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ABSTRACT
We investigate the mass profile of cold dark matter (�CDM) haloes using a suite of numerical
simulations spanning five decades in halo mass, from dwarf galaxies to rich galaxy clusters.
These haloes typically have a few million particles within the virial radius (r 200), allowing
robust mass profile estimates down to radii <1 per cent of r 200. Our analysis confirms the
proposal of Navarro, Frenk & White (NFW) that the shape of the �CDM halo mass profiles
differs strongly from a power law and depends little on mass. The logarithmic slope of the
spherically averaged density profile, as measured by β = −d ln ρ/d ln r , decreases monotoni-
cally towards the centre and becomes shallower than isothermal (β < 2) inside a characteristic
radius, r −2. The fitting formula proposed by NFW provides a reasonably good approximation
to the density and circular velocity profiles of individual haloes; circular velocities typically
deviate from NFW best fits by <10 per cent over the radial range that is numerically well re-
solved. Alternatively, systematic deviations from the NFW best fits are also noticeable. Inside
r −2, the profile of simulated haloes becomes shallower with radius more gradually than pre-
dicted and, as a result, NFW fits tend to underestimate the dark matter density in these regions.
This discrepancy has been interpreted as indicating a steeply divergent cusp with asymptotic
inner slope, β 0 ≡ β(r = 0) ∼ 1.5. Our results suggest a different interpretation. We use
the density and enclosed mass at our innermost resolved radii to place strong constraints on
β 0: density cusps as steep as r−1.5 are inconsistent with most of our simulations, although
β 0 = 1 is still consistent with our data. Our density profiles show no sign of converging to a
well-defined asymptotic inner power law. We propose a simple formula that reproduces the
radial dependence of the slope better than the NFW profile, and so may minimize errors when
extrapolating our results inward to radii not yet reliably probed by numerical simulations.
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1 I N T RO D U C T I O N

Disc galaxy rotation curves; strong gravitational lensing by galax-
ies and clusters; the dynamics of stars in elliptical galaxies and of
gas and galaxies in clusters; these are just examples of the vari-
ous luminous tracers that probe the inner structure of dark matter
haloes. Such observations place strong constraints on the distribu-
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tion of dark matter in these highly non-linear regions that may be
contrasted directly with theoretical predictions for halo structure.
Given the sensitivity of such predictions to the nature of the dark
matter, these observational constraints constitute provide tests that
may question or even rule out particular models of dark matter.

Robust prediction of the inner structure of cold dark matter
(CDM) haloes is a quintessential N-body problem, albeit one of
considerable complexity due to the large overdensities and, con-
sequently, the short crossing times involved. Indeed, only recently
have computational capabilities improved to the point of allowing
realistic simulation of the regions which house the luminous com-
ponents of individual galaxies.
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This work builds upon the pioneering efforts of Frenk et al. (1988),
Dubinski & Carlberg (1991) and Crone, Evrard & Richstone (1994),
among others, which led to the identification of a number of key
features of the structure of dark matter haloes assembled by hierar-
chical clustering. One important result of this early work concerns
the absence of a well-defined central ‘core’ of constant density in
virialized CDM haloes. In this sense, dark matter haloes are ‘cuspy’:
the dark matter density increases apparently without bounds towards
the centre of the halo.

A second result concerns the remarkable similarity (‘universal-
ity’) in the structure of dark matter haloes of widely different mass.
This was first proposed by Navarro, Frenk & White (1996, 1997,
hereafter NFW), who suggested a simple fitting formula to describe
the spherically averaged density profiles of dark matter haloes:

ρ(r ) = ρs

(r/rs)[1 + (r/rs)]2
, (1)

where ρ s and r s are the characteristic density and radius, respec-
tively. The larger the mass of a halo, the lower its characteristic
density, reflecting the lower density of the universe at the (later)
assembly time of more massive systems.

Further simulation work of similar numerical resolution (see, e.g.
Cole & Lacey 1996; Huss, Jain & Steinmetz 1999) provided support
for the NFW conclusions, although small but systematic differences
began to emerge as the numerical resolution of the simulations im-
proved (see, e.g. Moore et al. 1999, hereafter M99, Ghigna et al.
2000; Fukushige & Makino 1997, 2001, 2003). These authors re-
ported deviations from equation (1) that increase systematically in-
wards, and thus are particularly noticeable in high-resolution sim-
ulations. In particular, Fukushige & Makino (2001) reported that
NFW fits tend to underestimate the dark matter density within the
scale radius r s. M99 reached a similar conclusion and interpreted
this result as indicating a density cusp steeper than that of the NFW
profile. These authors preferred a modified fitting function which
diverges as r−1.5 near the centre:

ρ(r ) = ρM

(r/rM)1.5
[
1 + (r/rM)1.5

] . (2)

One should note, however, that there is no consensus amongst N-
body practitioners for such a modified profile (see, e.g. Klypin et al.
2001; Power et al. 2003, hereafter P03), and that there is some
work in the literature suggesting that the central density cusp might
actually be shallower than r−1 (Subramanian, Cen & Ostriker 2000;
Taylor & Navarro 2001; Ricotti 2003).

This unsettled state of affairs illustrates the difficulties associated
with simulating the innermost structure of CDM haloes in a reliable
and reproducible manner. The high density of dark matter in such
regions demands large numbers of particles and fine time resolution,
pushing to the limit even the largest supercomputers available at
present. As a result, many of the studies mentioned above either
are of inadequate resolution to be conclusive or are based on results
from a handful of simulations where computational cost precludes
a systematic assessment of numerical convergence.

Establishing the detailed properties of the central density cusp, as
well as deriving the value of its asymptotic central slope, is important
for a number of reasons. For example, steeper cusps place larger
amounts of dark matter at the centre, exacerbating the disagreement
with observations that suggest the presence of a constant-density
core in low surface brightness galaxies or in strongly barred galaxies
(Moore 1994; Flores & Primack 1994; McGaugh & de Blok 1998;
Debattista & Sellwood 1998; van den Bosch et al. 2000). Steep
cusps would also be important for direct detection experiments for
dark matter, as a possible gamma-ray annihilation signal of weakly

interacting massive particles (WIMPS) at the Galactic Centre would
be particularly strong for r−1.5 cusps (Calcáneo-Roldán & Moore
2000; Stoehr et al. 2002; Taylor & Silk 2003).

Finally, the detailed structure of the central cusp is not the only
focus of contrasting claims in the literature. For example, the ‘uni-
versality’ of the CDM halo structure has been questioned by Jing &
Suto (2000), who find that the slope of the density profile at a fixed
fraction of the virial radius steepens towards lower halo masses.
Klypin et al. (2001), alternatively, point out that such a systematic
trend is entirely consistent with universality as originally claimed by
NFW, and just reflects the mass dependence of halo characteristic
density.

We address these conflicting issues here using a suite of 19 high-
resolution simulations of the formation of haloes in the standard
�CDM cosmogony. Halo masses are chosen in three main groups:
‘dwarf’ haloes with M 200 ∼ 1010 h−1 M�, ‘galaxy’ haloes with
M 200 ∼ 1012 h−1 M� and ‘cluster’ haloes of mass M 200 ∼ 1015 h−1

M�. This allows us to gain insight into the effects of cosmic variance
at each mass scale, as well as to explore the mass dependence of the
structure of �CDM haloes. We define the mass of a halo to be that
contained within its virial radius, that is, within a sphere of mean
density contrast 200.1

This paper is organized as follows. Section 2 describes briefly the
numerical simulations; Section 3 discusses our main results; and we
summarize our conclusions in Section 4.

2 N U M E R I C A L E X P E R I M E N T S

The numerical set up of our simulations follows closely the pro-
cedure described by P03, where the interested reader may find a
thorough discussion of our initial conditions generating scheme,
the choice of N-body codes and integrators, as well as the criteria
adopted to optimize the choice of the numerical parameters of the
simulations. For completeness, we include here a brief discussion
of the main numerical issues, but refer the reader to P03 for a more
detailed discussion.

2.1 N-body codes

The simulations reported in this paper have been performed us-
ing two parallel N-body codes: GADGET, written by Volker Springel
(Springel, Yoshida & White 2001), and PKDGRAV, written by Joachim
Stadel and Thomas Quinn (Stadel 2001). As discussed in P03, both
codes give approximately the same results for appropriate choices
of numerical parameters, and neither code seems obviously to out-
perform the other when similar numerical convergence criteria are
met.

2.2 Cosmological model

We adopt a flat, 
0 = 0.3 �CDM cosmological model the dynamics
of which is dominated at present by a cosmological constant, 
� =
0.7. The matter power spectrum is normalized so that the present
linear rms amplitude of mass fluctuations in spheres of radius 8 h−1

Mpc is σ 8 = 0.9. We assume a linear fluctuation power spectrum

1 We use the term ‘density contrast’ to denote densities expressed in units of
the critical density for closure, ρ crit = 3H2/8π G. We express the present
value of Hubble’s constant as H (z = 0) = H 0 = 100 h km s−1 Mpc−1.
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Table 1. The parameters of the parent cosmological simulations.

Label L box z i mp ε Code
(h−1 Mpc) (h−1 M� ) (h−1 kpc)

ENS01 32.5 49.0 1.36 × 109 10 AP3M

SGIF-128 35.325 49.0 1.75 × 109 10 GADGET

�CDM-512 479.0 36.0 6.82 × 1010 30 GADGET

given by the product of the square of the appropriate CDM trans-
fer function, T 2(k), and a Harrison–Zel’dovich primordial power
spectrum [i.e. P(k) ∝ k].

2.3 Parent simulations

The halo samples were drawn from three different �CDM cos-
mological ‘parent’ simulations. Table 1 lists the main numerical
parameters of each of these simulations: L box is the size of the cos-
mological box, z i is the initial redshift, m p is the particle mass,
and ε is the softening parameter; assumed to be fixed in comoving
coordinates.

The dwarf, cluster and most of the galaxy haloes were extracted
from the �CDM-512 (Yoshida, Sheth & Diaferio 2001) and SGIF-
128 simulations. These two parent simulations, both carried out
within the Virgo Consortium, used the CDM transfer function given
by CMBFAST (Seljak & Zaldarriaga 1996), assuming h = 0.7 and

b = 0.04. This transfer function is well fitted by the Bardeen et al.
(1986) fitting formula with a value of 0.17 for the shape parameter
. Three of the galaxy haloes (G1–G3, see Table 2) were extracted
from the parent simulation described by (labelled ENS01 in Table 1
Eke, Navarro & Steinmetz (2001, labelled ENS01 in Table 1). That
simulation used the Bardeen et al. (1986) fitting formula for the
CDM transfer function, with h = 0.65 and  = 0.2.

2.4 Initial conditions

Since completing the numerical convergence tests reported in P03,
we have developed a more flexible and powerful set of codes for
setting up the resimulation initial conditions. This resimulation soft-

Table 2. The main parameters of the resimulated haloes.

Label z i ε N 200 M 200 r 200 V 200 r conv Code
(h−1 kpc) (h−1 M�) (h−1 kpc) (km s−1) (h−1 kpc)

D1 74 0.0625 784980 7.81 × 109 32.3 32.3 0.34 GADGET

D2 49 0.0625 778097 9.21 × 109 34.1 34.1 0.37 GADGET

D3 49 0.0625 946421 7.86 × 109 32.3 32.3 0.33 GADGET

D4 49 0.0625 1002098 9.72 × 109 34.7 34.7 0.32 GADGET

G1 49 0.15625 3447447 2.29 × 1012 214.4 214.4 1.42 GADGET

G2 49 0.5 4523986 2.93 × 1012 232.6 232.6 1.25 PKDGRAV

G3 49 0.45 2661091 2.24 × 1012 212.7 212.7 1.65 PKDGRAV

G4 49 0.3 3456221 1.03 × 1012 164.0 164.0 1.01 PKDGRAV

G5 49 0.35 3913956 1.05 × 1012 165.0 165.0 1.02 PKDGRAV

G6 49 0.35 3739913 9.99 × 1011 162.5 162.5 1.03 PKDGRAV

G7 49 0.35 3585676 9.58 × 1011 160.3 160.3 1.02 PKDGRAV

C1 36 5.0 1565576 7.88 × 1014 1502.1 1502.1 16.8 GADGET

C2 36 5.0 1461017 7.36 × 1014 1468.1 1468.1 16.9 GADGET

C3 36 5.0 1011918 5.12 × 1014 1300.6 1300.6 16.1 GADGET

C4 36 5.0 1050402 5.31 × 1014 1316.7 1316.7 15.9 GADGET

C5 36 5.0 1199299 6.05 × 1014 1375.5 1375.5 16.2 GADGET

C6 36 5.0 1626161 8.19 × 1014 1521.1 1521.1 15.5 GADGET

C7 36 5.0 887837 4.50 × 1014 1245.8 1245.8 16.4 GADGET

C8 36 5.0 1172850 5.92 × 1014 1365.4 1365.4 16.8 GADGET

ware enables us to iterate the procedure to ‘resimulate a resimula-
tion’, an important step for setting up appropriate initial conditions
for dwarf haloes. The basic methodology employed is very similar
to the methods described in P03, with just a few minor differences.
Galaxy haloes G1–G3 were selected from the ENS01 simulation and
their initial conditions were created using the software described in
P03. All of the other haloes were set up with the new codes, follow-
ing the procedure we describe below.

The first stage is to carry out, up to the redshift of interest (typically
z = 0), a ‘parent’ simulation of a large, representative volume of a
�CDM universe. These parent simulations are used to select haloes
targeted for resimulation at higher resolution. Once a halo has been
selected for resimulation at z = 0, we trace all particles within a
sphere of radius ∼3r 200 to the z = ∞ ‘unperturbed’ configuration.
We then create a set of initial conditions with much higher mass
resolution in the volume occupied by the halo particles, and resample
the remainder of the periodic box at lower resolution, taking care
to retain sufficient resolution in the regions surrounding the halo of
interest so that external tidal forces acting on the high-resolution
region are adequately represented.

The procedure involves two main steps. First, we set up a uniform
multi-mass distribution of particles to approximate the particle po-
sitions in the high-resolution region at z = ∞. This is accomplished
by arranging particles either in a cubic grid or as a ‘glass’, within a
cube just big enough to contain the region of interest. Either choice
approximates a uniform mass distribution very accurately. Outside
the cube we lay down particles on a set of concentric cubic shells,
centred on the cube, which extend outwards until they fill the entire
periodic volume of the parent simulation. These concentric shells
are filled with more massive particles whose interparticle separa-
tion increases approximately linearly with distance from the high-
resolution region. Unlike the grid or glass, this arrangement does
not reproduce a perfectly uniform mass distribution. However, by
populating each shell with regularly spaced particles, we obtain a
configuration which is uniform enough for our purposes.

In the interest of efficiency, we replace those particles in the
high-resolution cube that do not end up in the selected halo with
more massive particles made by combining several high-resolution
ones. This procedure, particularly for the dwarf halo resimulations,
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significantly reduces the number of particles in the initial condi-
tions and the run time of the subsequent simulation. Thus, each halo
forms from an ‘amoeba-shaped’ region consisting only of the high-
est resolution particles in the hierarchy. We have explicitly checked
that the resampling procedure adds no extra power; in tests, the
multi-mass particle distribution remains very close to uniform over
an expansion factor of up to ∼50.

Once a multi-mass but uniform mass distribution has been cre-
ated, the next step is to add the appropriate Gaussian density fluc-
tuations. This is done by assigning a displacement and a peculiar
velocity to each particle using Fourier methods. By using the same
amplitude and phase for every Fourier mode present in the parent
simulation, a perturbed density field essentially identical to that of
the parent simulation can be reproduced. In the high-resolution cube,
because the particle mass is smaller than in the parent simulation,
it is necessary to add additional short-wavelength modes (with am-
plitudes fixed by the adopted power spectrum) down to the Nyquist
wavelength of the new particle grid. To ensure that the Fourier trans-
forms needed to add this extra power are of a manageable size, we
make the additional power periodic on the scale of the central cube
rather than on the scale of the parent simulation. The longest wave-
length added is typically smaller than one tenth of the side length of
the original cube. As described in P03, the individual components of
the displacement field are generated in turn, and the displacements
calculated at the particle positions by trilinear interpolation. To set
up growing modes, we use the Zel’dovich approximation and make
the peculiar velocities proportional to the displacements.

The initial redshift, z i, of each resimulation is chosen so that
density fluctuations in the high-resolution region are in the linear
regime. P03 find that convergent results are obtained when z i is high
enough that the (theoretical) rms mass fluctuation on the smallest
resolved mass scale, σ (m p, z i) does not exceed ∼0.3 (where m p is
the mass of a high-resolution particle). All of our simulations satisfy
this criterion.

2.5 Halo selection

The resimulated haloes analysed in this paper were all identified
in the parent simulations by applying the friends-of-friends (FoF)
group-finding algorithm (Davis et al. 1985) with a linking length
l = 0.164. Cluster-sized haloes were drawn from a 479 h−1 Mpc
simulation volume (�CDM-512 in Table 1). The FoF(0.164) groups
were first ordered by mass and then 10 consecutive entries on the
list centred around a mass of 1015h−1 M� were selected. Galaxy
haloes were likewise drawn from a 35.325 h−1 Mpc volume (SGIF-
128), with the exception of three of the haloes (G1–G3) which were
selected from a 32.5 h−1 Mpc volume (ENS01).

Target dwarf haloes were also found in the SGIF-128 simulation.
However, owing to their extremely low mass (corresponding to five
to six particles in SGIF-128), it was necessary to create a second
‘parent’ simulation for them by resimulating a region of the SGIF-
128 volume at significantly higher resolution. To this end, a spherical
region of radius 4.4 h−1 Mpc, with mean density close to the uni-
versal average, was selected at random within the 35.325 h−1 Mpc
box. This spherical region was then resimulated with roughly 100
times more particles than in SGIF-128. The target dwarf haloes were
identified within this spherical volume again from an FoF(0.2) group
list. A total of 18 haloes with 450–550 particles (corresponding to
masses of 9–11 × 109h−1 M�) were chosen. We report results on
the four haloes in this list that have been resimulated to date. High-
resolution initial conditions for these dwarf haloes were created in
an identical way to the more massive galaxy and cluster haloes.

Numerical parameters were chosen to ensure that all haloes, re-
gardless of mass, were resimulated at a comparable mass resolution
(typically over 106 particles within the virial radius at z = 0, see
Table 2).

2.6 The analysis

We focus our analysis on the spherically averaged mass profile of
simulated haloes at z = 0. This is measured by sorting particles
in distance from the centre of each halo and arranging them in
bins of equal logarithmic width in radius. Density profiles, ρ(r), are
computed simply by dividing the mass in each bin by its volume.
The cumulative mass within each bin, M(r), is then used to compute
the circular velocity profile of each halo, Vc(r ) = √

G M(r )/r , as
well as the cumulative density profile, ρ̄(r ) = 3M(r )/4πr 3, which
we shall use in our analysis.

The centre of each halo is determined using an iterative technique
in which the centre of mass of particles within a shrinking sphere
is computed recursively until a few thousand particles are left (see
P03 for details). In a multi-component system, such as a dark halo
with substructure, this centring procedure isolates the densest region
within the largest subcomponent. In more regular systems, the centre
so obtained approximately coincides with the centres defined by the
centre of mass weighted by the local density or by the gravitational
potential of each particle.

We note that, unlike in NFW, no attempt has been made to select
haloes at a particularly quiet stage in their dynamical evolution; our
sample thus contains haloes in equilibrium as well as a few with
prominent substructures as a result of recent accretion events.

2.7 Parameter selection criteria

The analysis presented in P03 demonstrated that the mass profile
of a simulated halo is numerically robust down to a ‘convergence
radius’, r conv, that depends primarily on the number of particles
and time-steps, as well as on the choice of gravitational softening in
the simulation. Each of these choices imposes a minimum radius for
convergence, although for an ‘optimal’ choice of parameters (i.e. one
that, for given r conv, minimizes the number of force computations
and time-steps) the most stringent criterion is that imposed by the
number of particles within r 200. In this optimal case, the minimum
resolved radius is well approximated by the location at which the
two-body relaxation time, t relax, equals the age of the universe [see
Hayashi et al. (2004) for further validation of these criteria, but see
Binney (2004) for a different opinion].

To be precise, we shall identify r conv with the radius where t relax

equals the circular orbital time-scale at the virial radius, t circ(r 200) =
2π r 200/V 200. Thus, r conv is defined by the following equation:

trelax(r )

tcirc(r200)
= N

8 ln N

r/Vc

r200/V200
= 1. (3)

Here N = N (r ) is the number of particles enclosed within r and
V 200 = V c(r 200). With this definition, the convergence radius in our
best-resolved haloes, outside which V c(r ) converges to better than
10 per cent, is of order ∼0.005r 200.

3 R E S U LT S

3.1 Density profiles

The top panels of Fig. 1 show the density profiles, ρ(r), of the
19 simulated haloes in our sample. In physical units, the profiles
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Figure 1. Spherically averaged density profiles of all our simulated haloes. Densities are computed in radial bins of equal logarithmic width and are shown
from the innermost converged radius (r conv) out to about the virial radius of each halo (r 200). Our simulations target haloes in three distinct mass groups:
‘dwarf’, ‘galaxy’ and ‘cluster’ haloes. These groups span more than five decades in mass. Thick solid lines in the top panels illustrate the expected halo profile
for each mass range according to the fitting formula proposed by NFW (top left) or M99 (top right). The bottom panels indicate the deviation from the best fit
achieved for each individual halo (simulation minus fit) with the NFW profile (equation 1) or with its modified form, as proposed by M99 (equation 2).

split naturally into three groups: from left to right, ‘dwarf’ (dotted),
‘galaxy’ (dashed) and ‘cluster’ (dot-dashed) haloes, respectively.
Each profile is shown from the virial radius, r 200, down to the in-
nermost converged radius, r conv; a convention that we shall adopt in
all figures throughout this paper.

The thick solid lines in the top-left panel show the NFW profiles
(equation 1) expected for haloes in each group, with parameters
chosen according to the prescription of Eke et al. (2001). Note that
these NFW curves are not best fits to any of the simulations, but
that they still capture reasonably well the shape and normalization
of the density profiles of the simulated haloes.

The top-right panel of Fig. 1 is similar to the top-left one, but the
comparison is made here with the modified form of the NFW profile
proposed by M99 (equation 2). There is no published prescription
specifying how to compute the numerical parameters of this formula
for haloes of given mass, so the three profiles shown in this panel are
just ‘eyeball’ fits to one halo in each group. Like the NFW profile,
the M99 formula also appears to describe reasonably well the gently
curving density profiles of �CDM haloes.

Fig. 1 thus confirms a number of important trends that were al-
ready evident in prior simulation work.

(i) �CDM halo density profiles deviate significantly from simple
power laws, and steepen systematically from the centre outwards;

they are shallower than isothermal near the centre and steeper than
isothermal near the virial radius.

(ii) There is no indication of a well-defined central ‘core’ of con-
stant density; the dark matter density keeps increasing all the way
in, down to the innermost resolved radius.

(iii) Simple formulae such as the NFW profile (equation 1) or the
M99 formula (equation 2) appear to describe the mass profile of all
haloes reasonably well, irrespective of mass, signalling a ‘univer-
sal’ profile shape. Properly scaled, a dwarf galaxy halo is almost
indistinguishable from a galaxy cluster halo.

We elaborate further on each of these conclusions in the following
subsections.

3.1.1 NFW versus M99 fits

Are the density profiles of �CDM haloes described better by the
NFW formula (equation 1) or by the modification proposed by M99
(equation 2)? The answer may be seen in the bottom panels of Fig. 1.
These panels show the deviations (simulation minus fit) from the
best fits to the density profiles of each halo using the NFW profile
or the M99 profile. These fits are obtained by straightforward χ 2

minimization, assigning equal weight to each radial bin. This is done
because the statistical (Poisson) uncertainty in the determination of
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the density within each bin is negligible (each bin contains several
thousand to several hundred thousand particles) so the remaining
uncertainties are likely to be dominated by systematics, such as the
presence of substructure, varying asphericity, as well as numerical
error, whose radial dependence is difficult to assess quantitatively
(see P03).

As shown in the bottom panels of Fig. 1, there is significant
variation in the shape of the density profile from one halo to another.
Some systems are fitted better by equation (1) than by equation (2),
and the reverse is true in other cases. Over the radial range resolved
by the simulations, ρ(r) deviates from the best fits by less than
∼50 per cent. NFW fits tend to underestimate the density in the
inner regions of most haloes: by up to 35 per cent at the innermost
resolved point. M99 fits, on the other hand, seem to do better for
low-mass haloes, but tend to overestimate the density in the inner
regions of cluster haloes by up to 60 per cent. We have explicitly
checked that these conclusions are robust to reasonable variation in
the binning used to construct the density profiles, as well as in the
adopted minimization procedure.

This level of accuracy may suffice for a number of observational
applications, with the proviso that comparisons are restricted to
radii where numerical simulations are reliable; i.e. r conv < r < r 200.
Deviations from the best fits increase systematically towards the
centre, so it is likely that extrapolations of either fitting formula to

Figure 2. Spherically averaged circular velocity [Vc(r ) = √
G M(r )/r ] profiles of all our simulated haloes. As in Fig. 1, circular velocities are computed

in radial bins of equal logarithmic width and are shown from the innermost converged radius (r conv) out to about the virial radius (r 200) of each halo. Our
simulations target haloes in three distinct mass groups: ‘dwarf’, ‘galaxy’ and ‘cluster’ haloes, spanning more than a factor of ∼50 in velocity. Thick solid lines
in the top panels illustrate the expected profile for each mass range according to the fitting formula proposed by NFW (top left) or M99 (top right). The bottom
panels indicate the deviation from the best fit achieved for each individual halo (simulation minus fit) with the NFW profile (equation 1) or with its modified
form, as proposed by M99 (equation 2).

radii much smaller than r conv will incur substantial error. We discuss
below (Section 3.6) possible modifications to the fitting formulae
that may minimize the error introduced by these extrapolations.

3.2 Circular velocity profiles

Many observations, such as disc galaxy rotation curves or strong
gravitational lensing, are better probes of the cumulative mass dis-
tribution than of the differential density profile shown in Fig. 1.
Since cumulative profiles are subject to different uncertainties from
differential ones, it is important to verify that our conclusions re-
garding the suitability of the NFW or M99 fitting formulae are also
applicable to the cumulative mass distribution of �CDM haloes.

The radial dependence of the spherically averaged circular veloc-
ity profile of all haloes in our series is shown in Fig. 2. As in Fig. 1,
the thick solid curves in the top-left (right) panel are meant to illus-
trate a typical NFW (M99) profile corresponding to dwarf, galaxy
and cluster haloes, respectively. The bottom-left and -right panels
show deviations from the best fit to each halo using the NFW or
M99 profile, respectively. Both profiles reproduce the cumulative
mass profile of the simulated haloes reasonably well. The largest
deviations seen are for the M99 fits, but they do not exceed 25 per
cent over the radial range resolved in the simulations. NFW fits fare
better, with deviations that do not exceed 10 per cent.
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Figure 3. Logarithmic slope of the density profile of all haloes in our sample, plotted versus radius. Thick solid and dotted curves illustrate the radial
dependence of the slope expected from the NFW profile (equation 1) and the modification proposed by M99 (equation 2), respectively. Note that although both
fitting formulae have well-defined asymptotic inner slopes (−1 and −1.5, respectively) there is no sign of convergence to a well-defined value of the central
slope in the simulated haloes. At the innermost converged radius, the simulated halo profiles are shallower than −1.5, in disagreement with the M99 profile. In
addition, inside the radius at which the slope equals −2, r −2, the profiles appear to get shallower more gradually than in the NFW formula. A power-law radial
dependence of the slope seems to fit the results of our simulations better; the dot-dashed lines indicate the predictions of the ρα profile introduced in equations
(4) and (5) for α = 0.17. Best fits to individual haloes yield α values in the range 0.1–0.2 (see Table 3).

As with the density profiles, the deviations between simulation
and fits, although small, increase toward the centre, suggesting that
caution should be exercised when extrapolating these fitting formu-
lae beyond the spatial region where they have been validated. This is
important because observational data, such as disc galaxy rotation
curves, often extend to regions inside the minimum convergence
radius in these simulations.

3.3 Radial dependence of logarithmic slopes

We have noted in the previous subsections that systematic deviations
are noticeable in both NFW and M99 fits to the mass profiles of
simulated �CDM haloes. NFW fits tend to underestimate the dark
matter density near the centre, whilst M99 fits tend to overestimate
the circular velocity in the inner regions. The reason for this is
that neither fitting formula fully captures the radial dependence
of the density profile. We explore this in Fig. 3, which shows the
logarithmic slope, d ln ρ/d ln r ≡ − β(r ), of all simulated haloes, as
a function of radius. Although there is substantial scatter from halo
to halo, a number of trends are robustly defined.

The first trend to note is that halo density profiles become shal-
lower inward down to the innermost resolved radius, r conv (the small-
est radius plotted in Fig. 3). We see no indication for convergence to
a well-defined asymptotic value of the inner slope in our simulated
haloes, neither to the β 0 = β(r = 0) = 1 expected for the NFW

profile (solid curves in Fig. 3) nor to the β 0 = 1.5 expected in the
case of M99 (dotted curves in the same figure).

The second trend is that the radial dependence of the logarith-
mic slope deviates from what is expected from either the NFW or
the M99 fitting formulae. Near r conv, the slopes are significantly
shallower than β 0 = 1.5 (and thus in disagreement with the M99
formula) but they are also significantly steeper than expected from
NFW fits. In quantitative terms, let us consider the slope well inside
the characteristic radius, r −2 [where the slope takes the ‘isothermal’
value2 of β(r −2) = 2]. For cluster haloes, for example, at r = 0.1r −2

(∼50 h−1 kpc) the average slope is approximately −1.3, whereas
the NFW formula predicts ∼ − 1.18 and M99 predicts ∼ −1.5.
This is in agreement with the latest results of Fukushige, Kawai &
Makino (2003), who also report profiles shallower than r−1.5 at the
innermost converged radius of their simulations. A best-fitting slope
of r−1.3 was also reported by Moore et al. (2001) for a dwarf galaxy
halo (of mass similar to the Draco dwarf spheroidal), although that

2 The characteristic radius, r −2, as well as the density at that radius, ρ−2 ≡
ρ(r −2), can be measured directly from the simulations, without reference
to or need for any particular fitting formula. For the NFW profile, r −2 is
equivalent to the scale radius r s (see equation 1). The density at r −2 is
related to the NFW characteristic density, ρ s, by ρ−2 ≡ ρ(r −2) = ρ s/4.
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Figure 4. Maximum asymptotic inner slope compatible with the mean density interior to radius r , ρ̄(r ), and with the local density at that radius, ρ(r). This
provides a robust limit to the central slope, β0 < βmax(r ) = −3[1 − ρ(r )/ρ̄(r )], under the plausible assumption that β is monotonic with radius. Note that
there is not enough mass within the innermost converged radius in our simulations to support density cusps as steep as r−1.5. The asymptotic slope of the NFW
profile, β 0 = 1, is still compatible with the simulated haloes, although there is no convincing evidence for convergence to a well-defined power-law behaviour
in any of our simulated haloes. The thick dot-dashed curves illustrate the expected radial dependence of βmax for the ρα profile introduced in Section 3.6, for
α = 0.17.

simulation was stopped at z = 4, and might therefore not be directly
comparable to the results we present here.

This discrepancy in the radial dependence of the logarithmic slope
between simulations and fitting formulae is at the root of the different
interpretations of the structure of the central density cusp proposed
in the literature. For example, because profiles become shallower
inward more gradually than in the NFW formula, modifications
with more steeply divergent cusps (such as equation 2) tend to fit
density profiles (but not circular velocity profiles) better in the region
interior to r −2. This is not, however, a sure indication of a steeper
cusp. Indeed, any modification to the NFW profile that results in a
more gradual change in the slope inside r −2 will lead to improved
fits, regardless of the value of the asymptotic central slope. We show
this explicitly in Section 3.6.

3.4 Maximum asymptotic slope

Conclusive proof that the central density cannot diverge as steeply as
β 0 = 1.5 is provided by the total mass inside the innermost resolved
radius, r conv. This is because, at any radius r, the mean density,
ρ̄(r ), together with the local density, ρ(r), provides a robust upper
limit to the asymptotic inner slope. This is given by βmax(r ) =
3[1 − ρ(r )/ρ̄(r )] > β0, under the plausible assumption that β is
monotonic with radius.

Fig. 4 shows βmax as a function of radius; clearly, except for pos-
sibly one dwarf system, no simulated halo has enough dark mass

within r conv to support cusps as steep as r−1.5. The NFW asymp-
totic slope, corresponding to β 0 = 1, is still consistent with the
simulation data, but the actual central value of the slope may very
well be shallower. We emphasize again that there is no indication
for convergence to a well-defined value of β 0: density profiles be-
come shallower inward down to the smallest resolved radius in the
simulations.

3.5 A ‘universal’ density profile

Fig. 3 also shows that there is a well-defined trend with mass in the
slope of the density profile measured at r conv ∼ 0.005 to 0.01r 200 (the
innermost point plotted for each profile): β(r conv) ∼ 1.1 for clusters,
∼1.2 for galaxies and ∼1.35 for dwarfs. A similar trend was noted
by Jing & Suto (2000), who used it to argue against a ‘universal’
density profile shape. However, as discussed by Klypin et al. (2001),
this is just a reflection of the trend between the concentration of a
halo and its mass. It does not indicate any departure from similarity
in the profile shape. Indeed, one does not expect the profiles of
haloes of widely different mass, such as those in our series, to have
similar slopes at a constant fraction of the virial radius. Rather, if
the density profiles are truly self-similar, slopes ought to coincide
at fixed fractions of a mass-independent radial scale, such as r −2.

Fig. 5(top) shows the striking similarity between the structures of
haloes of different mass when all density profiles are scaled to r −2

and ρ−2 ≡ ρ(r −2). The density profile of a dwarf galaxy halo then
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Figure 5. (Top) Density profiles of all haloes in our series, scaled to the
radius, r −2, where the local logarithmic slope of the density profile takes
the isothermal value of β = − d log ρ/d log r = 2. Densities are scaled
to ρ−2 = ρ(r −2). This figure shows that, with proper scaling, there is little
difference in the shape of the density profile of haloes of different mass,
confirming the ‘universal’ nature of the mass profile of �CDM haloes. The
NFW profile (equation 1) is a fixed curve in these scaled units, and is shown
with a thick solid line. The M99 formula (equation 2) is shown with a dashed
line. (bottom) Circular velocity profiles of all haloes in our series, scaled to
the maximum velocity, V max, and to the radius at which it is reached, r max.
Note the significant scatter from halo to halo, and also that the NFW and
M99 profiles appear to bracket the extremes of the mass profile shapes of
haloes in our simulation series.

differs very little from that of a galaxy cluster 105 times more mas-
sive. This demonstrates that spherically averaged density profiles
are approximately ‘universal’ in shape; rarely do individual density
profiles deviate from the scaled average by more than ∼50 per cent.

In the scaled units of Fig. 5, the NFW and M99 profiles are
fixed, and are shown as solid and dotted curves, respectively. With
this scaling, differences between density profiles are more evident
than when best fits are compared, since the latter – by definition –
minimize the deviations. In Fig. 5(top), for example, it is easier to
recognize the ‘excess’ of dark mass inside r −2 relative to the NFW
profile that authors such as M99 and Fukushige & Makino (1997,
2001, 2003) have (erroneously) interpreted as implying a steeply
divergent density cusp.

The similarity in mass profile shapes is also clear in Fig. 5(bot-
tom), which shows the circular velocity curves of all haloes in our
series, scaled to the maximum, V max, and to the radius where it is
reached, r max. NFW and M99 are again fixed curves in these scaled
units. This comparison is more relevant to observational interpreta-
tion, since rotation curve, stellar dynamical and lensing tracers are
all more directly related to V c(r ) than to ρ(r). Owing to the reduced
dynamic range of the y-axis, the scatter in mass profiles from halo
to halo is more clearly apparent in the V c profiles; the NFW and
M99 profiles appear approximately to bracket the extremes in the
mass profile shapes of simulated haloes. We discuss below a simple
fitting formula that, with the aid of an extra parameter, is able to
account for the variety of mass profile shapes better than either the
NFW or M99 formulae.

3.6 An improved fitting formula

Although the discussion in the previous subsections has concen-
trated on global deviations from simple fitting formulae such as
NFW or M99, it is important to re-emphasize that such deviations,
although significant, are actually rather small. As shown in Fig. 2,
NFW best fits reproduce the circular velocity profiles to an accuracy
of better than ∼10 per cent down to roughly 0.5 per cent of r 200.
Although this level of accuracy may suffice for some observational
applications, the fact that deviations increase inward and are maxi-
mal at the innermost converged point suggests the desirability of a
new fitting formula better suited for extrapolation to regions beyond
those probed reliably by simulations.

An improved fitting formula ought to reproduce: (i) the more
gradual shallowing of the density profile towards the centre; (ii) the
apparent lack of evidence for convergence to a well-defined central
power law; and (iii) the significant scatter in profile shape from halo
to halo. After some experimentation, we have found that a density
profile where β(r) is a power law of radius is a reasonable com-
promise that satisfies these constraints whilst retaining simplicity,
i.e.

βα(r ) = −d ln ρ/d ln r = 2(r/r−2)α, (4)

which corresponds to a density profile of the form

ln(ρα/ρ−2) = (−2/α)[(r/r−2)α − 1]. (5)

This profile has finite total mass (the density cuts off exponentially
at large radius) and has a logarithmic slope that decreases inward
more gradually than the NFW or M99 profiles. The thick dot-dashed
curves in Figs 3 and 4 show that equation (5) (with α ∼ 0.17)
does indeed reproduce fairly well the radial dependence of β(r) and
βmax(r ) in simulated haloes.

Furthermore, adjusting the parameter α allows the profile to be
tailored to each individual halo, resulting in improved fits. Indeed,
as shown in Fig. 6, equation (5) reproduces the density profile of in-
dividual haloes to better than ∼10 per cent over the reliably resolved
radial range, and there is no discernible radial trend in the residuals.
This is a significant improvement over NFW or M99 fits, where the
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Figure 6. As Fig. 1, but for the ρα fitting formula presented in equation
(5). The thick solid lines in the top panels illustrate the expected halo profile
for each mass range according to the prescription proposed by NFW. The
bottom panels indicate the deviation from the ρα best fit achieved for each
individual halo, taking α as a free parameter. Note the improvement in the
fits compared with those achieved with the NFW or M99 profiles and shown
in Fig. 1.

maximum deviations were found at the innermost resolved radius.
The best-fitting values of α (in the range 0.1–0.2) show no obvious
dependence on halo mass, and are listed in Table 3. The average α

value is 0.172 and the dispersion about the mean is 0.032.
We note that the ρα profile is not formally divergent, and con-

verges to a finite density at the centre, ρ 0 = e2/αρ−2 ∼ 6 × 105 ρ−2

(for α = 0.15). It is unclear at this point whether such asymptotic
behaviour is a true property of �CDM haloes or simply an artefact
of the fitting formula that results from choosing β 0 = 0 in equation
(4). The simulations show no evidence for convergence to a well-
defined central value for the density, but even in the best-resolved
cases they only probe regions where densities do not exceed ∼102

ρ−2. This is, for α in the range 0.1–0.2, several orders of magnitude
below the maximum theoretical limit in equation (5).

We also note that the convergence to β 0 = 0 is quite slow for
the values of α favoured by our fits. Indeed, for α = 0.1, the loga-
rithmic slope only reaches a value significantly shallower than the
NFW asymptotic slope at radii that are well inside the convergence
radius of our simulations; for example, βα(r ) only reaches 0.5 at
r = 9.5 × 10−7r −2, corresponding to r ∼ 0.01 pc for galaxy-sized
haloes. This implies that the ρα profile is in practice ‘cuspy’ for

most astrophysical applications. Establishing conclusively whether
�CDM haloes actually have divergent inner density cusps is a task
that awaits simulations with much improved resolution than those
presented here.

3.7 Comparisons between fitting formulae

Fig. 7 compares the density and circular velocity profiles implied
by the ρα formula (equation 5) with the NFW and M99 profiles (left
panels), as well as with the fitting formula proposed by Stoehr et al.
(2002, hereafter SWTS) to describe the structure of substructure
haloes (right panels).

The top-left panel of Fig. 7 shows that, despite its finite central
density, the ρα profile can approximate fairly well both an NFW
profile (for α ∼ 0.2) and an M99 profile (for α ∼ 0.1) for over
three decades in radius. The circular velocity profile for α = 0.2 is
likewise quite similar to that of NFW (bottom-left panel of Fig. 7),
but the similarity to the shape of the M99 V c profile is less for all
values of α.

Interestingly, the V c profiles corresponding to ρα resemble
parabolae in a log –log plot, and thus may also be used to ap-
proximate the mass profiles of substructure haloes, as discussed
by SWTS. This is demonstrated in the bottom-right panel of Fig. 7,
where we show that the V c profiles corresponding to α = 0.1, 0.2
and 0.7, are very well approximated by the SWTS formula, i.e.

log(Vc/Vmax) = −a[log(r/rmax)]2, (6)

for a = 0.09, 0.17 and 0.45, respectively. The latter value (a = 0.45
or α = 0.7) corresponds to the median of the SWTS best fits to the
mass profile of substructure haloes. Note that this is quite different
from the α value of ∼ 0.1–0.2 required to fit isolated �CDM haloes
(see Table 3).

It might actually be preferable to adopt the ρα profile rather than
the SWTS formula for describing substructure haloes, since ρα(r )
is monotonic with radius and extends over all space. This is not the
case for SWTS, as shown in the top-right panel of Fig. 7. The SWTS
density profiles are ‘hollow’ (i.e. the density has a minimum at the
centre), and extend out to a maximum radius, given by e1/4ar max.
This is because the circular velocity in the outer regions of the
SWTS formula falls off faster than Keplerian, and therefore the
corresponding density becomes formally negative at a finite radius.

The ρα profile thus appears versatile enough to reproduce, with
a single fitting parameter, the structure of �CDM haloes and their
substructures. As ρα captures the inner slopes better than either the
NFW or M99 profiles, it is also likely to be a safer choice should
extrapolation of the mass profile beyond the converged radius prove
necessary. We end by emphasizing, however, that all simple fit-
ting formulae have shortcomings, and that direct comparison with
simulations rather than with fitting formulae should be attempted
whenever possible.

3.8 Scaling parameters

The application of fitting formulae such as the one described above
requires a procedure for calculating the characteristic scaling param-
eters for a given halo mass, once the power spectrum and cosmolog-
ical parameters are specified. NFW developed a simple procedure
for calculating the parameters corresponding to haloes of a given
mass. Owing to the close relationship between the scale radius, r s,
and characteristic density, ρ s, of the NFW profile and the r −2 and
ρ−2 parameters of equation (5), we can use the formalism developed
by NFW to compute the expected values of these parameters in a
given cosmological model.
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Table 3. The fit and structural parameters of the resimulated haloes.

Label r −2 ρ−2 r max V max r s ρ s r M ρM α

(h−1 kpc) (ρ crit) (h−1 kpc) (km s−1) (h−1 kpc) (ρ crit) (h−1 kpc) (ρ crit)

D1 3.23 1.12 e4 6.07 39.1 2.59 7.03 e4 5.38 7.58 e3 0.164
D2 3.04 1.58 e4 6.64 44.2 2.43 9.61 e4 2.27 1.17 e5 0.211
D3 2.57 1.58 e4 6.35 36.9 2.94 5.01 e4 4.05 2.51 e4 0.122
D4 2.57 2.24 e4 4.27 45.7 2.06 1.49 e5 2.18 1.36 e5 0.166
G1 18.5 6.76 e3 23.7 1.95 e2 23.2 4.06 e4 19.4 8.43 e4 0.142
G2 28.0 2.40 e3 68.5 1.78 e2 16.8 1.13 e5 19.4 8.43 e4 0.191
G3 20.2 6.31 e3 43.4 1.96 e2 28.0 1.52 e4 47.3 8.24 e3 0.142
G4 29.6 4.37 e3 63.4 2.49 e2 12.3 6.78 e4 16.8 3.44 e4 0.177
G5 20.7 1.58 e4 67.7 2.91 e2 13.8 5.20 e4 15.3 4.23 e4 0.184
G6 39.6 2.00 e3 96.4 2.26 e2 15.3 3.79 e4 20.7 2.03 e4 0.171
G7 16.4 1.26 e4 29.9 1.94 e2 13.4 6.22 e4 14.9 5.15 e4 0.138
C1 5.84 e2 4.68 e2 1.03 e3 1.48 e3 440 3.36 e3 661 1.58 e3 0.133
C2 3.95 e2 1.15 e3 9.99 e2 1.51 e3 362 5.17 e3 396 4.46 e3 0.215
C3 3.27 e2 1.12 e3 6.15 e2 1.38 e3 249 9.07 e3 278 7.44 e3 0.188
C4 4.16 e2 7.94 e2 6.57 e2 1.38 e3 315 5.47 e3 339 4.91 e3 0.161
C5 2.87 e2 1.91 e3 6.48 e2 1.42 e3 271 8.45 e3 326 5.88 e3 0.215
C6 3.82 e2 1.32 e3 6.94 e2 1.64 e3 297 8.70 e3 302 8.75 e3 0.203
C7 5.69 e2 3.55 e2 1.25 e3 1.25 e3 283 3.92 e3 475 2.11 e3 0.129
C8 3.68 e2 1.00 e3 9.35 e2 1.44 e3 361 4.41 e3 345 5.04 e3 0.219

Figure 7. Comparison between the density (top) and circular velocity (bottom) profiles corresponding to four different fitting formulae: NFW (solid curves,
equation 1), M99 (dotted curves, equation 2), SWTS (dashed curves, equation 6) and ρα (dot-dashed curves, equation 5). Circular velocity profiles are scaled
to the maximum, V max, and to the radius where that is reached, r max. Density profiles are scaled as in Fig. 5. Note that, despite having a finite central density,
the ρα formula matches, for about three decades in radius, the NFW profile (for α = 0.2) or the M99 profile (for α = 0.1, see top-left panel). It also matches
closely the SWTS ‘parabolic’ circular velocity profiles intended to reproduce substructure haloes (see bottom-right panel); the V c profile with α = 0.7 is very
similar to the SWTS profile with a = 0.45, the median value of the fits to substructure haloes reported by SWTS. See text for further discussion.
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NFW interpreted the characteristic density of a halo as reflecting
the density of the universe at a suitably defined time of collapse.
Their formalism assigns to each halo of mass M (identified at z = 0)
a collapse redshift, z coll(M , f ) defined as the epoch when half the
mass of the halo was first contained in progenitors more massive than
a certain fraction f of the final mass. With this definition, and once
f has been chosen, z coll can be computed using the Press–Schechter
theory (e.g. Lacey & Cole 1993). The NFW model then assumes
that the characteristic density of a halo (i.e. ρ s in equation 1) is
proportional to the mean density of the universe at z coll.

The redshift dependence of the characteristic density was first
probed in detail by Bullock et al. (2001, hereafter B01), who pro-
posed a modification to the model of NFW in which, for a given halo
mass, the scale radius, r s, remains approximately constant with red-
shift. Eke et al. (2001, hereafter ENS), alternatively, argued that the
characteristic density of a halo is determined by the amplitude and
shape of the power spectrum, as well as by the universal expansion
history. Their formalism reproduces nicely the original results of
NFW as well as the redshift dependence pointed out by B01, and is
applicable to more general forms of the power spectrum, including
the ‘truncated’ power spectra expected in scenarios such as warm
dark matter (see ENS for more details).

We have used the ENS and B01 formalisms to predict the halo
mass dependence of the scaling parameters, ρ−2 and r −2, and we
compare the results with our simulations in Fig. 8. The ENS predic-
tion is shown by the solid line whereas the dotted line shows that
of B01. Both formalisms reproduce reasonably well the trend seen
in the simulations, so that one can use either, in conjunction with
equation (5) (with α in the range 0.1–0.2), to predict the structure
of a �CDM halo. A simple code that computes r −2 and ρ−2 as a

Figure 8. The radius, r −2, where the logarithmic slope of the density profile
takes the ‘isothermal’ value, β(r −2) = 2, plotted versus the local density at
that radius, ρ−2 = ρ(r −2), for all simulated haloes in our series. This figure
illustrates the mass dependence of the central concentration of dark matter
haloes: low-mass haloes are systematically denser than their more massive
counterparts. Solid and dotted lines indicate the scale radius-characteristic
density correlation predicted by the formalisms presented by Eke et al. (2001)
and Bullock et al. (2001). These parameters may be used, in conjunction with
equation (5), to predict the mass profile of �CDM haloes.

function of mass in various cosmological models is available upon
request from the authors. Existing codes that compute NFW halo
parameters as a function of mass and of other cosmological param-
eters may also be used, noting that ρ−2 = ρ s/4 and that r −2 =
r s.

Finally, we note that neither formalism captures perfectly the
mass dependence of the characteristic density; small but significant
deviations, as well as a sizable scatter, are evident in Fig. 8. Dwarf
galaxy haloes appear to be less concentrated than predicted by the
formalism proposed by B01; a similar observation applies to cluster
haloes when compared with the predictions of ENS. Such shortcom-
ings should be considered when deriving cosmological constraints
from fits to observational data (see e.g. Zentner & Bullock 2002;
McGaugh, Barker & de Blok 2003); and suggest again that direct
comparison between observations and simulations is preferable to
the use of fitting formulae.

4 S U M M A RY

We have analysed the mass profile of �CDM haloes in a series of
simulations of high mass, spatial and temporal resolution. Our se-
ries targets haloes spanning five decades in mass: ‘dwarf’ galaxy
haloes with virial circular velocities of order V 200 ∼ 30 km s−1;
‘galaxy’-sized haloes with V 200 ∼ 200 km s−1; and ‘cluster’ haloes
with V 200 ∼ 1200 km s−1. Each of the 19 haloes in our series
was simulated with comparable numerical resolution: they have be-
tween 8 × 105 and 4 × 106 million particles within the virial radius,
and have been simulated following the ‘optimal’ prescription for
time-stepping and gravitational softening laid down in the numeri-
cal convergence study of P03.

The high resolution of our simulations allows us to probe the
inner properties of the mass profiles of �CDM haloes, down to
∼0.5 per cent of r 200 in our best resolved runs. These results have
important implications for the structure of the inner cusp in the
density profile and resolve some of the disagreements arising from
earlier simulation work. Our main conclusions may be summarized
as follows.

(i) �CDM halo density profiles are ‘universal’ in shape: i.e.
a simple fitting formula reproduces the structure of all simulated
haloes, regardless of mass. Both the NFW and the M99 profiles de-
scribe the density and circular velocity profiles of simulated haloes
reasonably well. NFW best fits to the circular velocity profiles devi-
ate by <10 per cent over the region that is well resolved numerically.
M99 best fits reproduce circular velocity profiles to better than 25
per cent over the same region. It should be noted, however, that the
deviations increase inwards and are typically maximal at the inner-
most resolved radius, a result that warns against extrapolating to
smaller radii with these fitting formulae.

(ii) �CDM haloes appear to be ‘cuspy’: i.e., the dark matter den-
sity increases monotonically towards the centre with no evidence
for a well-defined ‘core’ of constant density. We find no evidence,
however, for a central asymptotic power-law bin the density profiles.
These become progressively shallow inwards and are significantly
shallower than isothermal at the innermost resolved radius, r conv. At
r ∼ 0.01 r 200, the average slopes of ‘cluster’, ‘galaxy’ and ‘dwarf’
haloes are β(r conv) ∼ 1.1, ∼1.2 and ∼1.35, respectively. This is
steeper than predicted by the NFW profile but shallower than the
asymptotic slope of the M99 profile.

(iii) The density and enclosed mass at r conv may be used to derive
an upper limit on any asymptotic value of the inner slope. Cusps as
steep as β 0 = 1.5 are confidently ruled out in essentially all cases; the
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asymptotic slope of the NFW profile (β 0 = 1) is still consistent with
our data. The radial dependence of β(r) differs from that of the NFW
profile, however, decreasing more slowly with decreasing radius
than is predicted. For some scalings of the NFW fitting formula to
the numerical data, this shape difference appears as a dark matter
‘excess’ near the centre which has (erroneously) been interpreted
indicating a steeply divergent density cusp.

(iv) A simple formula where β(r) is a power law of radius repro-
duces the gradual radial variation of the logarithmic slope and its
apparent failure to converge to any specific asymptotic value (equa-
tion 5). This formula leads to much improved fits to the density
profiles of simulated haloes, and may prove a safer choice when
comparison with observational data demands extrapolation below
the innermost converged radii of the simulations.

Our study demonstrates that, although simple fitting formulae
such as those found in NFW are quite accurate in describing the
global structure of �CDM haloes, one should be aware of the limita-
tions of these formulae when interpreting observational constraints.
Extrapolation beyond the radial range where these formulae have
been validated is likely to produce substantial errors. Proper account
of the substantial scatter in halo properties at a given halo mass also
appears necessary when assessing the consistency of observations
with a particular cosmological model. Direct comparison between
observations and simulations (rather than with fitting formulae) is
clearly preferable whenever possible. Given the computational chal-
lenge involved in providing consistent, robust and reproducible the-
oretical predictions for the inner structure of CDM haloes, it is likely
that observational constraints will exercise to the limit our hardware
and software capabilities for some time to come.
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Moore B., Calcáneo-Roldán C., Stadel J., Quinn T., Lake G., Ghigna S.,

Governato F., 2001, Phys. Rev. D, 64, 63508
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493 (NFW)
Power C., Navarro J. F., Jenkins A., Frenk C. S., White S. D. M., Springel

V., Stadel J., Quinn T., 2003, MNRAS, 338, 14 (P03)
Ricotti M., 2003, MNRAS, 344, 1237
Seljak U., Zaldarriaga M., 1996, ApJ, 469, 437
Springel V., Yoshida N., White S. D. M., 2001, New Astron., 6, 79
Stadel J., 2001, PhD thesis, University of Washington
Stoehr F., White S. D. M., Tormen G., Springel V., 2002, MNRAS, 335, L84

(SWTS)
Subramanian K., Cen R., Ostriker J. P., 2000, ApJ, 538, 528
Taylor J. E., Navarro J. F., 2001, ApJ, 563, 483
Taylor J. E., Silk J., 2003, MNRAS, 339, 505
van den Bosch F. C., Robertson B. E., Dalcanton J. J., de Blok W. J. G.,

2000, AJ, 119, 1579
Yoshida N., Sheth R. K., Diaferio A., 2001, MNRAS, 328, 669
Zentner A. R., Bullock J. S., 2002, Phys. Rev. D, 66, 43003

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2004 RAS, MNRAS 349, 1039–1051


