Non-significant
  Logistic regression robust SEs 0.61 0.27, 1.36 0.25 n/a 0.23 Non-significant
  GEE logistic regression 0.61 0.27, 1.36 0.25 n/a 0.23 Non-significant
  Random effects logistic regression 0.48 0.11, 2.11 0.36 0.6 0.33 Non-significant

GEE, generalized estimating equation; ICC, intracluster correlation coefficient; SE, standard error.
*Assuming ICC = 0.6 calculated from random effects logistic regression and using formula described by Donner and Klar (Donner and Klar, 2000). 
**From two-sided t-test.

Table 3    Example 2: Frequency of successful/unsuccessful 
resolution of canine impaction among treatment and control 
groups.

Intervention

Outcome Control Extraction Total

No resolution of impaction 15   7 22
Resolution of impaction 15 23 38

30 30 60
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regression OR = 2.93, 95% CI: 0.93, 9.24, P = 0.05). On 
the basis of the analyses accounting for clustering, there 
is insufficient evidence to reject the null hypothesis of no 
difference in the resolution of canine impaction between 
the extraction and non-extraction groups. In reality, a 
27% difference between treatment groups is large and 
clinically important, and it is likely that a larger sample 
size might have given statistically significant also for 
the analyses that account for clustering effects. However, 
the point for this example is to show how application of 
incorrect methods when analyzing clustered data may 
lead to incorrect inferences and associations that are  
not genuine.

The examples above used binary outcome; however, 
appropriate statistical methods that account for clustering 
are available for continuous outcomes and for rates (Hayes 
and Moulton, 2009b). It is worth noting that a sensitivity 
analysis study comparing analytical methods in CRTs that 
consider the clustering effect has found lower sensitivity 

when the assessed outcomes are continuous compared with 
binary (Donner, 1982).

Reporting of CRTs

Reporting of study design and results of randomized con-
trolled trials has been explicitly described in the CONSORT 
(CONsolidated Standards Of Reporting Trials) guide-
lines (Moher et al., 2010). The CONSORT group has also 
published an extension to the CONSORT guidelines spe-
cifically for CRTs (Campbell et al., 2004) in which key rec-
ommendations are to report:

•• rationale for choosing a cluster randomized clinical trial 
•• how clustering was incorporated into design and sample 
size calculations

•• method of randomizing the assignment such as blocking, 
stratification, and matching

•• flow of clusters from randomization to analysis
•• how the effects of clustering were incorporated into the 
analysis

•• reporting of the ICC and the coefficient of variation

Summary

•• The usual assumptions of independence of the observa-
tions are often violated in orthodontic and dental research, 
due to the use of clustered data such as multiple observa-
tions within patients.

•• In the presence of correlated (non-independent) data, 
appropriate methods for randomization, sample size cal-
culation, statistical analysis, and reporting should be 
followed.

•• CRTs require larger sample sizes than individually rand-
omized trials.

•• Not accounting for clustering and analyzing clustered 
data using methods for individually randomized trials 
may result in incorrect inferences.

•• Transparent reporting of CRTs is required.

Figure  3    Scatterplot showing the patients with one or two impacted 
canines. Clustering effects in the presence of two impacted canines in a 
patient.

Table 4    Example 2: Analyses of canine impaction by treatment.

Effect estimate 
(odds ratio)

95% Confidence 
interval

Standard error ICC P-value

Not accounting for correlated data
  Chi-square 3.3 n/a n/a n/a 0.03 Significant
  Logistic regression 3.3 1.1, 9.9 1.86 n/a 0.03 Significant

Accounting for correlated data
  Cluster level analysis 1.5* 0.9, 2.6 n/a n/a 0.12 Non-significant
  Logistic regression robust SEs 3.3 0.99, 10.8 2.00 n/a 0.05 Non-significant
  GEE logistic regression 2.9 0.93,9.24 1.72 n/a 0.07 Non-significant
  Random effects logistic regression** n/a n/a

GEE, generalized estimating equation; ICC, intracluster correlation coefficient; SE, standard error.
*Risk ratio.
**Random effects logistic regression is not applicable for this particular example as the particular data set does not allow correct model fitting.
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