
TOXICOLOGICAL SCIENCES 82, 97–105 (2004)

doi:10.1093/toxsci/kfh250

Advance Access publication August 13, 2004

Influence of Chronic Exposure to Treated Sewage Effluent on the
Distribution of White Blood Cell Populations in Rainbow Trout

(Oncorhynchusmykiss) Spleen

Birgit Hoeger,* Bernd Koellner,† Guenter Kotterba,† Michael R. van den Heuvel,‡ Bettina Hitzfeld,§ and Daniel R. Dietrich*,1

*Environmental Toxicology, University of Konstanz, D-78457 Konstanz, Germany; †Federal Research Centre for Virus Diseases in Animals, Greifswald-Insel

Riems, Germany; ‡Forest Research, Rotorua, New Zealand; and §Swiss Agency for the Environment, Forests and Landscape SAEFL; Substances, Soil,

Biotechnology Division; Section Substances, 3003 Bern, Switzerland

Received June 25, 2004; accepted July 30, 2004

Impairment of immune function in aquatic animals has been

proposed as a possible consequence of low-level contamination of

surface waters with anthropogenic substances such as through the

discharge of wastewater into rivers, lakes, and oceans. The study at

hand investigated the effects of chronic (32 weeks) exposure to

sewage treatment plant (STP) effluent on the prevalence and dis-

tribution of different leucocyte populations in spleen samples of

rainbow trout (Oncorhynchus mykiss). To simulate an infection,

fishwere injected intraperitoneally (ip) with inactivatedAeromonas

salmonicida salmonicida, 6 weeks prior to the termination of the

experiment. Immunohistological analysis revealed a marked

decrease in thrombocyte numbers, an increase ofmonocytes, altered

distribution of B-cells, and higher surface immunoglobulin expres-

sion, as well as activation of MHC class II expression in the spleen

after exposure to 15% (v/v) effluent. The most prominent finding of

the present study, however, was the occurrence of intraplasmatic

deposits or inclusions with strong autofluorescence in spleen sec-

tions from effluent-exposed trout. In addition to effluent effects,

injection of trout with A. salmonicida stimulated infiltration of

monocytes, increased staining intensity on thrombocytes, and

enhanced MHC class I expression in larger leucocytes surrounding

melanomacrophage centres. In general, the current study demon-

strates amarked, potentially adverse effect of STPeffluent on spleen

leucocytes and on the integrity of spleen tissue. The observed

response suggests a constant unspecific stimulation of different leu-

cocyte populations and is reminiscent of chronic inflammation.
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In the last few decades, the attention of scientists in the field of

environmental toxicology has shifted from the observation

of direct toxicity to the identification of more subtle effects of

pollution. A variety of substances including pharmaceuticals,

industrial chemicals, and compounds contained in many house-

hold products, while not commonly leading to fish kills or other

clearly visible effects, have recently been shown to affect endo-

crine as well as immunological mechanisms in vertebrates at

relatively low concentrations (Daughton and Ternes, 1999).

Contamination of surface waters with highly potent substances

at low concentrations has also been related to altered reproduc-

tive performance, possibly leading to a reduction in fish popula-

tions (Matthiessen and Sumpter, 1998; Robinson et al., 2003).

The main source of such pollutant mixtures is the release of

municipal, agricultural, and industrial wastewater into surface

waters (Desbrow et al., 1998; Kummerer, 2001).

Histological investigations within the field of fish toxicology

have focused on general pathology (externally visible disease,

skin structure and lesions, liver lesions, necrosis and apoptosis,

as well as inflammatory reactions) and tumor incidence

(Vethaak, 1992; Wahli et al., 2002). Only in the last few

years have environmental toxicologists started to consider

effects of aquatic pollution on the immune competence of

fish. With specific antibodies against fish immune cells becom-

ing more readily available, it is now possible to track leucocyte

populations in peripheral blood, as well as in organ samples. In

the field of immunotoxicology, the occurrence and distribution

of different white blood cell populations (e.g. in haematopoietic

tissues) is of major relevance. Alterations in prevalence and

activity of different types of leucocytes point to changes in a

variety of immune reactions, as immunological activity is almost

exclusively based on leucocyte integrity.

In the current study, rainbow trout (Oncorhynchus mykiss)

were exposed to nominal concentrations of 1.5 or 15% (v/v)

municipal sewage treatment plant (STP) effluent, reflecting

concentrations known to commonly exist in the environment,

over a period of 32 weeks (chronic exposure). Six weeks prior

to the termination of the experiment, fish were injected (ip)

with inactivated A. salmonicida salmonicida to stimulate

the immune system or with phosphate balanced salt solution

(PBS) as a control for the injection. Immunohistology with

specific antibodies against rainbow trout leucocyte surface
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markers was used to investigate effects of sewage treatment

effluent on occurrence and distribution of B-lymphocytes,

monocytes, granulocytes, and thrombocytes, as well as the

cell surface molecules MHC class I and MHC class II in spleen

cryosections.

MATERIAL AND METHODS

Fish. Two-year-old rainbow trout (O. mykiss), which were reared at

New Zealand Forest Research Institute (Rotorua) were used for exposure experi-

ments. Parent fish were purchased from the New Zealand Fish and Game Ngon-

gataha hatchery (Rotorua, New Zealand). Fish were held in 12,000 l tanks, each

containing 50 individuals, and were fed daily with commercial aquaculture feed

pellets (Reliance stock food, Dunedin, New Zealand) at a ration of 0.7% of wet

body weight, and the ration was increased by 25 g monthly as per the known

growth trajectory with fish of this size. All trout were tagged with individually

numbered T-bar type tags (HallPrint Pty Ltd, Holden Hill, SA, Australia), as well

as weighed and measured at the start of the experiment.

Sewage treatment plant effluent. Final treated effluent was obtained from

a sewage treatment plant located in Rotorua, New Zealand. This STP employs a

pretreatment step with stop screens and a grit trap, a primary treatment step with

sedimentation, and secondary activated sludge treatment (Bardenpho Reactor).

Effluent holding tanks at the trout exposure facility were refilled with final treated

effluent every second day.

Experimental Set Up

Trout exposure facility. In the trout exposure experiment, activated carbon

dechlorinated tap water was used as the diluent and as the reference treatment

(aquifer source). Water flow was controlled by line pressure using stainless steel

globe valves and spring-operated flowmeters. Effluent flow was controlled using

a head tank to maintain constant pressure in combination with a PVC aperture

calibrated for the nominal flow. Diluent flows were adjusted daily when neces-

sary, and the effluent control apertures were cleaned daily to prevent reduction of

flow due to biofouling. Two replicate tanks were used for each treatment. Trout

exposure tanks were provided with a constant water flow of 10 l/min, which

resulted in a 95% replacement time of approximately 45 h.

Water parameters. Dissolved oxygen, pH, and conductivity (Radiometer

Pacific, Auckland, New Zealand) in the fish exposure tanks and in undiluted

effluent were measured daily. Additional aeration was provided in the effluent

holding tanks and the trout exposure ponds, maintaining dissolved oxygen above

90% saturation for the duration of the experiment. The average pH values with

standard deviation in the replicate exposure tanks were 7.21 6 0.25 and

7.22 6 0.25 in the 15% effluent tanks, 7.15 6 0.28 and 7.20 6 0.28 in the

1.5% effluent tanks and 7.13 6 0.29 and 7.13 6 0.28 in the control tanks.

Conductivity in each tank, diluent conductivity, and effluent conductivity were

used to calculate the actual effluent concentration in the fish tanks on a daily basis.

The actual mean effluent concentration was 13.486 3.25 and 12.916 3.51 in the

15% effluent tanks and 1.45 6 0.59 and 1.59 6 0.64 in the 1.5% effluent tanks.

Water temperature ranged between 12.7 and 16.7�C, 12.7 and 16.9�C, and 12.9

and 17.5�C in control water, 1.5% effluent, and 15% effluent, respectively.

Exposure. Trout were exposed to a nominal concentration of either 1.5 or

15% (v/v) effluent. Control fish were kept in dechlorinated tap water. The expo-

sure was started on September 22, 2001, with immature fish and was terminated

between May 6 and 14, 2002, when trout were close to spawning. After exposure

for 26 weeks, trout were anesthetized with ethyl-3-aminobenzoate methanosul-

fonate (MS222) (Fluka, Switzerland), and 1 ml of blood was taken by syringe

from the caudal vein. Fish were then either injected intraperitoneally with form-

aldehyde inactivatedA. salmonicida salmonicida, strain MT 423 (13108 cells in

250 ml per 100 g body weight), or with a corresponding volume of phosphate

balanced salt solution (PBS) as a control for the injection. Antigen preparation of

A. salmonicida followed the description by Koellner and Kotterba (2002). Fish

were exposed to effluent for a further 6 weeks until the experiment was terminated

and the fish were sacrificed.

Sampling. Female trout were sampled first over two consecutive days by

taking out three A. salmonicida-injected and three PBS-injected fish from each

tank per day. Male fish were sampled 7 days later, following the same sampling

scheme. Peripheral blood samples were taken from the caudal vein and used to

obtain serum for analysis of A. salmonicida-specific antibodies. Representative

samples of spleen were snap-frozen in liquid nitrogen and stored at �80�C for

histology.

Immunohistology. Spleen samples were cut using a cryostat microtome

(Leica CM3050, Leica, Germany). Approximately 8-mm-thick organ sections

were placed on poly-L-lysine–coated glass slides (0.1% w/v in water; Sigma,

Steinheim, Germany). After fixation in 100% acetone for 10 min at 4�C, the

sections were air-dried. Dry sections were incubated with primary antibodies (list

of antibodies used, see Table 1) for 1 h at room temperature. The slides were

washed twice in Iscove’s Modified Dulbecco’s medium (Invitrogen, Karlsruhe,

Germany) and subsequently incubated with secondary, fluorescence-labeled

antibodies (see Table 1) for 1 h. After washing twice in medium, slides were

mounted in PBS, containing 10% glycerin and 2.5% 1,4-diazobicyclooctan

(Dabco) (Sigma, Steinheim, Germany), covered with cover slips, and examined

for specific fluorescence using an LSM 510 confocal laser scanning microscope

(Carl Zeiss, Hallbergmoos, Germany). Thesectionswere scannedusinga 403oil

immersion objective. The 488 nm line of an argon laser was used for Alexa 488

and fluorescein-isothiocyanat (FITC) excitation, and the 543 nm line of a helium/

TABLE 1

Primary and Secondary Antibodies Used for Immuno-Histochemical Staining

Cell Type Or Surface Marker Primary Antibody Secondary Antibody

Granulocytes Monoclonal antibody (mab) Q4E

(Kuroda et al., 2000)

Goat-anti-mouse IgG3, FITC-conjugate

(Medac, Hamburg, Germany)

Monocytes mab 45 (Koellner et al., 2001) Goat-anti-mouse IgM (m), R-PE-conjugate

(Caltag, Hamburg, Germany)

B-cells mab N2 (Fischer and Koellner, 1994) Goat-anti-mouse IgG-Alexa Fluor 488

(MoBiTec, Goettingen, Germany)

Thrombocytes mab 42 (Koellner et al., in press) Goat-anti-mouse-IgG1(g), FITC-conjugate

(Caltag, Hamburg, Germany)

MHC I mab H9 (Dijkstra et al., 2003) Goat-anti-mouse-IgG, Cy3-conjugate

(Dianova, Hamburg, Germany)

MHC II Oslo antiserum (Koppang et al., 2003) a-rabbit-FITC (Sigma, Steinheim, Germany)
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neon laser for R-Phycoerythrin (R-PE) and indocarbocyanin (CY3) exitation.

The fluorescence emission was recorded using a main beam splitter at 488/543/

633 nm in combination with a second beam splitter at 505–550 nm and an

emission filter for 560–615 nm. The obtained scans were analyzed using the

LSM 510/2.1 software package (Carl Zeiss, Hallbergmoos, Germany).

Per treatment group spleen samples from four female fish were analyzed.

Pictures of four representative areas of spleen tissue from each fish were taken.

The 16 pictures per treatment group were evaluated as follows: of the four

pictures per fish the one showing the average in staining intensity and amount

of stained cells was chosen. From the resulting four pictures again the repre-

sentative picture was chosen based on the same criteria. Using this ‘‘histomor-

phological average choice method,’’ the presented pictures show the true

difference between each exposure group.

A. salmonicida-specific antibody ELISA. The ELISA for the detection of

A. salmonicida-specific antibodies in trout serum followed the description of

Koellner and Kotterba (2002), except for sample dilution (1:4000) and detection,

which was carried out using TMB (Sigma, St. Louis, U.S.A.). The color reaction

was stopped by the addition of 1 M H2SO4, and absorption was measured at 450

nm in an SLT plate reader 340 ATTC (SLT Labinstruments, Groedig, Austria).

As no standards were available for IgM determination, results are given as optical

density. To enable comparison without a standard curve, all samples were meas-

ured in parallel in a single ELISA run, which was repeated once.

RESULTS

Spleen

Spleen tissue sections from fish exposed to 15% effluent

appeared to have less structural integrity (the cell collective

appeared less tight) as compared to tissue samples from control

fish. Moreover, a high prevalence of an intense orange/red

and patchily distributed autofluorescence was regularly

observed after exposure to 15% effluent (Fig. 1). As shown in

double staining using the monoclonal antibody (mab) 45 (anti-

trout monocytes) and mab Q4E (anti-trout granulocytes), this

autofluorescence seems to be concentrated in trout monocytes.

In general, only marginal differences in the prevalence and dis-

tribution of different leucocyte populations between control fish

and the 1.5% effluent group, as well as in surface expression of

the markers, recognized by the mabs used were noted. Therefore,

the following results concentrate on the differences between

control fish and trout exposed to 15% effluent.

Monocytes and Granulocytes

The patches with strong autofluorescence observed in trout

were shown to coincide with the specific fluorescence staining of

monocytes using mab 45 (Fig. 1). The exposure to 15% effluent

induced an increased infiltration of monocytes into spleen tissue.

However, the distribution of monocytes within spleen tissue was

not observed to be altered by exposure to STP effluent. Injection

of trout with A. salmonicida further enhanced the effect on

monocyte numbers in spleen tissue.

Granulocytes were found to be distributed evenly within

the sections (Fig. 1). All granulocytes in spleen sections from

control fish showed an equally strong staining, and cell aggre-

gates were observed in some distance to melanomacrophage

centers (MMCs). Whereas cell numbers in spleen from PBS-

injected fish exposed to 15% effluent did not seem lower than in

control fish, the immunostimulation byA. salmonicida injection

led to a decreased number of granulocytes in spleen from fish

exposed to 15% effluent compared to A. salmonicida-injected

control fish. However in both groups (A. salmonicida-injected

and sham-injected fish), granulocytes displayed diverse inten-

sity of staining after exposure to 15% effluent, with some cells

showing lower surface expression of the marker stained by

mab Q4E.

Thrombocytes

Spleen sections from control fish displayed an even distribu-

tion of thrombocytes (Fig. 2). In the spleens of trout exposed to

15% effluent, staining intensity and number of thrombocytes

was markedly decreased compared to control fish. The intraper-

itoneal injection of A. salmonicida seemed to increase the stain-

ing intensity as well as the number of thrombocytes in spleen in

nonexposed control fish. This was not found in the effluent

group, where an injection of trout with A. salmonicida did not

have any influence on thrombocyte numbers in spleen, compared

to sham-injected fish.

B-Lymphocytes

In spleens from control trout and trout exposed to 1.5% efflu-

ent, B-lymphocytes showed a homogenous distribution and

expression of surface IgM within the tissue. Exposure of trout

to 15% effluent led to an uneven distribution of B-cells in spleen

sections (Fig. 3) as well as a higher expression of surface IgM in

larger cells assembled around MMCs. In other parts of the sec-

tions lower numbers of B-cells were stained, and stained cells

furthermore displayed a lower fluorescence intensity, implying

lower cell surface IgM expression. Injection of fish with

A. salmonicida had no further effect, either on B-lymphocyte

numbers, or on the expression of surface IgM, compared to

sham-injected fish.

MHC Class I and MHC Class II

The expression of MHC class I and MHC class II in spleen

leucocytes seemed to be influenced both by the exposure to

15% STP effluent and by the injection with A. salmonicida

particles (Fig. 4).

MHC II positive cells were unequally distributed within

spleen tissue, with aggregates of MHC II expressing cells, as

well as completely unstained areas. Spleen leucocytes in control

fish and the 1.5% effluent group showed a very low expression

of MHC class II. The exposure to 15% STP effluent resulted in

a strong increase of MHC class II (green fluorescence)

along with the above-described occurrence of autofluorescence

(yellow/orange cytoplasmic fluorescence) in larger cells.
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In A. salmonicida-injected fish a stronger expression of MHC

class I molecules (orange or orange/red fluorescence) in larger

leucocytes surrounding the MMCs was found compared to PBS

treated control trout (Fig. 4). It should be noted that in controls

and in the 1.5% STP effluent group not all MHC class I positive

cells also displayed an MHC II specific staining, while in the

15% effluent group, cells showed a specific MHC I/MHC II

double staining.

Serum Level of anti-A. salmonicida salmonicida

Immunoglobulin M

Exposure of rainbow trout to STP effluent resulted in a decrease

in serum antibody levels against inactivated A. salmonicida;

however, this decrease was only statistically significant in the

1.5% effluent group (Table 2).

DISCUSSION

In this study, chronic exposure of rainbow trout to municipal

STP effluent has been shown to alter the occurrence and dis-

tribution of different leucocyte populations in spleen tissue. The

predominant finding was a high prevalence of a strong, intra-

cytoplasmic red/orange autofluorescence, especially in large

leucocytes in spleen sections from trout exposed to 15% effluent.

These deposits or inclusions have been found to coincide with

the specific antibody staining of monocytes and may therefore be

15 % effluent

1.5 % effluent

control

A. salmonicida-injected fish sham-injected fish

FIG. 1. Laser scanning microscopy of spleen cryosections from control fish and trout exposed to 1.5 or 15% effluent, labeled with mab 45 (anti-trout

monocytes, red fluorescence) and mab Q4E (anti-trout granulocytes, green fluorescence). The exposure to effluent induced a strong increase in the number of

monocytes, showing intracellular orange/red autofluorescence. In the A. salmonicida-injected fish the number of labeled monocytes was further increased

compared to PBS-injected fish. Granulocytes seemed to be influenced by exposure to 15% effluent, as shown in altered distribution and slightly decreased

fluorescence intensity.
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interpreted as depositions in macrophages. An example for an

autofluorescent substance, which can usually be found in mel-

anomacrophage centers is lipofuscin (Wolke, 1992). The

identity of these deposits or inclusions could not be elucidated

or satisfactorily explained. However, they may be considered to

reflect an adverse effect of chronic exposure of trout to STP

effluent. This impression is further supported by a loss of tissue

integrity of the spleen tissue from effluent exposed trout com-

pared to samples from control fish.

The increase of monocytes/macrophages, detected in spleen

samples from trout injected withA. salmonicida, is in agreement

with results fromprevious studies (Koellner andKotterba,2002).

In addition to the effects of A. salmonicida injection, it appears

that the exposure to 15% STP effluent had a ‘‘costimulatory-

like’’ effect on monocytes, indicating the unspecific activation of

cells involved in innate immune functions. This finding can be

interpreted as an indication of a possible chronic inflammation

response to compounds found in STP effluent.

The marked decrease in thrombocyte numbers and lower

staining intensity on these cells found in spleen samples from

trout exposed to 15% effluent are further indications of effluent

impacts on the immune system. The main function of thrombo-

cytes, the phylogenetic precursors of platelets in lower verte-

brates, is blood clotting (Rowley et al., 1997). Recent findings,

however, indicate that trout thrombocytes may also be involved

in antigen presentation (Koellner et al., in press). Lower throm-

bocyte numbers in spleen tissue after exposure to 15% effluent

might be due to an efflux of these cells into the blood or other

body compartments, possibly reflecting a chemotactic response

of thrombocytes towards foreign material in STP effluent. Lower

staining intensity may be due to a decreased expression of the

CD42-like surface marker recognized by mab 42. As it has been

15 % effluent

1.5 % effluent

control

A. salmonicida-injected fish sham-injected fish

FIG. 2. Laser scanning microscopy of spleen cryosections from control fish and trout exposed to 1.5 or 15% effluent, after labeling with mab 42 (anti-trout

thrombocytes, green fluorescence). Note the strong decrease in thrombocyte numbers and lower fluorescence intensity on cell surfaces in the 15% effluent group.
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shown that this molecule is involved in thrombocyte

aggregation, a decrease in surface expression could indicate a

disturbance of aggregatory function after chronic exposure to

15% effluent (Koellner et al., in press).

B-lymphocytes in spleen tissue from trout exposed to 15%

effluent were observed to cluster near MMCs, in contrast to

B-cells in spleen of control fish, which were evenly distributed

in the tissue. Moreover, spleen B-cells in the 15%-effluent group

displayed a markedly higher intensity of fluorescence staining.

The B-cells were detected using a mab against trout IgM

(Thuvander et al., 1990). Therefore, not only the distribution

of B-lymphocytes can be detected, but also an activation of these

cells, leading to an increased expression of surface immunoglo-

bulin (sIgM), reflected in a higher intensity of fluorescence

staining on individual cells. Gathering of those B-cells with

increased sIgM expression, around macrophage centers could

be connected to antigen presentation in these areas of the spleen.

This is a further indication of a nonspecific activation of the

immune system due to exposure to STP effluent.

The enhanced MHC class II specific staining in spleen sec-

tions observed after exposure to 15% effluent also suggests an

effluent-induced stimulation of immune cells. It is well known,

that activation and proliferation of immune cells after antigenic

or mitogenic stimulation results in an increased expression

of MHC II molecules on monocytes and activated B- and

T-lymphocytes (Grusby and Glimcher, 1995; Rohn et al.,

1996). The higher MHC II specific staining found in our

study may also be connected to activation of antigen-presenting

cells (monocytes, B-cells). However, the functional relevance of

such a finding would have to be proved using functional tests,

such as phagocytosis assays or mixed leucocyte reaction (MLR),

which could not be realized within the scope of this study.

The measurement of specific antibodies in serum of

A. salmonicida-injected trout revealed lower levels in mature

15 % effluent

1.5 % effluent

control

A. salmonicida-injected fish sham-injected fish

FIG. 3. Laser scanning microscopy of spleen cryosections from control fish and trout exposed to 1.5 or 15% effluent, after labeling with mab N2 (anti-trout

IgM, green fluorescence). Note the altered distribution and increased staining intensity in trout exposed to 15% effluent compared to control fish.
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female trout exposed to 1.5 and 15% effluent, compared to

control fish. However, a direct association between putative

antigen presentation and specific antibody levels in serum can-

not be drawn, as suppression of antibody production could occur

at several other stages, following antigen-recognition (Sharma

and Zeeman, 1980), and mere antigen presentation does not

necessarily result in the production of antibodies by B-cells.

Moreover, the nature of the putative antigen presented in this

case is not known. Exposure to effluent may have resulted in

exposure to several other antigens, and humoral immune reac-

tions have been found to vary substantially with the antigen

applied (Davis et al., 2003; Sharma and Zeeman, 1980).

Although an effect of chronic exposure to 15% effluent on

occurrence and distribution of leucocytes, as well as a pos-

sible deposition of degradation materials in the spleen of

rainbow trout has been shown, a clear characterization of

the (putative adverse) influence cannot be gained from the

study at hand. However, our results can be regarded as an

indicator for potential adverse effects of STP effluents on the

15 % effluent

1.5 % effluent

control

A. salmonicida-injected fish sham-injected fish

FIG. 4. Laser scanning microscopy of spleen cryosections from control fish and trout exposed to 1.5 or 15% effluent, after labeling with mab H9 (anti-trout

MHC class I, red fluorescence) and anti-salmon MHC II antiserum (green fluorescence). In the 15% effluent group, a strong increase in the number of MHC II

positive cells was found. In spleen sections from A. salmonicida-injected trout MHC class I positive cells were found to surround the melanomacrophage centers.

TABLE 2

Serum Levels of A. salmonicida-Specific IgM

Control 1.5% (v/v) effluent 15% (v/v) effluent

1.20; 0.846/1.553 (12) 0.595; 0.242/0.949 (12)* 0.767; 0.334/1.200 (8)

Note. Mean values; lower 95% confidence level / upper 95% confidence level

for serum levels ofA. salmonicida-specific IgM. Numbers in parentheses indicate

the number of fish tested.

*p � 0.05 (one-way ANOVA with Dunnett’s post test).
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immune system of fish, reflected in an induction of a response,

which appears similar to chronic inflammation and a constant

unspecific stimulation of different leucocyte populations.

Therefore, our findings further support the inclusion of

immune parameters into monitoring of aquatic pollution,

as has been suggested before by several scientists (Van

Muiswinkel, 1992; Wester et al., 1994). Analysis of the occur-

rence and distribution of white blood cell populations in

hematopoietic tissue, with the help of specific antibodies,

might specifically be regarded as a useful method to assess

effects of environmental contamination on immune reactions.

Adverse effects observed in hematopoietic tissues may reflect

or subsequently lead to alterations in several critical immune

reactions.

Given the complexity of immune responses, a single test

method isnot suitable for assessment of the overall immune com-

petence of an organism. Therefore, investigations on immuno-

toxicity warrant the assessment of a range of immune

parameters. Alterations in leucocyte numbers and expression

of surface markers on different leucocyte populations, observed

with the help of immunohistology, should be complemented by

functional assays, in order to elucidate the implications of the

histological effects. A final characterization of the overall

immune competence has to be based on the investigation of a

stimulated immune system, and immunosuppression, in its last

consequence, can only be demonstrated with the help of chal-

lenge experiments. Further investigations on the effects of sew-

age treatment water on immune functions in fish are desirable. It

will, however, be indispensable to complete such investigations

with studies on mechanisms of immunotoxicity, in order to

better understand how the immune competence of aquatic organ-

isms can be influenced by different types of pollution.

In conclusion, the present study has clearly shown a (poten-

tially adverse) effect of chronic exposure to a realistic concen-

tration of STP effluent on rainbow trout spleen, reflected in an

activation of different leucocyte populations, occurrence of

inclusion bodies, and a decrease in tissue integrity. A negative

influence of surface water contamination with effluent on the fish

immune system and hence on immune competence may thus be

expected. Consequently, these findings warrant a closer exam-

ination of the effects of anthropogenic pollution of the aquatic

environment on immune function of aquatic organisms.

ACKNOWLEDGMENTS

This study has been supported by a scholarship to B.H. from the Deutsche

Bundesstiftung Umwelt (German Federal Environmental Foundation,

Osnabrueck, Germany), as well as through travel grants from the

Universitaetsgesellschaft e.V. of the University of Konstanz and the Boehringer

Ingelheim Fonds, Heidesheim, Germany. Work in New Zealand was supported

by the Foundation for Research Science and Technology and by a Royal Society

ISAT travel grant. The authors would like to thank Dr. Erling Koppang for

providing antibodies and Dr. Uwe Fischer for technical advice and scientific

discussion. The practical help of Rosanne Ellis, Megan Finley, Murray Smith,

Helga Noack, and Anja Schulz is gratefully appreciated.

REFERENCES

Daughton, C. G., and Ternes, T. A. (1999). Pharmaceuticals and personal care

products in the environment: Agents of subtle change? Environ. Health

Perspect. 107, 907–938.

Davis, K. B., Griffin, B. R., and Gray, W. L. (2003). Effect of dietary cortisol on

resistance of channel catfish to infection by Ichthyopthirius multifiliis and

channel catfish virus disease. Aquaculture 218, 121–130.

Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., and Waldock, M.

(1998). Identification of estrogenic chemicals in STW effluent: 1. Chemical

fractionation and in vitro biological screening. Environ. Sci. Technol. 32,

1549–1558.

Dijkstra, J. M., Koellner, B., Aoyagi, K., Sawamoto, Y., Kuroda, A., Ototake, M.,

Nakanishi, T., and Fischer, U. (2003). The rainbow trout classical MHC

class I molecule Onmy-UBA*501 is expressed in similar cell types as

mammalian classical MHC class I molecules. Fish Shellfish Immunol.

14, 1–23.

Fischer, U., and Koellner, B. (1994). Preparation of a B-cell and monocyte free

thymocyte suspension. In Techniques in Fish Immunology (J. S. Stolen, T. C.

Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Van Muiswinkel, Eds.),

pp. 27–33. SOS Publications, Fair Haven, NJ.

Grusby, M. J., and Glimcher, L. H. (1995). Immune responses in MHC

class II-deficient mice. Annu. Rev. Immunol. 13, 417–435.

Koellner, B., Blohm, U., Kotterba, G., and Fischer, U. (2001). A monoclonal

antibody recognising a surface marker on rainbow trout (Oncorhynchus

mykiss) monocytes. Fish Shellfish Immunol. 11, 127–142.

Koellner, B., Fischer, U., Rombout, J. H. W. M., Taverne, A., and Hansen, J. D.

(2004). Potential involvement of rainbow trout thrombocytes in immune

functions. A study using a panel of monoclonal antibodies and RT-PCR.

Dev. Comp. Immunol. 28, 1049–1062.

Koellner, B., and Kotterba, G. (2002). Temperature dependent activation of

leucocyte populations of rainbow trout, Oncorhynchus mykiss, after

intraperitoneal immunisation with Aeromonas salmonicida. Fish Shellfish

Immunol. 12, 35–48.

Koppang, E. O., Hordvik, I., Bjerkas, I., Torvund, J., Aune, L., Thevarajan, J., and

Endresen, C. (2003). Production of rabbit antisera against recombinant MHC

class II beta chain and identification of immunoreactive cells in Atlantic

salmon (Salmo salar). Fish Shellfish Immunol. 14, 115–132.

Kummerer, K. (2001). Drugs in the environment: Emission of drugs, diagnostic

aids and disinfectants into wastewater by hospitals in relation to other

sources—A review. Chemosphere 45, 957–969.

Kuroda, A., Okamoto, N., and Fukuda, H. (2000). Characterization of mono-

clonal antibodies against antigens shared with neutrophils and macrophages

in rainbow trout Oncorhynchus mykiss. Fish Pathol. 35, 205–213.

Matthiessen, P., and Sumpter, J. P. (1998). Effects of estrogenic substances in the

aquatic environment. Fish Ecotoxicol. 86, 319–335.

Robinson, C. D., Brown, E., Craft, J. A., Davies, I. M., Moffat, C. F., Pirie, D.,

Robertson, F., Stagg, R. M., and Struthers, S. (2003). Effects of sewage effluent

and ethynyl oestradiol upon molecular markers of oestrogenic exposure,

maturation and reproductive success in the sand goby (Pomatoschistus

minutus, Pallas). Aquat. Toxicol. 62, 119–134.

Rohn, W. M., Lee, Y. J., and Benveniste, E. N. (1996). Regulation of class II

MHC expression. Crit. Rev. Immunol. 16, 311–330.

Rowley, A. F., Hill, D. J., Ray, C. E., and Munro, R. (1997). Haemostasis

in fish—An evolutionary perspective. Thromb. Haemost. 77, 227–233.

Sharma, R. P., and Zeeman, M. G. (1980). Immunologic alterations by

environmental chemicals: Relevance of studying mechanisms versus effects.

J. Immunopharmacol. 2, 285–307.

Thuvander, A., Fossum, C., and Lorenzen, N. (1990). Monoclonal antibodies to

salmonid immunoglobulin: Characterization and applicability in immuno-

assays. Dev. Comp. Immunol. 14, 415–423.

104 HOEGER ET AL.



Van Muiswinkel, W. B. (1992). Fish immunology and fish health. Neth. J. Zool.

42, 494–499.

Vethaak, A. D. (1992). Gross pathology and histopathology in fish: Summary.

Mar. Biol. Prog. Ser. 91, 171–172.

Wahli, T., Knuesel, R., Bernet, D., Segner, H., Pugovkin, D.,

Burkhardt-Holm, P., Escher, M., and Schmidt-Posthaus, H. (2002).

Proliferative kidney disease in Switzerland: Current state of knowledge.

J. Fish Dis. 25, 491–500.

Wester, P. W., Vethaak, A. D., and van Muiswinkel, W. B. (1994). Fish as

biomarkers in immunotoxicology. Toxicology 86, 213–232.

Wolke, R. E. (1992). Piscine macrophage aggregates: A review.Annu. Rev. Fish

Dis. 2, 91–108.

INFLUENCE OF CHRONIC EXPOSURE 105


