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ABSTRACT

Background: The ascertainment process of molecular markers
amounts to disregard loci carrying alleles with low frequencies.
This can result in strong biases in inferences under population
genetics models if not properly taken into account by the inference
algorithm. Attempting to model this censoring process in view of
making inference of population structure (i.e. identifying clusters of
individuals) brings up challenging numerical difficulties.
Method: These difficulties are related to the presence of intractable
normalizing constants in Metropolis–Hastings acceptance ratios.
This can be solved via an Markov chain Monte Carlo (MCMC)
algorithm known as single variable exchange algorithm (SVEA).
Result: We show how this general solution can be implemented
for a class of clustering models of broad interest in population
genetics that includes the models underlying the computer programs
Structure, Geneland and Geste. We also implement the method
proposed for a simple example and show that it allows us to reduce
the bias substantially.
Availability: Further details and a computer program implementing
the method are available from http://folk.uio.no/gillesg/AscB/
Contact: gilles.guillot@bio.uio.no

1 BACKGROUND
The ascertainment process of molecular markers is most of the time
performed on a discovery panel of limited size. As a result, some
polymorphic loci do not display any variability on this particular
panel and are hence disregarded in any subsequent data analysis.
Inferences carried out on such censored subset of loci are therefore
subject to a bias known as ascertainment bias. Its qualitative
effect and magnitude depend on the ascertainment strategy and
on the particular model considered, (Clark et al., 2005; Nielsen
and Signorovitch, 2003; Rosenblum and Novembre, 2007; Wakeley
et al., 2001). To avoid this bias, it is necessary to inject information
in the inference algorithm about the way data have been censored.
This amounts to specifying a model of the ascertainment process.

In the case of Bayesian clustering models of population structure,
there is a rather natural choice for the prior and the likelihood for the
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non-censored data. Working on censored data can be accounted for
by working with an appropriately modified prior and likelihood.
In order to make the presentation more explicit, we base our
presentation on the multinomial-Dirichlet model with correlated
allele frequencies first introduced by Balding and Nichols (1995)
and reworked by Falush et al. (2003) and Guillot (2008) among
others. This model is a good working example since (i) its generality
makes it a versatile model in population genetics, (ii) it has been
recently shown to be highly sensitive to the ascertainment bias (Foll
et al., 2008), (iii) earlier solutions proposed suffered from a bias
(Holsinger et al., 2002; Nicholson et al., 2002), (iv) the problems
encountered and the solution proposed here are common to the
models underlying the programs Structure (Falush et al., 2003),
Geneland (Guillot et al., 2005) and Geste (Foll and Gaggiotti,
2006). Note that the ascertainment bias is currently not taken into
account in these programs, although they are increasingly used with
markers especially prone to it, such as SNPs and AFLPs.

2 DIFFICULTIES WITH MCMC ALGORITHMS
ACCOUNTING FOR ASCERTAINMENT BIAS

The multinomial-Dirichlet model arises in a wide range of
demographic models, in particular the infinite-island model (Wright,
1943). In this model, each individual has a known population of
origin, and populations exchange genes with a unique and common
migrant pool, see Balding (2003) for assumptions and derivations.
Each population k receives migrants from the pool at a rate λk .
Under these assumptions, allele frequencies p̃k at each locus follow
a Dirichlet distribution with parameters pλk , p representing the allele
frequencies in the migrant gene pool. The coefficient FST k , defined
as 1/λk −1, measures how divergent each local population k is from
the metapopulation as a whole. We treat p as unknown and place on
it a Dirichlet prior with on top of the hierarchical model a single
scalar parameter a.

Assuming a data set n consisting of genotypes at L loci of
individuals belonging to K groups, the likelihood is multinomial.
Non-zero inbreeding coefficients FIS in the various populations
is accounted for at the likelihood level through an extra set of
parameters. See Section A of Supplementary Material for details.
In practice, population memberships of individuals might be known
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or part of the unknown quantities to infer. This task brings up
no additional difficulty and we assume hereafter that population
memberships of individuals are known.

For easier notation, we write φ= (a,FST ,FIS) and ψ= (p,p̃).
We denote the prior distributions for φ and ψ , and the likelihood
for the observed data n in the non-censored case, respectively, by
f (φ), g(ψ |φ) and h(n|φ,ψ). Since the Bayesian model is defined
in terms of a joint prior probability distribution and a likelihood
which are known quantities, they do not bring up any particular
difficulty in view of MCMC inference in the non-censored case.
Still assuming that the biological/measurement process governing
parameters and data has a joint distribution given by π (φ,ψ,n)=
f (φ)g(ψ |φ)h(n|φ,ψ) in the non-censored case, but assuming now
that n is a dataset arising after censoring, then, the joint distribution
of (φ,ψ,n) is given by

πc(φ,ψ,n)= f (φ)g(ψ |φ)h(n|φ,ψ)In∈A/Kφ (1)

where In∈A is the indicator function corresponding to the
censoring and Kφ=∫

g(ψ |φ)h(n|φ,ψ)In∈Adψdn. See Section B.1
of Supplementary Material for a justification.

The posterior distribution πc(φ,ψ |n) being proportional to
πc(φ,ψ,n), it involves the unknown normalizing factor Kφ . Let
us assume that one wants to make a move from (φ,ψ) to (φ∗,ψ∗)
in a Metropolis–Hastings (MH) scheme with proposal distribution
q((φ∗,ψ∗)|(φ,ψ)). The MH ratio is

R(φ,ψ),(φ∗,ψ∗) = h(n|φ∗,ψ∗)

h(n|φ,ψ)

Kφ
Kφ∗

f (φ∗)

f (φ)

g(ψ∗|φ∗)

g(ψ |φ)

× q((φ,ψ)|(φ∗,ψ∗))

q((φ∗,ψ∗)|(φ,ψ))
(2)

The ratio Kφ/Kφ∗ consists of two unknown terms, this thwarts
the implementation of the standard MH algorithm.

3 SOLUTION
The cause of difficulties is clear: accounting for the ascertainment
process (censoring of the dataset) in a hierarchical model brings
up an unknown normalizing constant. This does not allow us to
implement standard versions of the MH algorithm. This constant
shows up because the model mixes parameters that are locus specific
(allele frequencies p̃ and p) and parameters that are not ( FIS and
FST ) with complex relations of conditional dependences. The same
unknown normalizing constant (and issue) would therefore show up
in all population genetics clustering models based on the correlated
allele frequency model.

For a problem originating from Spatial Statistics, Møller et al.
(2006) proposed an auxiliary variable method to perform MCMC
simulations when the likelihood in the target distribution involves
a ratio of unknown normalizing constants. This algorithm has been
reworked and simplified subsequently by Murray et al. (2006). Both
algorithms can be adapted to the present context. See also Beaumont
(2003) and Andrieu and Robert (2009) for related approaches. For
the sake of conciseness, we present only the single variable exchange
algorithm (SVEA) due to Murray et al. (2006).

A general MCMC algorithm attempts to make moves from the
current state (φ,ψ) to a new state (φ∗,ψ∗). A natural strategy
consists in alternating block updates from (φ,ψ) to (φ,ψ∗) then
from (φ,ψ) to (φ∗,ψ). The moves of first type do not bring any

Table 1. Steps in SVEA updates of φ

(a) Propose φ∗ from an arbitrary proposal distribution q(φ∗|φ).
(b) Propose (ν,m) from distribution g(ν|φ)h(m|φ,ν)Im∈A/Kφ.
(c) Accept φ∗ with probability min(1,R′)

with R′ = h(n|φ∗,ψ)
h(n|φ,ψ)

f (φ∗)
f (φ)

g(ψ |φ∗)
g(ψ |φ)

g(ν|φ)
g(ν|φ∗)

h(m|ν,φ)
h(m|ν,φ∗)

q(φ|φ∗)
q(φ∗|φ) .

difficulty as the ratio of unknown terms vanishes. We therefore focus
on moves from (φ,ψ) to (φ∗,ψ). For a proposal q(φ∗|φ), the MH
ratio is:

Rψ,ψ∗ = h(n|φ∗,ψ)

h(n|φ,ψ)

f (φ∗)

f (φ)

g(ψ |φ∗)

g(ψ |φ)

Kφ
Kφ∗

q(φ|φ∗)

q(φ∗|φ)
(3)

The implementation of the SVEA adapted to the multinomial-
Dirichlet model with correlated allele frequencies consists in
substituting an importance sampling estimate of Kφ/Kφ∗ with
its unknown value in Rψ,ψ∗ in a way that preserves the
invariant distribution. In the present case, this estimate of Kφ/Kφ∗
is g(ν|φ)h(m|φ,ν)/g(ν|φ∗)h(m|φ∗,ν) where (ν,m) is a pair of
auxiliary variables sampled jointly from the distribution of (ψ,n|φ∗)
under censoring. In particular, ν is sampled over the same space asψ
and m over the same space as n. Intuitively, the integration constant
involves enumerating the space for which In∈A is 1, then the MCMC
needs to sample from this, and that is essentially what is happening
with ν and m. See Section C of Supplementary material for details.

The SVEA update of φ in an MCMC algorithm consists in the
steps given in Table 1.

4 RESULTS IN A TOY EXAMPLE
We have implemented the algorithm proposed for a simplified
version of the model described above. We simulated genotypes at
L=20 bi-allelic loci for N =60(30+30) individuals belonging to
K =2 populations at Hardy–Weinberg equilibrium (FIS =0). We
assumed a Beta(2,20) distribution for FST and a Beta(1/2,1/2)
distribution for the frequencies p in the ancestral population. Each
dataset was simulated so as to mimic an ascertainment strategy
where all loci with minor allele frequency lower than 5% were
discarded. We simulated independently 1000 such datasets. For each
dataset, we carried out inference for (FST ,p,p̃) with a standard
MH algorithm based on the uncorrected prior-likelihood model
π . Then we carried out inference with the prior-likelihood model
accounting for censoring (namely πc), which is made possible
through a combination of MH and SVEA type steps.

Inferences of FST s by the MH algorithm that does not account
for ascertainment bias are subject to a bias that amount to 10% of
the average value of FST . With the inference method proposed, this
bias drops down to 2%.

5 DISCUSSION
The message of this note is twofold: accounting for the ascertainment
bias in MCMC inferences of population structure brings up
numerical difficulties and these difficulties can be bypassed by
suitable adaptation of recent methods in computational statistics.

We have tried to keep the description of the problem at a
general level so that the idea can be adapted to other contexts, in
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particular to more complex ascertainment strategies. For example,
our algorithm requires to be able to draw random samples from an
auxiliary variables whose distribution depends on the ascertainment
strategy. This may be challenging in case of complex ascertainment
strategies (e.g. SNPs discovered in sister species). If simulating data
according to the ascertainment strategy is not possible, a recent
extension proposed by Atchade et al. (2008) can be used. With
this approach, it is not necessary to be able to draw samples from
the exact distribution under the ascertainment strategy. However,
having a statistical model of the ascertainment strategy remains
a requirement. Therefore, it is still problematic to account for the
ascertainment bias if poor records were kept of the strategies of
discovery and we insist on the need to keep an accurate record of
the various strategies used.

To conclude, let us recall again that (i) accounting for
ascertainment bias in MCMC inferences would bring-up the
difficulty described here for all hierarchical Bayesian models based
on the correlated allele frequencies model, and presumably many
other kinds of models, (ii) all steps involved in our solution are
straightforward as long as the prior distributions and the likelihood
are known in the non-censored case, (iii) the proposed algorithm
is general and allows one to make MCMC inferences that account
for the ascertainment bias in a wide class of population genetics
models that include the models underlying the softwares Structure,
Geneland and Geste.
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