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Sirtuins (Sirt1–Sirt7) comprise a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes. While deacetylation reflects their
main task, some of them have deacylase, adenosine diphosphate-ribosylase, demalonylase, glutarylase, and desuccinylase properties. Activated
upon caloric restriction and exercise, they control critical cellular processes in the nucleus, cytoplasm, and mitochondria to maintain metabolic
homeostasis, reduce cellular damage and dampen inflammation—all of which serve to protect against a variety of age-related diseases, including
cardiovascular pathologies. This review focuses on the cardiovascular effects of Sirt1, Sirt3, Sirt6, and Sirt7. Most is known about Sirt1. This
deacetylase protects from endothelial dysfunction, atherothrombosis, diet-induced obesity, type 2 diabetes, liver steatosis, and myocardial in-
farction. Sirt3 provides beneficial effects in the context of left ventricular hypertrophy, cardiomyopathy, oxidative stress, metabolic homeosta-
sis, and dyslipidaemia. Sirt6 is implicated in ameliorating dyslipidaemia, cellular senescence, and left ventricular hypertrophy. Sirt7 plays a role in
lipid metabolism and cardiomyopathies. Most of these data were derived from experimental findings in genetically modified mice, where NFkB,
Pcsk9, low-density lipoprotein-receptor, PPARg, superoxide dismutase 2, poly[adenosine diphosphate-ribose] polymerase 1, and endothelial
nitric oxide synthase were identified among others as crucial molecular targets and/or partners of sirtuins. Of note, there is translational evi-
dence for a role of sirtuins in patients with endothelial dysfunction, type 1 or type 2 diabetes and longevity. Given the availability of specific Sirt1
activators or pan-sirtuin activators that boost levels of the sirtuin cofactor NAD+, we anticipate that this field will move quickly from bench to
bedside.
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Sirtuins: mediators of caloric
restriction
Silent Information Regulator 2 (SIR2) proteins—Sirtuins—are a
family of histone deacetylases (HDACs) that catalyse deacetylation
of both histone and non-histone lysine residues. Beyond deacetylase
and deacylase activity, some sirtuins exert adenosine diphosphate
(ADP)-ribosylase, demalonylase, desuccinylase, or glutarylase prop-
erties. Post-transcriptional modification of a wide range of protein
targets of the seven mammalian orthologs (Sirt1–7) has been
described in diverse settings. Their requirement for nicotinamide
adenine dinucleotide (NAD+) distinguishes sirtuins from other
HDAC classes and defines them as class III HDACs. This need of
NAD+ for their enzymatic activity closely links sirtuins to the

cellular energy status, increasing their activity at times of low energy
availability such as caloric restriction and exercise (Figure 1).1– 4

To date, caloric restriction is the most robust intervention that has
been reproducibly shown to prolong life span and maintain health in
both invertebrates and vertebrates, including mammals.5,6 The first
association between sirtuins and longevity in budding yeast 16 years
ago7 sparked efforts in numerous laboratories to unravel the mechan-
isms underlying sirtuin-mediated prolongation of life span and eluci-
date their potential to postpone the onset of age-related diseases.
In this context, the seven mammalian sirtuin orthologs have been
studied in diverse disease models, including insulin resistance and dia-
betes, inflammation, neurodegenerative disease, cancer, and more
recently, in cardiovascular pathologies such as cardiac hypertrophy,
heart failure, endothelial dysfunction, and atherosclerosis.
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This review focuses on the recent advances of sirtuin research in
experimental cardiovascular disease and discusses their potential
clinical applications (Table 1).

Sirtuins: emerging roles in
cardiovascular and metabolic
diseases

Atherosclerosis: a chronic
immunometabolic disease
Atherosclerosis with its sequelae myocardial infarction or stroke
comprises the major cause for morbidity and mortality in the West-
ern world.8 At the cellular and molecular level, atherosclerosis

results from a complex interplay between modified low density lipo-
proteins (LDL), activated endothelial cells, monocyte-derived
macrophages, T cells, and the vessel wall: Oxidative stress in endo-
thelial cells, endothelial dysfunction, and subsequent recruitment of
macrophages into the sub-endothelial space are major steps in early
atherogenesis. In response to para- and autocrine inflammatory
mediators such as tumour necrosis factor a and different interleu-
kins, invading monocytes transdifferentiate into macrophages,
proliferate, and ingest abundantly present modified LDL-cholesterol
(LDL-C). Thereby, sub-endothelial macrophages turn into foam
cells that promote plaque formation and subsequent plaque
rupture.9 Plasma cholesterol and in particular its LDL subfraction
are central players for both the initiation and progression of
atherosclerosis.10

Figure 1 Specific and unspecific sirtuin activation. Caloric restriction, exercise, and increased activity of 5′-adenosine monophosphate activated
protein kinase drive mitochondrial metabolism and expression of nicotinamide phosphoribosyltransferase. Consecutive synthesis of nicotinamide
adenine diphosphate activates sirtuins. Another route of sirtuin activation is increased nicotinamide adenine diphosphate biosynthesis via supple-
mentation of nicotinamide adenine diphosphate precursors such as nicotinic acid, nicotinamide, nicotinamide mononucleotide, and nicotinamide
riboside or through inhibition of nicotinamide adenine dinucleotide-consuming activities, such as poly-adenosine diphosphate-ribose-polymerases
or CD38. Sirt1-activating compounds may mimic the effects of Sirt1. Stimulation of Sirt1 activity by these distinct pathways improves the capacity
of the cells/organism for metabolic adaptation and/or cardiovascular protection.
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It is intriguing that many risk factors for cardiovascular disease
such as age, hypercholesterolaemia, obesity, and type 2 diabetes
are conditions in which the activation of the sirtuins has been shown
to exert protective effects in experimental models.

Sirt1 in cardiovascular disease
Sirt1 is found in the nucleus and cytoplasm (Figure 2). Among all se-
ven sirtuin isoforms, most is known about Sirt1. First evidence of a
connection between Sirt1 and endothelial cells was that Sirt1 acti-
vates endothelial nitric oxide synthase (eNOS).11 Later on, studies
in genetically engineered mouse models have demonstrated that
Sirt1 exerts atheroprotective effects by activating eNOS or by di-
minishing NFkB activity in endothelial cells and macrophages.12–14

Moreover, pharmacological Sirt1 activation protected endothelial
cells from senescence induced by disturbed flow.15 Another report
assigned Sirt1 in vascular smooth muscle cells a protective role
against DNA damage, medial degeneration, and atherosclerosis.16

These reports place macrophages, endothelial, and vascular smooth
muscle cells at centre stage for Sirt1-mediated atheroprotection.17

Sirt1 also has wide-ranging effects on metabolic homeostasis,
mainly through its role as a master regulator of mitochondrial integ-
rity.18,19 Sirt1 activation hence results in improved glucose tolerance
and lipid homeostasis and reduced inflammatory tone, which all are
also atheroprotective.1,2

Pharmacological Sirt1 inhibition has been reported to increase
thrombosis by inhibiting tissue factor activation via NFkB.20 Similarly,
cyclooxygenase-2-derived prostacyclin and PPARd activation were
found to decrease arterial thrombus formation by suppressing tissue
factor in a sirtuin-1-dependent manner.21 Thus, activation of Sirt1
protects from arterial thrombosis. In the context of atherosclerosis,
pharmacological Sirt1 activation lowered plasma LDL-C levels by
inhibiting proprotein convertase subtilisin/kexin 9 (Pcsk9) secretion,
thereby increasing hepatic LDL-receptor (LDL-R) availability and
consecutive LDL-C clearing.22 Conversely, absence of LDL-R
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Table 1 Cardiovascular and metabolic effects of sirtuins and pan-sirtuin activators; genetic and drug interventions: gain-
and loss-of-function in animals and humans

Sirtuin Model Key findings: mediators Reference

Experimental

Sirt1 Sirt1 LOF: � angiogenesis; endothelial cells Potente et al.25

Sirt1 ApoE2/2 Sirt1 EC GOF: � atherosclerosis Zhang et al.12

Sirt1 ApoE2/2 Sirt1 LOF: � atherosclerosis; foam cells; Lox1, NFkB Stein et al.13

Sirt1 ApoE2/2 Sirt1 LOF: � endothelial activation (VCAM-1), NFkB Stein et al.14

Sirt1 WT Sirt1 LOF: � thrombosis; endothelial cells, NFkB Breitenstein et al.20

Sirt1 LDLR2/2 Sirt1 GOF: � atherosclerosis; SREB in liver Qiang et al.23

Sirt1 ApoE2/2 Sirt1 GOF in VSMC: � atherosclerosis Gorenne et al.16

Sirt1 ApoE2/2 STAC (SRT3025): � atherosclerosis, PCSK9, LDLR Miranda et al.22

Sirt3 Sirt3 GOF: � LVH Sundaresan et al.39

Sirt3 ApoE2/2 Sirt3 LOF: ¼ atherosclerosis, �metabolic flexibility Winnik et al.37

Sirt3 TAC Sirt3 LOF: �LVH with fibrosis Hafner et al.40

Sirt6 Sirt6 LOF: accelerated aging—hypoglycaemia Mostoslavsky et al.60

Sirt6 LOF: � LVH;
Sirt6 GOF: � LVH

Sundaresan et al.50

Sirt6 Hep LOF: � PCSK9, plasma LDL-chol,
Sirt6 Hep GOF: � PCSK9, plasma LDL-chol

Tao et al.55

Sirt7 Sirt7 LOF: � CMP, liver steatosis, TG Ryu et al.66

Sirt7 LOF: � LVH, inflammatory CMP, fibrosis Vakhrusheva et al.97

PanSirt

NAD+ Aging NAD+ booster in old mice: restores mitochondrial function and metabolic abnormalities Gomes et al.83

NR DIO NAD+ booster in DIO: improves metabolic abnormalities Canto et al.88

NR Aging NAD+ booster in old mice: restores mitochondrial function Mouchiroud et al.84

Exercise Aging Exercise in old rats: Increases NAD+, NAMPT, Sirt1, Sirt6 Koltai et al.86

Clinical

Sirt1 Adults Sirt1 SNPs: � energy expenditure in offspring of T2D pts Lagouge et al.19

Sirt1 ACS Monocytes in ACS pts: � Sirt1 expression than in healthy Breitenstein et al.70

Sirt1 Adults Carotid atherosclerosis: � Sirt1 expression Gorenne et al.16

Sirt1 Adults Smokers: STAC (SRT2104): � endothelial dysfct, LDL-C Venkatasubramanian et al.82

Sirt6 Adults Failing hearts: � Sirt6 expression Sundaresan et al.50

Experimental and human data showing cardiovascular effects of sirtuin modulation; LOF, loss-of-function; GOF, gain-of-function; DIO, diet-induced obesity; SRT3025, SRT2104:
STAC, Sirt1-activating compound; CMP, cardiomyopathy; LVH, left ventricular hypertrophy; ACS, acute coronary syndromes; NAD+, nicotinamide adenine dinucleotide; NAMPT,
nicotinamide phosphoribosyltransferase; NR, nicotinamide riboside; T2D, type 2 diabetes; pts, patients.
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abolished the atheroprotective effects of pharmacological Sirt1 acti-
vation.22 These experiments explained the controversial finding that
genetic Sirt1 overexpression increased atherosclerosis in LDL-R
knockout mice.23 Moreover, Sirt1 was reported to promote angio-
genesis via inhibition of endothelial notch signaling.24,25

Sirt1 also provides cardiac protection: Sirt1-deficient mice exhibit
increased injury in response to ischaemia-reperfusion, whereas injury
was decreased in Sirt1 transgenic mice.26 Moreover, Sirt1 was shown
to protect from catecholamine-induced cardiomyopathy in mice.27

Sirt3 in cardiovascular disease
Together with Sirt4 and Sirt5, Sirt3 is located in the mitochondria
(Figure 3). Sirt3 regulates global mitochondrial lysine acetylation,28

boosting antioxidant defense, and preserving mitochondrial func-
tion.29– 32 Mitochondrial dysfunction plays a central role in a number
of cardiovascular diseases, ranging from hypertrophic and dilated
cardiomyopathy, heart failure, and pulmonary hypertension to
endothelial dysfunction in early atherogenesis.33– 35

The protective effects of caloric restriction on oxidative stress
depend on the presence of Sirt3, which increased the ratio of gluta-
thione to glutathione disulphide.36 Similarly, deletion of Sirt3 was as-
sociated with increased malondialdehyde levels in LDL-R knockout
mice, yet without affecting atherogenesis.37 Concordantly, overex-
pression of Sirt3 decreased cellular levels of reactive oxygen species
(ROS), an effect that was brought about by Sirt3-mediated deacety-
lation and activation of superoxide dismutase 2 (SOD2), the

Figure 2 Cardiovascular effects of Sirt1. Within the nucleus Sirt1 interacts with diverse transcription factors, inhibiting NFkB signalling, and
consecutive pro-inflammatory cytokine expression, e.g. vascular cell adhesion molecule 1 as well as expression of the reverse cholesterol trans-
porter LXR. Moreover, Sirt1 reduces plasma Pcsk9 levels, thereby increasing hepatic low-density lipoprotein-cholesterol receptor density and
thus decreasing plasma low-density lipoprotein-cholesterol levels. Along with activation of endothelial nitric oxide synthase, these effects improve
endothelial dysfunction and decrease atherosclerosis. In addition, Sirt1 deacetylates NFkB and inhibits tissue factor activity and thereby slows
arterial thrombus formation. Sirt1-mediated tissue factor inhibition may further follow activation of peroxisome proliferator-activated receptor
delta and Cox2-derived prostaglandin synthesis.
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mitochondrial isoform of this group of major ROS detoxifying en-
zymes.36,38 Importantly, excessive ROS, subsequent mitochondrial
DNA damage, and progressive respiratory chain dysfunction acti-
vate several signalling pathways underlying endothelial dysfunction
and vascular inflammation in atherogenesis.33 Sirt3-dependent tran-
scriptional induction of SOD2 and catalase was shown to prevent
cardiac hypertrophy by deacetylation of the transcription factor
forkhead box O3a (Foxo3a).39 Moreover, Sirt3-deficient mice
were more susceptible to age-dependent and trans aortic
constriction-induced left ventricular hypertrophy via activation of
the mitochondrial permeability transition pore.40 Sirt3 was also re-
ported to prevent stress-induced mitochondrial apoptosis of mam-
malian cardiomyocytes and to protect endothelial mitochondria
from oxidative damage.31,41

Interestingly, Sirt3 knockout mice develop spontaneous pulmon-
ary hypertension.42 Moreover, mitochondria isolated from pulmon-
ary artery smooth muscle cells of Sirt3-deficient mice displayed
a reduced oxygen consumption rate compared with controls.
Concordantly, Sirt3 deficiency in both murine and human pulmon-
ary artery smooth muscle cells was associated with an induction of
the three transcription factors HIF1a, STAT3, and NFATc2, all

known to be essential in the development of pulmonary arterial
hypertension.42

Sirt3 has been shown to orchestrate mitochondrial metabolism
by driving not only oxidative phosphorylation29,43,44 but also the
tricarboxylic acid cycle,32 and b-oxidation.45 In this context, Sirt3
deficiency accelerated the development of the metabolic syndrome
in mice, a cluster of risk factors for cardiovascular diseases.37,46

Sirt6 in cardiovascular disease
Sirt6 is a nuclear chromatin-associated deacylase (Figure 4). Recent
reports provided mechanistic insight on the ADP-ribosyltransferase
substrate-specific deacylase activity of both acetyl and long-chain
fatty-acyl groups.47 Sirt6 plays a role in cardiovascular disease
including cardiac hypertrophy, heart failure, myocardial hypoxic dam-
age, and metabolism.48–50 Sirt6 has gained attention for its role in hu-
man telomere and genome stabilization,51 gene expression and DNA
repair,52 glucose and fat homeostasis,53–55 and inflammation.56,57

Sirt6 contributes to chromosomal stability by promoting double-
strand break repair by homologous recombination (HR).58 DNA
double-strand breaks are a hallmark of genomic instability in aging
tissues. Notably, overexpression of Sirt6 in pre-senescent cells

Figure 3 Cardiovascular effects of Sirt3. Mitochondrial Sirt3 drives the tricarboxylic acid cycle,b-oxidation, and oxidative phosphorylation, thus
maintaining metabolic homeostasis and preventing the development of risk factors associated with the metabolic syndrome. Deacetylation and
consecutive activation of superoxide dismutase 2 mediates antioxidative protection, diminishes cardiac hypertrophy, and may improve endothelial
dysfunction. Activation of the transcription factors NFATc2, STAT3, and HIF1a prevent the development of pulmonary hypertension.
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stimulated HR.58 This support in HR can be partially attributed to
a physical interaction and consecutive stimulation of Sirt6 with
poly[ADP ribose] polymerase 1, thereby preventing the premature
aging phenotype of Sirt6 knockout mice.59,60 Concomitantly, male
Sirt6 transgenic mice revealed an increased life span compared
with wild-type controls.54 Interestingly, the heart is among the organs
with the highest Sirt6 expression, suggesting a role for Sirt6-
mediated protection from myocardial senescence.61

Indeed, Sirt6 was identified as a negative endogenous regulator
of myocardial IGF-Akt signaling, a pathway that upon constitutive
activation eventually leads to cardiac hypertrophy. Sirt6 deficiency en-
hanced H3K9 acetylation, facilitating binding of the stress-responsive
transcription factor c-Jun. Subsequent boosting of myocardial IGF
signalling resulted in cardiac hypertrophy and heart failure.50 Along
this line, nicotinamide mononucleotide adenylyltransferase, a vital
enzyme in NAD biogenesis, prevented angiotensin II-induced cardiac

hypertrophy.48 Moreover, cardiomyocytes from Sirt6 transgenic mice
were protected from prolonged hypoxia ex vivo, an effect that was in
part attributed to increased Sirt6-mediated deacetylation and inacti-
vation of RelA (p65), a subunit of NFkB.49

By the transcriptional repression of NFkB-dependent targets,
Sirt6 plays an important role in stress response, thereby protecting
against inflammatory and degenerative diseases.56,57 Importantly,
this interaction with NFkB-signalling may contribute to premature
senescence and early lethality upon Sirt6 deficiency.62,63 Vascular
inflammation is a key regulatory process in atherogenesis.64 Thus,
Sirt6 deficiency in cultured endothelial cells increased expression
of pro-inflammatory cytokines such as interleukin 1b along with
an increased transcriptional activity of NFkB.65 Intriguingly, hepatic
Sirt6 was also shown to suppress transcription of Pcsk9, thereby
preventing hepatic LDL-R degradation and consecutively reducing
plasma LDL-C levels in mice.55 Increased levels of LDL-C in concert

Figure 4 Cardiovascular effects of Sirt6. Nuclear Sirt6-induced inhibition of insulin-like growth factor signalling prevents cardiac hypertrophy.
Moreover, sirtuin 6-mediated reduction of plasma Pcsk9 levels increases hepatic low-density lipoprotein-receptor density and decreases plasma
low-density lipoprotein-cholesterol levels. Poly[adenosine diphosphate-ribose] polymerase 1 activation halts reactive oxygen species-mediated
DNA damage. Moreover, physical interaction of Sirt6 with the NFkB subunits RelA and p65 prevents their translocation to the nucleus and inhibits
pro-inflammatory NFkB-signalling, thereby potentially protecting from endothelial dysfunction.
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with enhanced pro-inflammatory cytokines trigger endothelial
activation and launch the vicious immunometabolic cycle of
atherogenesis.

Sirt7 in cardiovascular disease
Data from two different laboratories, using two independently gen-
erated mouse lines have also linked Sirt7 with cardiomyopathy, the
main cause of death of Sirt7-deficient mice (Figure 5).66,67 In fact,
Sirt7 deficiency in mice induces multi-systemic mitochondrial dys-
function, which is reflected by increased blood lactate levels, re-
duced exercise performance due to cardiac dysfunction, hepatic
micro-vesicular steatosis, and age-related hearing loss.66,68 This
link between Sirt7 and mitochondrial function can be translated
to humans, where Sirt7 overexpression rescues the mitochondrial
functional defect in fibroblasts of patients with a mutation in
NADH dehydrogenase [ubiquinone] iron-sulphur protein 1. These
wide-ranging effects of Sirt7 on mitochondrial homeostasis are the
consequence of the deacetylation of distinct lysine residues located
in the hetero- and homodimerization domains of GA-binding

protein (GABP)b1, a master regulator of nuclear-encoded mito-
chondrial genes. Sirt7-mediated deacetylation of GABPb1 facilitates
complex formation with GABPa and the transcriptional activation
of the GABPa/GABPb heterotetramer. These data suggest that
Sirt7 is a dynamic nuclear regulator of mitochondrial function
through its impact on GABPb1. The role of Sirt7 in endothelial func-
tion and atherothrombosis remains unknown.

Sirtuins: a role in human
cardiovascular disease
Data on sirtuins in human cardiovascular diseases are scarce. Of
note, reports about associations have to be differentiated from find-
ings related to potential causal effects.

Most studies report lower sirtuin expression levels in contexts of
cardiovascular disease compared with healthy controls. However,
none of them tracked specific sirtuin activity. First, data were de-
rived from patients with insulin resistance: Low Sirt1 expression in
insulin-sensitive tissues correlated with impaired stimulation of

Figure 5 Cardiovascular effects of Sirt7. Nuclear Sirt7 deacetylates distinct lysine residues located in the hetero- and homodimerization do-
mains of GA-binding protein (GABP)b1, a master regulator of nuclear-encoded mitochondrial genes. Along these lines, Sirt7 improves mitochon-
drial function in numerous tissues including cardiac and skeletal muscle where it protects from cardiomyopathy, lowers lactate levels, and improves
exercise performance, respectively. Moreover, Sirt7 protects from hepatic micro-vesicular steatosis.
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energy expenditure by insulin. Thus, these findings associated im-
paired regulation of mitochondrial function with insulin resistance
in humans.69 Additional reports came from patients with athero-
thrombosis: Sirt1 expression levels were found to be lower in hu-
man atherosclerotic carotid arteries compared with non-diseased
arteries.16 Sirt1 expression levels were also lower in monocytes
of patients with acute coronary syndromes compared with healthy
controls.70 In parallel, Sirt6 expression and inflammatory activity in
diabetic atherosclerotic plaques increased upon incretin treatment
and was associated with a more stable plaque phenotype.71

In contrast to associative reports, genetic studies imply a more
stringent cause–effect relationship. A report in Finnish subjects
demonstrated a direct involvement of Sirt1 in modulating energy
expenditure and metabolic homeostasis: Three of five single-
nucleotide polymorphisms (SNPs) were significantly associated
with whole body energy expenditure as evaluated either during fast-
ing or during a hyperinsulinemic clamp.19 Another study showed
that a point mutation of Sirt1 was associated with human type 1 dia-
betes and ulcerative colitis; expression of this mutation in insulin-
producing cells resulted in overproduction of nitric oxide and
pro-inflammatory cytokines.72 Yet, no association was observed
between five known SNPs of the Sirt1 gene with longevity using
an extensive DNA data bank of 1573 long-lived individuals with
matched younger controls.73 Of note, many other studies reporting
SNPs confer limitations such as low patient numbers or insufficient
adjustments in control groups.

Moreover, Sirt3 deficiency was associated with pulmonary arter-
ial hypertension and the metabolic syndrome both in mice and hu-
mans.42,46 Sirt6 levels were decreased in human failing hearts50; in
addition, genetic variants of Sirt6 and uncoupling protein 5 were as-
sociated with carotid atherosclerotic plaque burden.74 To date,
there are no reports about genetic variants of Sirt7 and human
disease.

Pharmacological modulation
of sirtuin activity
Two reports that resveratrol protected mice against diet-induced
obesity and insulin resistance with Sirt1 as a crucial mediator created
considerable attention.18,19 These effects of resveratrol supplemen-
tation, mimicking caloric restriction, could later on be translated
into humans.75 Subsequently, more specific Sirt1-activating
compounds (STACs) applied in experimental diet-induced obesity
mimicked the protective effects of caloric restriction, showing mito-
chondrial activation, and subsequent prevention of obesity along
with an improvement of the diabetic phenotype.76,77 Moreover,
STAC improved survival and healthspan in obese mice.78

However, the specificity of these initial STAC was called into
question: A non-physiological fluorescent substrate that was used
for the Sirt1 activity assays was shown to lead to artefactual
results.79 Nevertheless, the substrate specificity of STAC was con-
secutively underlined: Mutation of a single amino acid in Sirt1, Glu230

located in a structured N-terminal domain was critical for Sirt1
activation.80 Given the conservation of Glu230 down to model
organisms (drosophila), the presence of an endogenous activator
appears logical, which however remains to be proven. Furthermore,

the most recent pharmacological STAC have been used with bene-
ficial effects in mice for atheroprotection and extension of life-
span,22,81 as well as in healthy smokers for improving endothelial
dysfunction and lowering LDL-C.82

While Sirt1-specific activators may ultimately prove opera-
tive,22,80 there is increasing evidence that pan-sirtuin activators
might be more effective.83– 85 The metabolite NAD+ is an essential
co-substrate for the activity of all sirtuins. Its levels decline in
response to high-fat diet, DNA damage, and aging.84 Reports on
sirtuin-dependent beneficial effects of increasing NAD+ levels on
metabolic homeostasis suggest that this strategy provides a novel
and promising concept for cardiovascular protection.

NAD+ levels are maintained by balancing its biosynthesis/
salvage and breakdown (Figure 1). NAD+ content can be boosted
by exercise,4,86 inhibition of NAD+-consuming enzymes [sirtuins,
poly-ADP-ribose-polymerases (PARPs),87 and cyclic ADP-ribose
synthases], and administration of NAD+ precursors, such as nicotinic
acid, nicotinamide, nicotinamide mononucleotide,83 and nicotinamide
riboside.84,88 NAD+ precursor compounds as well as PARP and
CD38 inhibitors have been used in several long-term mouse studies
confirming wide-ranging health benefits on the metabolic, immune,
and nervous systems.89 Raising NAD+ levels may improve cardiac
function in the context of ischaemia-reperfusion,90 but may be dam-
aging in the setting of acute myocardial infarction.91 Thus, the net
effects of increasing NAD+ levels are likely to be dose- and time-de-
pendent; such a biphasic response is well known from nitric oxide.
The effects of raising NAD+ levels long term in the context of chronic
cardiovascular disease are likely to be beneficial. Yet, this has to be
formally tested.

Sirtuins in cardiovascular diseases:
conclusions and perspectives
The beneficial effects of sirtuins on inflammation, lipid metabolism,
and numerous areas of cardiovascular disease are well documented
at the pre-clinical level. The prognostic value of deranged pathways
of inflammation and lipids for human cardiovascular disease is estab-
lished.92,93 Multi-omics approaches will enlarge our instrumentar-
ium of diagnostic and prognostic biomarkers in cardiovascular
diseases.94 Moreover, large databases for linking genotypes to
cardiovascular phenotypes and prognosis are available.95 Yet, the
tracking of specific sirtuin activity remains a challenge.96 Some
genetic reports imply a cause–effect relationship of Sirt1 SNPs
with metabolic homeostasis. Yet, conclusive genetic analyses from
large databases (GWAS) about the role of Sirt1 SNPs are still pend-
ing. At the experimental level, both specific Sirt1 activators and
pan-sirtuin-activating compounds are in development and hold
great promise for future applications in treating and preventing
cardiovascular and metabolic diseases.
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