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ABSTRACT
A large fraction of the smallest transiting planet candidates discovered by the Kepler and
CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using
currently available observing facilities. To establish their planetary nature, the concept of
planet validation has been advanced. This technique compares the probability of the planetary
hypothesis against that of all reasonably conceivable alternative false positive (FP) hypotheses.
The candidate is considered as validated if the posterior probability of the planetary hypothesis
is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we
present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed
to perform a rigorous model comparison of the hypotheses involved in the problem of planet
validation, and to fully exploit the information available in the candidate light curves. PASTIS

self-consistently models the transit light curves and follow-up observations. Its object-oriented
structure offers a large flexibility for defining the scenarios to be compared. The performance is
explored using artificial transit light curves of planets and FPs with a realistic error distribution
obtained from a Kepler light curve. We find that data support the correct hypothesis strongly
only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case)
and remain inconclusive otherwise. PLAnetary Transits and Oscillations of stars (PLATO)
shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of
the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on
hypotheses priors is needed.

Key words: methods: statistical – techniques: photometric – techniques: radial velocities –
planetary systems.

1 IN T RO D U C T I O N

Transiting extrasolar planets have provided a wealth of information
about planetary interiors and atmospheres, planetary formation and
orbital evolution. The most successful method to find them has
proven to be the wide-field surveys carried out from the ground
(e.g. Bakos et al. 2004; Pollacco et al. 2006) and from space-based
observatories like CoRoT (Auvergne et al. 2009) and Kepler (Koch
et al. 2010). These surveys monitor thousands of stars in search for
periodic small dips in the stellar fluxes that could be produced by
the passage of a planet in front of the disc of its star. The detailed
strategy varies from survey to survey, but in general, since a large
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number of stars have to be observed to overcome the low probability
of observing well-aligned planetary systems, these surveys target
stars that are typically fainter than 10th magnitude.

The direct outcome of transiting planet surveys is thousands of
transit light curves with depth, duration and shape compatible with
a planetary transit (e.g. Batalha et al. 2013). However, only a frac-
tion of these are produced by actual transiting planets. Indeed, a
planetary transit light curve can be reproduced to a high level of
similarity by a number of stellar systems involving binary or triple
stellar systems. From isolated low-mass-ratio binary systems to
complex hierarchical triple systems, these ‘false positives’ (FPs)
are able to reproduce not only the transit light curve, but also, in
some instances, even the radial velocity (RV) curve of a planetary-
mass object (e.g. Mandushev et al. 2005).

RV observations have been traditionally used to establish the
planetary nature of the transiting object by a direct measurement of
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its mass.1 A series of diagnostics such as the study of the bisector
velocity span (Queloz et al. 2001), or the comparison of the RV
signatures obtained using different correlation masks (Bouchy et al.
2009; Dı́az et al. 2012) are used to guarantee that the observed
RV signal is not produced by an intricate blended stellar system.
In addition, these observations allow measuring the eccentricity of
the planetary orbit, a key parameter for constraining formation and
evolution models (e.g. Ida, Lin & Nagasawa 2013).

Most of the transiting extrasolar planets known to date have been
confirmed by means of RV measurements. However, this technique
has its limitations: the RV signature of the smallest transiting com-
panions is beyond the reach of the existing instrumentation. This
is particularly true for candidates detected by CoRoT or Kepler,
whose photometric precision and practically uninterrupted obser-
vations have permitted the detection of objects of size comparable
to the Earth and in longer periods than those accessible from the
ground.2 Together with the faintness of the typical target of tran-
siting surveys, these facts produce a delicate situation, in which
transiting planets are detected, but cannot be confirmed by means
of RV measurements. RV measurements are nevertheless still useful
in these cases to discard undiluted binary systems posing as giant
planets (e.g. Santerne et al. 2012).

Confirmation techniques other than RV measurements can some-
times be used. In multiple transiting systems, the variation in the
timing of transits due to the mutual gravitational influence of the
planets can be used to measure their masses (for some successful ex-
amples of the application of this technique, see Holman et al. 2010a;
Lissauer et al. 2011; Fabrycky et al. 2012; Ford et al. 2012; Steffen
et al. 2012). Although greatly successful, only planets in multiple
systems can be confirmed this way and only mutually resonant or-
bits produce large enough timing variations (e.g. Agol et al. 2005).
Additionally, the obtained constraints on the mass of the transiting
objects are usually weak. A more generally applicable technique
is ‘planet validation’. The basic idea behind this technique is that
a planetary candidate can be established as a bona fide planet if
the Bayesian posterior probability (i.e. after taking into account the
available data) of this hypothesis is significantly higher than that
of all conceivable FP scenarios (for an exhaustive list of possible
FPs see Santerne et al. 2013). Planet validation is coming of age in
the era of the Kepler space mission, which delivered thousands of
small-size candidates whose confirmation by ‘classical’ means is
unfeasible.

In this paper, we present the Planet Analysis and Small Tran-
sit Investigation Software (PASTIS), a software package to validate
transiting planet candidates rigorously and efficiently. This is the
first paper of a series. We describe here the general framework of
PASTIS, the modelling of planetary and FPs scenarios, and test its
performances using synthetic data. Upcoming papers will present
in detail the modelling and contribution of the RV data (Santerne
et al., in preparation), and the study of real transiting planet can-
didates (Almenara et al., in preparation). The rest of the paper is
organized as follows. In Section 2 we describe in some detail the
technique of planet validation, present previous approaches to this

1 As far as the mass of the host star can be estimated, the actual mass
of a transiting object can be measured without the inclination degeneracy
inherent to RV measurements, since the light curve provides a measurement
of the orbital inclination.
2 The detection efficiency of ground-based surveys quickly falls for orbital
periods longer than around 5 d (e.g. Charbonneau 2006; von Braun, Kane &
Ciardi 2009).

problem and the main characteristics of PASTIS. In Section 3 we
introduce the Bayesian framework in which this work is inscribed
and the method employed to estimate the Bayes factor. In Section 4
we present the details of the Markov chain Monte Carlo (MCMC)
algorithm used to obtain samples from the posterior distribution.
In Section 5 we briefly describe the computation of the hypotheses
priors. In Section 6 we describe the models of the blended stellar
systems and planetary objects. We apply our technique to synthetic
signals to test its performance and limitations in Section 7, we dis-
cuss the results in Section 8, and we finally draw our conclusions
and outline future work in Section 9.

2 PL A N E T VA L I DAT I O N A N D PAS TI S

The technique of statistical planet validation permits overcoming
the impossibility of confirming transiting candidates by a dynamical
measurement of their mass. A transiting candidate is validated if the
probability of it being an actual transiting planet is much larger than
that of being a FP. To compute these probabilities, the likelihood of
the available data given each of the competing hypothesis is needed.
Torres et al. (2005) constructed the first model light curves of FPs
to constrain the parameters of OGLE-TR-33, a blended eclipsing
binary (EB) posing as a planetary candidate that was identified as
a FP by means of the changes in the bisector of the spectral line
profile. The first models of RV variations and bisector span curves
of blended stellar systems were introduced by Santos et al. (2002).

In some cases, due in part to the large number of parameters
as well as to their great flexibility, the FP hypothesis cannot be
rejected based on the data alone. In this situation, since the planetary
hypothesis cannot be rejected either – otherwise the candidate would
not be considered further – some sort of evaluation of the relative
merits of the hypotheses has to be performed, if one of them is
to be declared ‘more probable’ than the other. The concept of the
probability of a hypothesis – expressed in the form of a logical
proposition – being completely absent in the frequentist statistical
approach, this comparison can only be performed through Bayesian
statistics.

The BLENDER procedure (Torres et al. 2005, 2011) is the main
tool employed by the Kepler team, and it has proven very successful
in validating some of the smallest Kepler planet candidates (e.g.
Fressin et al. 2011, 2012; Torres et al. 2011; Borucki et al. 2012,
2013; Barclay et al. 2013). The technique employed by BLENDER
is to discard regions of the parameter space of FPs by carefully
considering the Kepler light curve. Additional observations (either
from the preparatory phase of the mission, such as stellar colours,
or from follow-up campaigns, like high angular resolution imaging)
are also employed to further limit the possible FP scenarios. This is
done a posteriori, and independently of the transit light-curve fitting
procedure. One of the main issues of the BLENDER tool is its high
computing time (Fressin et al. 2011), which limits the number of
parameters of the FPs models that can be explored, as well as the
number of candidates that can be studied.

Morton (2012, hereafter M12) presented a validation procedure
with improved computational efficiency with respect to BLENDER.
This is accomplished by simulating populations of FPs (based on
prior knowledge on Galactic populations, multiple stellar system
properties, etc.), and computing the model light curve only for those
‘instances’ of the population that are compatible with all comple-
mentary observations. Additionally, the author uses a simple non-
physical model for the transit light curve (a trapezoid) independently
of the model being analysed. This is equivalent to reducing the infor-
mation on the light curve to three parameters: depth, total duration,
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and the duration of the ingress and egress phases. Although these
two features permit an efficient evaluation of the FP probability of
transiting candidates, neglecting the differences between the light
curve models of competing hypotheses undermines the validation
capabilities of the method in the cases where the light curve alone
clearly favours one hypothesis over the other. Although these are,
for the moment, the minority of cases (Section 8.1), future space
missions such as the PLAnetary Transits and Oscillations of stars
(PLATO) mission will certainly change the landscape.

The approach taken in PASTIS is to obtain the Bayesian odds ratio
between the planet and all FP hypotheses, which contains all the
information the data provide, as well as all the available prior infor-
mation. This is the rigorous way to compare competing hypotheses.
The process includes modelling the available data for the candidate
system, defining the priors of the model parameters, sampling from
the posterior parameter distribution, and computing the Bayesian
evidence of the models. The sampling from the posterior is done
using a MCMC algorithm. The global likelihood or evidence of
each hypothesis is computed using the importance sampling tech-
nique (e.g. Kass & Raftery 1995). Once all odds ratios have been
computed, the posterior distribution for the planet hypothesis can
be obtained. We describe all these steps in the following sections. In
Section 8.4 we perform a detailed comparison between PASTIS and
the other two techniques mentioned here.

By using an MCMC algorithm to explore the parameter space of
FPs, we ensure that no computing time is spent in regions of poor
fit, which makes our algorithm efficient in the same sense as the
M12 method. However, the much higher complexity of the models
involved in PASTIS hinders our code from being as fast as M12. A
typical PASTIS run such as the ones described in Section 7 requires
between a few hours and a few tens of hours per Markov chain,
depending on the model being used. However, these models only
contain light curve data, and the modelling of follow-up observa-
tions usually requires considerable additional computing time.

In its present state, PASTIS can model transit light curves in any
arbitrary bandpass (including the CoRoT coloured light curves),
the absolute photometric measurements and RV data for any type
of relevant FP scenario (see Section 6). The models, described in
Section 6, are as complete and as realistic as possible, to fully
take advantage of the available data. A difference of our tool with
respect to BLENDER and M12 is the modelling of the RV data,
which includes the RV itself, but also the bisector velocity span of
the cross-correlation function (CCF), its width and contrast. These
data are very efficient in discarding FPs (see 8.2). Other data sets
usually available – like high angular resolution images – are, for the
moment, treated as done in BLENDER or by M12.

3 BAY E S I A N MO D E L C O M PA R I S O N

The Bayesian probability theory can be understood as an extended
theory of logic, where the propositions have a degree of ‘plausibil-
ity’ ranging between the two extremes corresponding to the classical
categories ‘false’ and ‘true’ (see, e.g. Jaynes 2003, chapter 1). With
this definition, and unlike the frequentist approach, the Bayesian
plausibility of any proposition or hypothesis,3 such as ‘the transit

3 Throughout the paper, we will use the terms hypotheses and models.
The former designate mutually exclusive physical scenarios that can ex-
plain the observations, such as blended EB or planetary system. Hypotheses
will be presented as logical prepositions for which Bayesian analysis is able
to assign a probability. The term model is used to designate the mathematical

events in OGLE-TR-33 are produced by a blended stellar binary’
can be precisely computed. To do this one employs the Bayes’
theorem:

p(Hi |D, I) = p(Hi |I) · p(D|Hi , I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of the
plausibility of preposition X, given that Y is true (see Jaynes 2003,
chapter 2). It ranges from 0 to 1, corresponding to impossibility
and certainty of X|Y, respectively. We will refer to this function as
the probability of X given Y. In principle, Hi, D, and I are arbitrary
propositions, but the notation was not chosen arbitrarily. Following
Gregory (2005b), we designate with Hi a proposition asserting that
hypothesis i is true, I will represent the prior information, and D
will designate a proposition representing the data. The probability
p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known as the
evidence, or global likelihood, of hypothesis Hi.

The objective is to compute p(Hi|D, I), the posterior probability of
hypothesis Hi, for a set of mutually exclusive competing hypotheses
Hi (i = 1, . . . , N). To proceed, it is useful to compute the odds ratio
for all pairs of hypotheses:4

Oij = p(Hi |D, I)

p(H j |D, I)
= p(Hi |I)

p(H j |I)
· p(D|Hi , I)

p(D|H j , I)
. (2)

The odds ratio Oij can therefore be expressed as the product of two
factors: the first term on the right-hand side of the above equation is
known as the prior odds, and the second as the Bayes factor, Bij. The
former will be discussed in Section 5, the latter is defined through

p(D|Hi , I) =
∫

π (θi |Hi , I) · p(D|θi , Hi , I) · dθi , (3)

where θi is the parameter vector of the model associated with hy-
pothesis Hi, π (θi |Hi , I) is the prior distribution of the parameters,
and p(D|θi , Hi , I) is the likelihood for a given data set D.

The value of the odds ratio at which one model can be clearly
preferred over the other needs to be specified. Discussions exist
concerning the interpretation of the Bayes factor which are directly
applicable to the odds ratio as well. Following the seminal work
by Jeffreys (1961), Kass & Raftery (1995) suggest interpreting the
Bayes factor using a scale based on twice its natural logarithm.
Thus, a Bayes factor Bij below 3 is considered as inconclusive
support for hypothesis i over hypothesis j, a value between 3 and 20
represents positive evidence for hypothesis i, between 20 and 150
the evidence is considered strong, and above 150 it is considered
very strong. Because Bayesian model comparison can also provide
support for the null hypothesis (i.e. model j over model i), the
inverse of these values are used to interpret the level of support for
hypothesis j: values of Bij below 1/150 indicate very strong support
for hypothesis j. The value of 150 has been used in the literature
(e.g. Tuomi 2012), but Kass & Raftery (1995) mention that the
interpretation may depend on the context. Therefore, we will use
the value of 150 as a guideline to the interpretation of the odds ratio,

expressions that describe the observations. Although the two terms refer to
conceptually different things, given that in our case each hypothesis will be
accompanied by a precise mathematical model, we will use both terms quite
freely whenever the context is sufficient to understand what is being meant.
4 The individual probabilities can be computed from the odds ratios,
given that a complete set of hypotheses has been considered, i.e. if∑N

i=0 p(Hi |D, I) = 1 (Gregory 2005b, chapter 3).
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but we will remain flexible and will require stronger evidence if the
context seems to demand it.5

An appealing feature of the Bayesian approach to model com-
parison is the natural treatment of models with different numbers of
parameters and of non-nested models. In this respect, Bayesian anal-
ysis has a built-in Occam’s razor that penalizes models according
to the number of free parameters they have. The so-called Occam
factor is included in the evidence ratio, and penalizes the models
according to the fraction of the prior probability distribution that is
discarded by the data (see Gregory 2005b, section 3.5, for a clear
exposition on the subject).

3.1 Computation of the Bayes factor

The evidence (equation 3) is a k-dimensional integral, with k equal
to the number of free parameters of model Hi, which is in general
impossible to compute analytically. We therefore approximate this
integral to compute the Bayes factor using importance sampling
(e.g. Kass & Raftery 1995). Importance sampling is a technique
to compute moments of a distribution using samples from another
distribution. Noting that equation (3) is the first moment of the like-
lihood function over the prior distribution π (θ |I), then the evidence
can be approximated as

p(D|H, I) ≈
∑m

j=1 wjp(D|θ, H, I)∑m
j=1 wj

, (4)

where we have dropped the hypothesis index for clarity, and the sum
is done over samples of the importance sampling function π∗(θ ), and
wj = π (θ (j)|I)/π∗(θ (j )|I). An appropriate choice of π∗(θ ) can lead
to precise and efficient estimations of the evidence. In particular,
PASTIS employs the truncated posterior-mixture (TPM) estimation
(Tuomi & Jones 2012). The importance sampling function of TPM
is approximately the posterior distribution, but a small term is added
to avoid the instability of the harmonic mean (HM) estimator, which
uses exactly the posterior distribution as the importance sampling
function (see Kass & Raftery 1995). As far as this term is small
enough, samples from the posterior obtained with an MCMC algo-
rithm (see Section 4) can be used to estimate the evidence. Tuomi
& Jones (2012) show that the TPM estimator is not sensitive to the
choice and size of parameter priors, a property they find convenient
when comparing RV models with different number of planets, as it
allows them to use very large uninformative priors (even improper
priors) without penalizing their alternative models excessively. For
our purposes this characteristic guarantees that the validation of a
planet candidate is not a result of the choice of priors in the param-
eters, but rather that actual support from the data exists. As all the
FP scenarios have a larger number of degrees of freedom than the
planet hypothesis, they will be severely punished by the Occam’s
factor. We discuss this issue further in Section 8.5.

The TPM estimator is supposed to verify a Gaussian central limit
theorem (Kass & Raftery 1995). Therefore, as the number of inde-
pendent samples (n) used to compute it increases, convergence to
the correct value is guaranteed, and the standard deviation of the
estimator must decrease as

√
n. In Fig. 1 the standard deviation of

5 For example, the validation of an Earth-like planet in the habitable zone of
a Sun-like star naturally produces a special interest, and should therefore be
treated with special care. In this case, for example, it would not be unreason-
able to ask for an odds ratio above 1000, as suggested for forensic evidence
(see references in Kass & Raftery 1995). In other words, ‘extraordinary
claims require extraordinary evidence’.

Figure 1. Convergence of the TPM estimator. In blue, the standard devia-
tion of the TPM estimator as a function of sample size. The black curve is
the standard deviation of the sample divided by the number of points, and
the red curve is the scatter of the HM. It can be seen that the scatter of the
TPM estimator follows approximately the black curve. For a sample size of
1000, the scatter is slightly smaller than 3 × 10−2 dex.

the TPM estimator is plotted as a function of sample size, for a sim-
ple one-dimensional case for which a large number of independent
samples is available. For each value of n, we compute the TPM
and HM (Newton & Raftery 1994) estimators on a randomly drawn
subsample. This is repeated 500 times per sample size, and in the
end the standard deviation of the estimator is computed. The HM
estimator (red curve) is known not to verify a central limit theorem
(e.g. Kass & Raftery 1995), and indeed we see its standard deviation
decreases more slowly than that of TPM. The black curve shows
the mean standard deviation of the integrand of equation (3) over
the selected subsample of size n, divided by

√
n. It can be

seen that the TPM estimator roughly follows this curve. For our
method, we require at least a thousand independent samples for
each studied model, which implies a precision of around 6 × 10−2

dex in the logarithm of the Bayes factor. Given that significant sup-
port for one hypothesis over the other is given by Bayes factors of
the order of 150, this precision is largely sufficient for our purposes.

Alternative methods to evaluate the Bayes factor are found in the
literature. All of them are approximations to the actual computation
designed to render it simpler. As such, they have their limitations.
For example, the Bayesian Information Criterion (BIC), which has
been widely used in the literature on extrasolar planets (e.g. Husnoo
et al. 2011), is an asymptotic estimation of the evidence which is
valid under a series of conditions. Besides requiring that all data
points be independent and that the error distribution belong to the
exponential family, the BIC is derived assuming the Gaussianity or
near Gaussianity of the posterior distribution (Liddle 2007). This
means that its utility is reduced when comparing large and/or non-
nested models (see discussion by Stevenson et al. 2012), as the ones
we are dealing with here. Most of these approximations penalize
models based on the number of parameters, and not on the size
or shape of the prior distributions. Therefore, even parameters that
are not constrained by the data are penalized. The computation of
the evidence (equation 3), on the other hand, does not penalize
these parameters, the Occam’s factor being close to 1. Our aim
is to develop a general method that will not depend on the data
sets studied. We also want to use models with an arbitrary number
of parameters, some of which will not be constrained by data but
whose variations will probably contribute to the error budgets of
other parameters. Furthermore, we will not be interested only in a
simple ranking of hypotheses, but we will seek rather to quantify
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how much probable one hypothesis is over the other. Because all of
this, these approximations are not useful for our purposes.

4 MA R KOV C H A I N MO N T E C A R L O
A L G O R I T H M

MCMC algorithms allow sampling from an unknown probability
distribution, p(θ |D, I), given that it can be computed at any point
of the parameter space of interest up to a constant factor. They have
been widely used to estimate the posterior distributions of model
parameters (see Bonfils et al. 2012, for a recent example), and hence
their uncertainty intervals. Here, we employ an MCMC algorithm
to obtain samples of the posterior distribution that we will use to
compute the evidence of different hypotheses (equation 3) using
the method described above. The details and many of the caveats
of the application of MCMC algorithms to astrophysical problems,
and to extrasolar planet research in particular, have already been
presented in the literature (e.g. Tegmark et al. 2004; Ford 2005,
2006) and will not be repeated here. We do mention, on the other
hand, the characteristics of our MCMC algorithm, for the sake of
transparency and reproducibility.

We use a Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970), with a Gaussian transition probability for all pa-
rameters. An adaptive step size prescription closely following Ford
(2006) was implemented, and the target acceptance rate is set to
25 per cent, since the problems dealt with here are usually multi-
dimensional (see Roberts, Gelman & Gilks 1997, and references
therein).

4.1 Parameter correlations

The parametrization of the models employed is described later, but
in the most general case the parameters will present correlations
that could greatly reduce the efficiency of the MCMC algorithm. To
deal with this problem, we employ a principal component analysis
(PCA) to re-parametrize the problem in terms of uncorrelated vari-
ables. We have found that this improves significantly the mixing
of our chains, rendering them more efficient. However, as already
mentioned by Ford (2006), only linear correlations can be fully
dealt with in this way, while non-linear ones remain a problem.6 To
mitigate this problem, we use PCA repeatedly, i.e. we update the
covariance matrix of the problem regularly, as described in detail at
the end of this section. By doing this, the chain manages to explore
‘banana-shaped’ correlations, as those typically existing between
the inclination angle of the orbital plane and the semimajor axis,
in a reasonable number of steps. This significantly reduces the cor-
relation length (CL; Tegmark et al. 2004) of the chains, producing
more independent samples of the posterior for a given number of
chain steps. In any case, the chains are thinned using the longest CL
among all parameters (i.e. only one step per CL is kept).

4.2 Multiple chains and non-convergence tests

Another issue in MCMC is the existence of disjoint local maxima
that can hinder the chains from exploring the posterior distribu-
tion entirely, a problem most non-linear minimization techniques
share. To explore the existence of these local maxima, a number

6 We note that this is a typical problem in MCMC algorithms which have
not been solved yet and is the subject of current research (e.g. Solonen et al.
2012).

of chains (usually more than 20, depending on the dimensionality
of the problem) are started at different points in parameter space,
randomly drawn from the prior distributions of the parameters. Al-
though it cannot be guaranteed that all regions of parameter space
with significant posterior probability are explored, the fact that all
chains converge to the same distribution is usually seen as a sign
that no significant region is left unexplored. Inversely, if chains con-
verge to different distributions, then the contribution of the identified
maxima to the evidence (equation 3) can be properly accounted for
(Gregory 2005a).

To test quantitatively if our chains have converged, we employ
mainly the Gelman–Rubin statistics (Gelman & Rubin 1992), which
compares the intrachain and interchain variance. The chains that
do not show signs of non-convergence, once thinned as explained
above, are merged into a single chain that is used for parameter
inference (i.e. the computation of the median value and confidence
intervals), and to estimate the hypothesis evidence using the TPM
method (Tuomi & Jones 2012).

4.3 Summary of the algorithm

To summarize, our computation of the Bayes factor is done using
an MCMC algorithm to sample the posterior distribution efficiently
in a given a priori parameter space. Our MCMC algorithm was
compared with the emcee code (Foreman-Mackey et al. 2013) and
shown to produce identical results (Rodionov, private communica-
tion), with a roughly similar efficiency.

The MCMC algorithm and subsequent analysis can be summa-
rized as follows.

(i) Start Nc chains at random points in the prior distributions.
This allows exploring different regions of parameter space, and
eventually find disjoint maxima of the likelihood.

(ii) After NPCA steps, the PCA analysis is started. The covariance
matrix of the parameter traces is computed for each chain, and the
PCA coefficients are obtained. For all successive steps, the proposal
jumps are performed in the rotated PCA space, where the parameters
are uncorrelated. The value of NPCA is chosen so as to have around
1000 samples of the posterior for each dimension of parameter space
(i.e. to have around 1000 different values of each parameter).

(iii) The covariance matrix is updated every Nup steps, taking
only the values of the trace since the last update. This allows the
chain to explore the posterior distribution even in the presence of
non-linear correlations.

(iv) The burn-in interval of each of the Nc chains is computed by
comparing the mean and standard deviation of the last 10 per cent
of the chain to preceding fractions of the chain until a significant
difference is found.

(v) The CL is computed for each of the parameters, and the max-
imum value is retained (maxCL). The chain is thinned by keeping
only one sample every maxCL. This assures that the samples in the
chain are independent.

(vi) The Gelman–Rubin statistics is used on the thinned chains
to test their non-convergence. If the chains show no signs of not
being converged, then they are merged into a single chain.

(vii) The TPM estimate of the evidence is computed over the
samples of the merged chain.

The whole process is repeated for all hypotheses Hi of interest,
such as ‘transiting planet’ or ‘background eclipsing binary’ (BEB).
The computation of the Bayes factor between any given pair of
models is simply the ratio of the evidences computed in step 7.
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5 PR I O R O D D S

The Bayes factor is only half of the story. To obtain the odds ratio
between model i and j, Oij, the prior odds p(Hi|D, I)/p(Hj|D, I) in
equation (2) needs also to be computed. In the case of transiting
planet validation, this is the ratio between the a priori probability of
the planet hypothesis and that of a given kind of FP.

To compute the prior probability of model Hi one needs to spec-
ify what is the a priori information I that is available. Note that
the preposition I appears as well in the parameter prior distribution,
π (θ |I) in equation (3). Therefore, to be consistent both the param-
eter priors and the hypotheses priors must be specified under the
same information I. This should be done on a case-by-case basis,
but in a typical case of planet validation we usually know a few ba-
sic pieces of information about the transiting candidate: the galactic
coordinates of the host star and its magnitude in at least one band-
pass, and the period and depth of the transits. It is also often the
case that we have information about the close environment of the
target. In particular, we usually know the confusion radius about its
position, i.e. the maximum distance from the target at which a star
of a given magnitude can be located without being detected. This
radius is usually given by the point spread function of ground-based
seeing-limited photometry (usually the case of CoRoT candidates;
see Deeg et al. 2009) or by sensitivity curves obtained using adap-
tive optics (AO; e.g. Borucki et al. 2012; Guenther et al. 2013), or by
the minimum distance from the star that the analysis of the centroid
motion can discard (mainly in the case of Kepler candidates; see
Batalha et al. 2010; Bryson et al. 2013).

The specific information about the target being studied is com-
bined with the global prior knowledge on planet occurrence rate and
statistics for different types of host star (e.g. Howard et al. 2010b,
2012; Mayor et al. 2011; Bonfils et al. 2013; Fressin et al. 2013),
and stellar multiple system (Raghavan et al. 2010). For FPs involv-
ing chance alignments of foreground or background objects with
the observed star we employ, additionally, the Besançon (Robin
et al. 2003) or TRILEGAL (Girardi et al. 2005) galactic models to
estimate the probability of such an alignment. As a test, we have ver-
ified that the Besançon galactic model (Robin et al. 2003), combined
with the three-dimensional Galactic extinction model of Amôres &
Lépine (2005), reproduces the stellar counts obtained from the EX-
ODAT catalogue (Deleuil et al. 2009) in a CoRoT Galactic-centre
field.

6 D E S C R I P T I O N O F TH E M O D E L S

All the computations described in the previous sections require com-
paring the data to some theoretical model. The model is constructed
by combining modelled stars and planets to produce virtually any
configuration of FPs and planetary systems. The symbols used to
designate the different parameters of the models are listed in Table 1.

6.1 Modeling stellar and planetary objects

Planetary objects are modelled as non-emitting bodies of a given
mass and radius, and with a given geometric albedo. To model
stellar objects we use theoretical stellar evolutionary tracks to obtain
the relation between the stellar mass, radius, effective temperature,
luminosity, metallicity, and age. The theoretical tracks implemented
in PASTIS are listed in Table 2, together with their basic properties.
Depending on the prior knowledge on the modelled star, the input
parameter set can be either [Teff, log g, z], [Teff, ρ, z], or [Minit,

Table 1. List of model parameters.

Symbol Parameter

Stellar parameters

Teff Effective temperature
z Stellar atmospheric metallicity
g Surface gravity
Minit Zero-age main-sequence mass
τ � Stellar age
ρ� Bulk stellar density
v sin i� projected stellar rotational velocity
ua, ub Quadratic-law limb-darkening coefficients
β Gravity-darkening coefficient
d Distance to host star

Planet parameters

Mp Mass
Rp Radius
albedo Geometric albedo

System parameters

kr Secondary-to-primary (or planet-to-star) radius ratio, R2/R1

aR Semimajor axis of the orbit, normalized to the radius of the
primary (host) star, a/R1

q Mass ratio, M2/M1

Orbital parameters

P Orbital period
Tp Time of passage through the periastron
Tc Time of inferior conjunction
e Orbital eccentricity
ω Argument of periastron
i Orbital inclination
v0 Centre-of-mass RV

Age, z]. In any case, the remaining parameters are obtained by
trilinear interpolation of the evolution tracks.

Given the stellar atmospheric parameters Teff, log g, and z, the
output spectrum of the star is obtained by linear interpolation of
synthetic stellar spectra (see Table 3). The spectrum is scaled to the
correct distance and corrected from interstellar extinction:

Fλ = Fλ d−2 10−0.4·Rλ ·E(B−V ), (5)

where Fλ is the flux at the stellar surface of the star and Fλ is
the flux outside Earth’s atmosphere. Rλ = Aλ/E(B − V) is the
extinction law from Fitzpatrick (1999) with RV = 3.1, and E(B −
V) is the colour excess, which depends on the distance d to the star
and on its galactic coordinates. In PASTIS, E(B − V) can be either
fitted with the rest of the parameters or modelled using the three-
dimensional extinction model of Amôres & Lépine (2005). The
choice to implement different sets of stellar tracks and atmospheric
models allows us to study how our results change depending on the
employed set of models, and therefore to estimate the systematic
errors of our method.

The spectra of all the stellar objects modelled for a given hy-
pothesis are integrated in the bandpasses of interest to obtain their
relative flux contributions (Bayo et al. 2008). They are then added
together to obtain the total observed spectrum outside Earth’s at-
mosphere, from which the model of the observed magnitudes is
likewise computed. Note that by going through the synthetic spec-
tral models rather than using the tabulated magnitudes from the
stellar tracks (as is done in BLENDER), any arbitrary photometric
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Table 2. Theoretical stellar evolutionary tracks and ranges of their basic parameters.

Model Minit Stepa z Ref.

Dartmouth [0.1, 5.0] M� 0.05 M� [−2.5, 0.5] Dotter et al. (2008)
Geneva [0.5, 3.5] M� 0.1 M� [−0.5, 0.32] Mowlavi et al. (2012)
PARSEC [0.1, 12] M� 0.05 M� [−2.2, 0.7] Bressan et al. (2012)
StarEvol [0.6, 2.1] M� 0.1 M� [−0.5, 0.5] Palacios (private communication)

aGrid step is not constant throughout the grid range. Typical size is reported.

Table 3. Theoretical stellar spectra.

Model z Teff log g Ref.

ATLAS/Castelli and Kurucz [−2.5, 0.5] [3500, 50 000] K [0.0, 5.0] cgs Castelli & Kurucz (2004)
PHOENIX/BT-Settl [−4.0, 0.5] [400, 70 000] K [−0.5, 6.0] cgs Allard, Homeier & Freytag (2012)

bandpass can be used, as long as its transmission curve and its flux
at zero magnitude are provided. In particular, this allows us to con-
sider the different colour CoRoT light curves (Rouan et al. 2000,
1998) that should prove a powerful tool to constrain FP scenarios
(Moutou et al. submitted).

Additional parameters of the star model are the limb-darkening
coefficients, and the gravity-darkening coefficient β, defined so
that Teff

4 ∝ gβ . The limb-darkening coefficients are obtained from
the tables by Claret & Bloemen (2011) by interpolation of the
atmospheric parameters Teff, log g, and z. Following Espinosa Lara
& Rieutord (2012), the gravity-darkening coefficient is fixed to 1.0
for all stars. Of course, these coefficients can also be included as free
parameters of the model at the cost of potential inconsistencies, such
as limb-darkening coefficients values that are incompatible with the
remaining stellar parameters.

6.2 Modeling the light curve and RV data

The light curves of planets and FPs are modelled using a modified
version of EBOP code (Nelson & Davis 1972; Etzel 1981; Popper &
Etzel 1981) which was extracted from the JKTEBOP package (South-
worth 2011, and references therein). The model parameters can be
divided in achromatic parameters, which do not depend on the band-
pass of the light curve, and chromatic ones. The set of achromatic
parameters chosen are [kr, aR, i, P, Tp, e, ω, q]. In some cases, we
use the time of inferior conjunction Tc instead of Tp, because it is
usually much better constrained by observations in eclipsing (tran-
siting) systems. The mass ratio q is among these parameters because
EBOP models ellipsoidal modulation, which allows us to use the
full-orbit light curve to constrain the FP models. Additionally, we
included the Doopler boosting effect (e.g. Faigler et al. 2012) in
EBOP. The chromatic parameters are the coefficients of a quadratic
limb-darkening law (ua and ub), the geometric albedo, the surface
brightness ratio (in the case of planetary systems, this is fixed to 0),
and the contamination factor due to the flux contribution of nearby
stars inside the photometric mask employed.

The model light curves are binned to the sampling rate of the
data when this is expected to produce an effect on the adjusted
parameters (Kipping 2010). For blended stellar systems, the light
curves of all stars are obtained, they are normalized using the fluxes
computed from the synthetic spectra as described above, and added
together to obtain the final light curve of the blend.

The model for RV data is fully described in Santerne et al.
(in preparation). Briefly, the model constructs synthetic CCFs for
each modelled star using the instrument-dependent empirical rela-

tions between stellar parameters (z and B − V colour index) and
CCF contrast and width obtained by Santos et al. (2002), Boisse
et al. (2010), and additional relations described in Santerne et al.
(in preparation). Our model assumes that each stellar component
of the modelled system contributes to the observed CCF with a
Gaussian profile located at the corresponding RV, and scaled us-
ing the relative flux of the corresponding star. The resulting CCF
is fitted with a Gaussian function to obtain the observed position,
contrast and full width at half-maximum. The CCF bisector is also
computed (Queloz et al. 2001). As planetary objects are modelled
as non-emitting bodies, their CCF is not considered.

6.3 Modeling of systematic effects in the data

In addition, we use a simple model of any potential systematic errors
in the data not accounted for in the formal uncertainties. We follow
in the steps of Gregory (2005a), and model the additional noise of
our data as a Gaussian-distributed variable with variance s2. The
distribution of the total error in our data is then the convolution of
the distribution of the known errors with a Gaussian curve of width
s. When the known error of the measurements can be assumed to
have a Gaussian distribution7 of width σ i, then the distribution of
the total error is also a Gaussian with a variance equal to σ 2

i + s2.
In principle, the additional parameter s is uninteresting and will

be marginalized. Gregory (2005b) claims that this is a robust way
to obtain conservative estimates of the posterior of the parameters.
Indeed, we have found that in general, adding this additional noise
term in the MCMC algorithm produces wider posterior distribu-
tions.

6.4 The false positive scenarios

The modelled stellar and planetary objects can be combined ar-
bitrarily to produce virtually any FP scenario. For single-transit
candidates, the relevant models that are constructed are as follows.

(i) Diluted EB. The combination of a target star, for which prior
information on its parameters [Teff, log g, z] is usually available,
and a couple of blended stars in an EB system with the same period
as the studied candidate. Usually, no a priori information exists on

7 The method being described is not limited to treat Gaussian-distributed
error bars. In fact, any arbitrary distribution can be used without altering
the algorithm and models described so far. Only the computation of the
likelihood has to be modified accordingly.
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the blended stars because they are much fainter than the target star.
Therefore they are parametrized using their initial masses Minit, and
the age and metallicity of the system (the stars are assumed to be
co-eval). The diluted EB can be located either in the foreground or
in the background of the target star.

(ii) Hierarchical triple system. Similar to the previous case, but
the EB is gravitationally bound to the target star. As a consequence,
all stars share the same age and metallicity, obtained from the prior
information on the target star.

(iii) Diluted transiting planet. Similar to the diluted EB scenario,
but the secondary star of the EB is replaced by a planetary object.

(iv) Planet in binary. Similar to the hierarchical triple system
scenario, but the secondary star of the EB is replaced by a planetary
object.

In addition, the models involving a diluted EB should also be con-
structed using a period twice the nominal transit period, but these
scenarios are generally easily discarded by the data (e.g. Torres
et al. 2011). Undiluted eclipsing binaries may also constitute FPs,
in particular those exhibiting only a secondary eclipse (Santerne
et al. 2013), and are also naturally modelled by PASTIS. However,
since they can be promptly discarded by means of RV measure-
ments, they are not listed here and are not considered in Section 7.
Finally, the transiting planet scenario consists of a target star orbited
by a planetary object. In this case, it is generally more practical to
parametrize the target star using the parameter set [Teff, ρ�, z], where
the stellar density ρ� replaces the surface gravity log g, since it can
be constrained from the transit curve much better.

For candidates exhibiting multiple transits, the number of pos-
sible models is multiplied because any given set of transits can
in principle be of planetary or stellar origin. PASTIS offers a great
flexibility to model FPs scenarios by simply assembling the basic
‘building blocks’ constituted by stars and planets.

7 A P P L I C ATI O N TO SY N T H E T I C LI G H T
C U RV E S

This section explores the capabilities and limitations of our method.
We inject synthetic signals of planets and BEBs in real Kepler data,
and use them to run the validation procedure. In each case, both the
correct and incorrect model are tested, and the odds ratio for these
two scenarios is computed. We will refer to the models used to fit
the data as the PLANET and BEB models. For the sake of simplicity,
we did not include RV or absolute photometric data, although they
are important in the planet validation process of real cases (Ollivier
et al. 2012, and Section 8.2). Only light curve data are modelled
in this section. We describe the synthetic data and models in Sec-
tion 7.1. In Sections 7.2 and 7.3, we study what type of support is
given to the correct hypothesis by the data, independently of the
hypotheses prior odds. To do this, we compute the Bayes factor –
i.e. the second term in right-hand side of equation (2). Finally, in
Section 7.4 we compute the odds ratio by assuming the target envi-
ronment and follow-up observations of a typical Kepler candidate.
In Section 7.5 we study the remaining FP scenarios described in
Section 6.4.

7.1 Synthetic light curves and models

Photometric data from the Kepler mission have the best precision
available to date. More relevant for our tests, the instrument is ex-
tremely stable. Indeed, by design, instrumental effects do not vary
significantly in the time-scale of planetary transits (Koch et al.

Table 4. Parameters for synthetic light curves.

Transiting planet

Planet radius (R⊕) {1.0; 4.4; 7.8; 11.2}
Impact parameter b {0.0; 0.5; 0.75}
Transit S/N {10; 20; 50; 100; 150; 500}

BEB

Mass ratio {0.1; 0.3; 0.5}
Impact parameter b {0.0; 0.5; 0.75}
Secondary S/N {2; 5; 7}

2010). As a consequence, Kepler data are well suited for planet
validation, because systematic effects are not expected to reproduce
small transit features that could unfairly favour FP scenarios. By
choosing to use a Kepler light curve as a model for the error distribu-
tion of our synthetic data we are considering the best-case scenario
for planet validation. However, we shall see in Section 7.2 that a
small systematic effect in the light curve has a significant effect on
the results.

To test our method in different conditions of signal-to-noise ra-
tio (S/N), transit shape, and dilution, the light curves of transiting
planets and BEBs were generated with different parameter sets us-
ing the models described above. The parameters sets are presented
in Table 4. In all cases, the period of the signal is 3 d, and the
orbit is circular. The synthetic signals were injected in the Kepler
short-cadence (SC) data of star KIC 11391018. This target has a
magnitude of 14.3 in the Kepler passband, which is typical for
the transiting candidates that can be followed-up spectroscopically
from the ground (e.g. Santerne et al. 2012). Its noise level, measured
with the rms of the Combined Differential Photometric Precision
statistics over 12 h, is near the median of the distribution for stars in
the same magnitude bin (i.e. Kp between 13.8 and 14.8) observed
in SC mode in quarter 4. These two conditions make it a typical star
in the Kepler target list. On the other hand, it is located in the 82nd
percentile of the noise level distribution of all Long Cadence Kepler
target stars in this magnitude bin, demonstrating a bias towards ac-
tive stars in the SC target list. Additionally, KIC 11391018 exhibits
planetary-like transits every around 30 d (KOI-189.01), which were
taken out before injecting the model light curves. To reduce the
computation time spent in each parameter set, the synthetic light
curves were binned to 10 000 points in orbital phase. This produces
an adequate sampling of transit, and enough points in the out-of-
transit part. Note that since the transit signals are injected in the
SC data the sampling effects described in, for example, Kipping
(2010) are not present here. When needed PASTIS can oversample
the light-curve model and then bin it back to the observed cadence
before comparing with the data, as done, for example, in Dı́az et al.
(2013) and Hébrard et al. (2013). SC data was chosen because it
resembles the cadence of the future PLATO data (Rauer et al. 2013),
but this should be taken into account when interpreting the results
from the following sections (see also Section 8.5).

For the target star (i.e. the planet host star in the PLANET model,
and the foreground diluting star in the BEB model), we chose a
1-M�, 1-R� star. We assumed that spectroscopic observations of
the system have provided information on atmospheric parameters
of this star (Teff, z, and log g). For the BEB model, we assume
that no additional information is available about the background
binary. These stars are therefore modelled using their initial mass,
metallicity and age. To consistently model the radii, fluxes, and
limb-darkening coefficients of the stars involved in the models,
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Table 5. Jump parameters and priors of the planet and BEB
models used to fit the synthetic light curves.

Common parameters

Target Teff (K) Normal (5770, 100)
Target metallicity, z (dex) Normal (0.0, 0.1)
Systematic noise, σ J (ppm) Uniform (0, 3σ )a

Out-of-transit flux Uniform (1 − σ , 1 + σ )a

PLANET model

Target density δ∗ (solar units) Normal (0.93, 0.25)
kr = Rp/R1 Jeffreys (10−3, 0.5)
Planet albedo Uniform (0.0, 1.0)
Orbital inclination i (◦) Sine (80, 90)

BEB model

Target log g (cgs) Normal (4.44, 0.1)
Primary/secondary Minit (M�) IMFb

Primary/secondary albedo Uniform (0.6, 1.0)
Binary log τ ∗ (Gyr) Uniform (8, 10)
Binary z (dex) Uniform (−2.5, 0.5)
Binary distance, d (pc) d2, for d ∈ [0−5000]
Impact parameter b Uniform (0.0, 1.0)

aσ represents the mean uncertainty of the light curve data.
bThe IMF was modelled as the disc IMF in the Bensançon
Galactic model (Robin et al. 2003) with a segmented power
law dn/dm ∝ m−α , with α = 1.6 if m < 1.0 M�, and α =
3.0 if m > 1.0 M�.

we used the Dartmouth evolution tracks and the Claret tables as
explained above.

For each synthetic light curve, the PASTIS MCMC algorithm was
employed to sample from the parameter joint posterior. For sim-
plicity, the orbital period, and epoch of the transits/eclipses were
fixed to the correct values; because light curve data are incapable of
strongly constraining the eccentricity, we fixed it to zero; we chose
a linear limb-darkening law.

The model parameters and the priors are listed in Table 5. Note
that the age, metallicity, and albedo of the background binary star
are also free parameters of our model, even if we do not expect to
constrain them. For the target star, we chose priors on Teff, z, and
log g as those that would be obtained after a spectroscopic analysis.
In the PLANET model, the bulk stellar density ρ∗ obtained from
the Dartmouth tracks is used instead of log g. For the masses of
the background stars we used the initial mass function (IMF) used
in the Bensaçon Galactic model (Robin et al. 2003) for disc stars.
We also assumed that the stars are uniformly distributed in space,
hence a d2 prior for the distance. Uninformative priors were used
for all remaining parameters. The current knowledge on the ra-
dius distribution of planets is plagued with biases, and suffers from
the incompleteness of the transiting surveys, and other systematic
effects. We therefore preferred a log-flat prior to any possible infor-
mative prior. Additionally, this functional form is not far from the
planet radius distribution emerging from the Kepler survey (Howard
et al. 2012; Fressin et al. 2013). Lastly, for the BEB model we re-
quired the ad hoc condition that the binary be at least one magnitude
fainter than the target star. We assumed that if this condition were
not fulfilled the binary would be detectable, and the system would
not be considered a valid planetary candidate.

10 independent chains of 700 000 steps were run for each syn-
thetic data set, starting at random points drawn from the joint prior
distribution. After trimming the burn-in period and thinning the

chains using their CL, we required a minimum of 1000 independent
samples (see Section 3.1). When this was not fulfilled, additional
MCMCs were run to reach the required number of samples. The
number of independent samples obtained for each simulation is
presented in Tables A1 and A2. The evidence of each model was
estimated using the MCMC samples as explained in Section 3.1. In
the next two sections we present the results of the computation of
the Bayes factor for the planet and BEB synthetic light curves.

7.2 Planet simulations

The light curves of planetary transits were constructed for different
values of the radius of the planet, the impact parameter (b) and the
S/N of the transit, defined as

S/N = δ0

σ

√
Nt, (6)

where δ0 is the fractional depth of the central transit, σ is the
data scatter (measured outside the transit), and Nt is the number of
points inside the transit. The values of the parameters are shown
in Table 4. We explore planets with sizes ranging between the
Earth’s and Jupiter’s, transits with impact parameters between 0.0
and 0.75, and S/N ranging between 10 and 150.8 In total, 72 different
transiting planet light curves were analysed.

For a given star, reducing the size of the planet changes both the
shape of the transit and its S/N. To correctly disentangle the effects
of the size of the planet and of the S/N of the transit, light curves with
different S/N were constructed for a given planet radius. Although
transits of Earth-size planets rarely have S/N of 150 among the
Kepler candidates (see Section 8.1), these type of light curves should
be more common in the data sets of the proposed space mission
PLATO,9 because it will target much brighter stars for equally long
periods of time. To modify the S/N of the transits, the original light
curve was multiplied by an adequate factor. We estimate this factor
for the central transits (i.e. with b = 0), and used it for constructing
the light curves with b = 0.50 and 0.75. This produces a somewhat
lower S/N for these transits, both due to the fewer number of points
during the transit and the shallower transit. The S/N of transits with
b = 0.75 is reduced by about 20 per cent with respect to those with
b = 0.0. A few examples of the synthetic planetary transit light
curves are shown in Fig. 2.

The results of the evidence computation are summarized in
Table A1, where columns 1 to 3 list the values of the parame-
ters used to construct the synthetic light curve, columns 4 and
5 are the number of independent samples obtained for each
model after trimming the burn-in period and thinning using the
CL, column 6 is the logarithm (base 10) of the Bayes factor,
column 7 is the logarithm of the final odds ratio; columns 8
and 9 are the 64.5 per cent upper and lower confidence lev-
els for the Bayes factor. The following columns are used to
perform frequentist tests described in Section 8.3: columns 10
and 11 are the reduced χ2 for each model, column 12 is the

8 The Kepler candidates with estimated radius below 1.4 R⊕ have mean
S/N = 20.
9 The S/N of a transit of an Earth-size planet in front of a 11th magnitude
1-R� star over 2 yr of continuous observations with PLATO should be
around 450 and 60 for periods of 10 and 100 d, respectively. PLATO will
observe around 20 000 stars brighter than 11th magnitude for at least this
period of time. The observing campaigns of the future Transiting Exoplanet
Survey Satellite being shorter, the obtained S/N will we lower, except for
very few stars near the celestial poles.
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Figure 2. Synthetic planetary egress transit light curves with S/N = 150
and b = 0.5 for the four sizes of simulated planets (see Table 4). The grey
dots are the individual binned data points (see the text), the black circles
represent the average of the data in 0.001 size bins. The red and green curves
are the maximum-posterior PLANET and BEB models, respectively, found
using the MCMC algorithm. The black curve is the actual model injected
in the Kepler light curve (barely distinguishable from the PLANET best
model). These figures show the effect of the size of the planet – the change
of ingress/egress duration – independently of the S/N of the light curve.
Note the change of the y-axis scale as we go from a Jupiter-size planet to an
Earth-size planet. Note also the excess of points below the injected model
around phase 0.019.

F-test, column 13 is the likelihood-ratio test statistics, and col-
umn 14 is the p-value of this test (computed only if D > 0.0). The
results are plotted in Fig. 3, where the Bayes factor in favour of
the PLANET model, BPB = p(D|HPLANET, I)/p(D|HBEB, I) =
EPLANET/EBEB, is plotted as a function of the radius of the simu-
lated planet and the transit S/N. The uncertainties were estimated
by randomly sampling (with replacement) N elements from the
posterior sample obtained with MCMC, where N is the number of

independent steps in the chain. The Bayes factor was computed on
5000 synthetic samples generated thus, from which the 68.3 per
cent confidence regions are obtained. In the plots, the uncertainties
are always smaller than the size of the symbols. The shaded regions
show the limiting values of BPB described in Section 3. The lightest
shaded areas extend from 20 to 150, above which the support for the
PLANET model is considered as ‘very strong’, and between 1/150
and 1/20, below which the support is considered ‘very strong’ for
the BEB model.

It can be seen that the Bayes factor increases rapidly with the
S/N. For the highest S/N, BPB decreases with Rp from 1 to 8 R⊕,
and increases again slightly for Jupiter-size planets, for which the
ad hoc brightness condition becomes relevant. For the low-S/N
simulations, the dependence with the planet radius is less clear but
roughly follows the same trend. Because the duration of the ingress
and the egress becomes shorter as the size of the planet decreases,
the BEB model is unable to correctly reproduce the light curve of
Earth- and Neptune-size planets for the simulations with S/N >50
(Fig. 4), but both models are statistically undistinguishable for lower
S/N transits.10 In any case, all fitted models are virtually equally
‘good’. This can be seen in Table A1, where we list the reduced
χ2 of the best-fitting model of each scenario, computed including
the systematic error contribution obtained with PASTIS. The fact that
all values are close to unity imply that a frequentist test will fail
to reject any of the models explored here. We discuss this in more
detail in Section 8.3. Note that in no case the Bayes factor gives
conclusive support for the BEB model, even though it somehow
favours it for b = 0.5.

In this regard, a monotonic decrease of BPB with impact param-
eter b was expected. However, the Bayes factor decreases from
b = 0.0 to 0.5, and it increases again as the transit becomes less
central. Additionally, the synthetic light curves with b = 0.5 are
fitted better (i.e. the likelihood distribution is significantly shifted
towards larger values) than the corresponding light curves with b =
0.0 and 0.75 both for the PLANET and BEB models. There should
be no reason why the PLANET model fits the light curves with
b = 0.5 better. The cause of the observed decrease in BPB has to be
a feature of the light curve not produced by the synthetic models.
An inspection of the light curves, the maximum-posterior curves
for each model, and the evolution of the merit function across the
transit reveals that this is due to a systematic distortion of the light
curve occurring at phase ∼0.019 (see Fig. 2). This feature produces
a two-folded effect that explains the decrease of the Bayes factor for
b = 0.5. First, at b = 0.0 the ‘bump’ occurs near the egress phase,
which increases the inadequacy of the BEB model to reproduce the
transit of small planets (see Fig. 4, where the residuals are asym-
metric between ingress and egress). This increases the Bayes factor
for the PLANET model for b = 0.0, specially for small planets.
Secondly, at b = 0.5 the distorted phase is just outside or at fourth
contact for small and giant planets, respectively. The BEB model
produces a better fit because the egress duration is larger (see Fig. 2).
As mentioned above, the PLANET model fits the data better as
well, but the improvement is less dramatic; note that the maximum-
posterior transit duration is systematically larger than that of the
injected transits (Fig. 2). As a consequence, the Bayes factor is re-
duced significantly for b = 0.5. Finally, as the systematic ‘bump’ is
well outside the transit for b = 0.75 it does not produce an artificial

10 See also the example of the Q1–Q3 transit of Kepler-9 d in Torres
et al. (2011, fig. 11); by quarter 6 the transit had an S/N ∼13 only
(http://nexsci.caltech.edu/)
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Figure 3. Evidence ratio (Bayes factor) between PLANET and the BEB model for the synthetic planet data with impact parameter b = 0.0 (left), b = 0.5
(centre), and b = 0.75 (right). In each panel, the results are plotted in logarithmic scale as a function of the simulated planetary radius for different S/N of the
transit: from 10 (light grey) to 150 (black). The 68.3 per cent confidence interval is smaller than the size of the symbols. The shaded areas indicate the regions
where the support of one model over the other is arbitrarily considered ‘Inconclusive’ (dark), ‘Positive’, ‘Strong’ (light orange), and ‘Very strong’ (white),
according to Kass & Raftery (1995).

Figure 4. Example of the impossibility of the BEB model to reproduce
sharp ingresses or egresses. The transit light curve of the simulated Earth-size
planet with S/N = 150, and b = 0.0 is shown together with the maximum-
posterior BEB model (green curve) and the injected model (black curve).
The black points represent the average of the data points over 0.15 per cent
of the orbital phase. The residuals to the best fit are shown in the lower panel.
The error bars include the maximum-posterior systematic noise amplitude
(5.3 ppm; see Section 6.3).

increase of the likelihood of any of the models. We believe this
systematic effect explains the unexpected dependence of BPB with
impact parameter.

A corollary of this discussion is that the simple modelling of
systematics effects as an additional source of Gaussian noise is
not sufficient to treat Kepler data. Under a correct noise model,
the current maximum-posterior model should not be preferred over
the actual injected model. This clearly signals a line of future de-
velopment in PASTIS.

Light curves with S/N = 500 were likewise studied, but their
results do not appear in the figures nor in the tables above. The
reason for this is that they produce overwhelming support for the
correct hypothesis, for all planetary radii and impact parameters.

Providing the exact value of the Bayes factor for these cases was
not deemed useful.

7.3 BEB simulations

The BEB model consists of an EB in the background of a bright star
that dilutes its eclipses. The primary of the EB was chosen, as the
primary of the planet scenario, to be a solar twin. Different values
of the impact parameter, the binary mass ratio and the dilution of
the eclipses were adopted for the synthetic data. The dilution of the
EB light curve is quantified using the S/N of the secondary eclipse,
measured using equation (6). The S/N of the diluted secondary
eclipse in our simulations is 2, 5, or 7. These values were chosen
to go from virtually undetectable secondaries to clearly detectable
ones. For example, the Kepler pipeline requires S/N to be above 7.1
for a signal to be considered as detected (e.g. Fressin et al. 2013).
In total, we produced light curves of 27 BEBs. An example of a
secondary eclipse with the three levels of dilution can be seen in
Fig. 5. The corresponding primary eclipse is also shown in the same
figure.

Evidently the S/N of the primary eclipse changes as well with
the dilution level, ranging from 53 to 370 (Table A2). In general,
the primary eclipse S/N increases with S/N of the secondary, and
diminishes with mass ratio q and impact parameter b, as expected.

The Bayes factors in favour of the BEB model, BBP =
p(D|HBEB, I)/p(D|HPLANET, I) = EBEB/EPLANET, are listed in Ta-
ble A2, where the first four columns present the parameters of the
simulated BEBs (including the primary eclipse S/N), and the fol-
lowing ones are similar to the columns in Table A1. The results
are plotted as a function of the mass ratio q of the simulated EB
in Fig. 6. The Bayes factor increases with the S/N of the sec-
ondary eclipse, i.e. it decreases with the dilution of the light curve.
For the two lowest dilution levels, BBP decreases with the mass
ratio of the EB. This seems counterintuitive, since the ingress and
egress times of the eclipses become longer as q increases, and
therefore more difficult to fit with the PLANET model. The Bayes
factor in favour of the BEB should therefore increase with q. How-
ever, as mentioned above, the primary S/N decreases as well to-
wards bigger stars, which must counteract and dominate over this
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Figure 5. The secondary and primary eclipses (upper and lower panels, respectively) of the BEB synthetic data with mass ratio q = 0.3, and impact parameter
b = 0.5 for the three levels of dilution used for the simulations. The black dots are the individual binned data points (see the text), the green circles are the
average of the data in 0.0025 size bins. The red curve is the best-fitting model found using the MCMC algorithm and the grey curve is the actual model injected
in the Kepler light curve. It can be seen that the presence of correlated data near the centre of the primary eclipse leads the fit procedure to a longer, more
V-shaped eclipse. This highlights the importance of using realistic error distributions for the simulations.

Figure 6. Evidence ratio (Bayes factor) between BEB and PLANET models for the synthetic BEB data with impact parameter b = 0.0 (left), b = 0.5 (centre),
and b = 0.75 (right). In each panel, the results are plotted as a function of the simulated mass ratio of the diluted binary for different S/N of the secondary
eclipse: 2 (dotted curve), 5 (dashed curve), 7 (solid curve). The 68.3 per cent confidence interval is smaller than the size of the symbols. The shaded areas
indicate the regions where the support of one model over the other is arbitrarily considered ‘Inconclusive’ (dark), ‘Positive’, ‘Strong’ (light orange), and ‘Very
strong’ (white), according to Kass & Raftery (1995).

effect. Indeed, when the obtained Bayes factor is normalized by the
S/N of the primary eclipse an inverse trend is seen with q. This
means that the effect of the size of the secondary component of the
EB is less important than that of the S/N of the primary eclipse.

For secondary S/N = 2, the S/N of the primary changes less
with q and the size of the secondary component becomes
the dominant factor. An inverse behaviour with q is then ob-
served. Additionally, because the primary eclipse S/N does not
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change much with b, BBP is approximately constant with impact
parameter.

As expected, for none of the simulations the Bayes factor strongly
favours the PLANET hypothesis. Additionally, except for the high-
est dilution level and small mass ratio, all BEB scenarios are cor-
rectly identified by the data. This is because the PLANET model
requires a large, evolved star to reproduce the shape and duration of
the stellar eclipses, which is severely punished by the solar priors
imposed on the target star. Nevertheless, all planet fits result in a
stellar density ρ∗ < 0.28 ρ�. The data clearly prefer this solution
to one that would produce a worse fit but be more in agreement with
the solar density prior (see Table 5).

In Table A2, the reduced χ2 of the best-fitting model of each
scenario is listed. As in the PLANET case, the fits obtained with
both models are compatible with the data set: a χ2 test fails to reject
any of the obtained fit (see Section 8.3).

7.4 Including the prior odds

The complete computation of the odds ratio requires specifying the
ratio of the prior probabilities of the competing hypothesis, the prior
odds. This ratio appears on the first term in the right-hand side of
equation (2). As mentioned above, it depends on the environment of
the target, the statistics of multiple stellar systems, planet occurrence
rates, and the general structure of the Galaxy.

To compute the prior odds for our simulations, we assumed
the same environment and follow-up observations as Kepler-22
(Borucki et al. 2012), which include AO photometry, speckle imag-
ing and Spitzer observations. We refer the reader to that paper for
details about the available observations. For our simulations, we
only considered the AO contrast curves obtained by Borucki et al.
(2012) in the J band. Additionally, we assumed that the simulated
systems have the same apparent magnitude and position in the sky
as Kepler-22. The Besançon galactic model was used to simulate a
field around the target, and the AO contrast curve was used to com-
pute the probability that a star of a certain magnitude lies at a given
distance of the target without being detected. The stellar binary
properties and occurrence rate for the simulated background stars
were taken from Raghavan et al. (2010, and references therein). The
planetary statistics were obtained from Fressin et al. (2013).

The prior odds depend also on the observed planet size, which
changes both the planet occurrence and the number of diluted bi-
naries that are capable of reproducing the depth of the transit. The
planetary radius of the simulated transit light curves was obtained
from the transit depths assuming a 1-R� host star. The simulated
planets correspond to the Earth (1 R⊕), Large Neptune (4.4 R⊕),
and Giant categories (7.8 and 11.2 R⊕) of Fressin et al. (2013).
Most of the simulated BEBs mimic planets in the small Neptune
category, but those with q = 0.3 and 0.5 and secondary S/N = 2
exhibit transits corresponding to planets in the super-Earth category.

With all these assumptions, the prior odds can be computed as
described in Section 5. For the simulated systems the prior odds
p(HPLA|I)/p(HBEB|I) vary from around 250 for the 7.8-R⊕ planet to
over 3600 for the Earth-size planet (Fig. 7). In the same figure we
plot the prior odds obtained assuming that no AO observations are
available. In this case, we simply consider that the confusion radius
is 2 arcsec for stars 5 mag fainter than the target star (see Batalha
et al. 2010), and that it follows the same trend that AO contrast curve
for other magnitude differences. This shows the value of precise
AO observations, that drastically reduce the a priori probability
of having an unseen blended star in the vicinity of the target, and
therefore equally reduce the prior probability of the BEB hypothesis.

Figure 7. Prior odds for the PLANET hypothesis as a function of planet
radius (in logarithmic scale). The solid line is the value when the Kepler-22
contrast curve is used as constrain, and the dashed line represents a situation
where no AO observation is available.

The uncertainties are estimated using a Monte Carlo method and
are of the order of 10 per cent.

With these elements, the odds ratio is readily computed by mul-
tiplying the Bayes factors by the prior odds for the corresponding
planet size. The results are listed in Tables A1 and A2 and plotted
in Figs 8 and 9. For the simulated planet light curves, the inclusion
of the prior odds brings the odds ratio above 150 for almost all
transit parameter sets. Even transits with S/N as low as 10 are now
securely identified as planets. The odds ratio for low-S/N curves
(10 and 20) is strongly dominated by the prior odds. Therefore, the
curves closely resemble those presented in Fig. 7. The exception
remains the simulations at b = 0.5, stressing the importance of a
more sophisticated error model. For the BEB simulations, the ef-
fect of including the prior odds is to diminish the confidence of the
identification based on the Bayes factor. The low probability of a
blended EB produces that some BEB scenarios cannot be identified
as such, even if supported by the data. This is specially the case for
systems with a high level of dilution (secondary S/N = 2).

7.5 Other false positive scenarios

Other potential FP scenarios described in Section 6.4 were studied
in a less systematic way as done for the BEB scenario. We chose
five synthetic Earth-size transit light curves and fitted them using a
hierarchical triple model (TRIPLE), a background transiting planet
(BTP) model, and a planetary object in a wide binary (PiB) model.
The procedure was the same as above, and the results are synthesized
in Table 6.

The hierarchical triple scenario is easily rejected by the data in
all cases, even for the lowest S/N transits studied. In this model the
EB is bound to the target star, which fixes the dilution level for a
given set of stellar masses. Additionally, the radius ratio of the EB is
limited by the stellar tracks and the age and metallicity of the target
star, and the constrain that the dominant source of flux in the system
be the target star. As a consequence, the ingress and egress times
of the triple model are too long and do not fit the Earth-size transit
correctly. Even allowing the target star to become much brighter
than what the priors would allow does not improve the fit. This
fact has been observed in various BLENDER validation cases (e.g.
Torres et al. 2011). On the other hand, bigger planets should be
better fitted using the TRIPLE scenario, since their ingress/egress
times are longer.

Two facts limit the flexibility of the BEB and TRIPLE FP sce-
narios and ultimately lead to their being rejected with respect to the
PLANET model: the existence of a minimum stellar radius and the
rareness of big, massive stars. The former is given by the limit in the
stellar evolution tracks used to model stellar objects. The limit of
the Dartmouth stellar tracks is 0.1 M� (Table 2), which is close to
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Figure 8. Odds ratio in favour of the planet hypothesis as a function of planet radius for the synthetic planet data with impact parameter b = 0.0 (left), b =
0.5 (centre), and b = 0.75 (right). For the shaded areas see Fig. 3.

Figure 9. Odds ratio in favour of the BEB hypothesis as a function of binary mass ratio for the synthetic BEB data with impact parameter b = 0.0 (left), b =
0.5 (centre), and b = 0.75 (right). For the shaded areas see Fig. 3.

the hydrogen-burning limit at around 80 MJup. Most of the BEB and
TRIPLE models trying to fit planetary transits tend to decrease the
size of the eclipsing star as much as possible, and reach this limit.
The second limitation is introduced in PASTIS through the priors of
the stellar masses (Table 5).

FP scenarios involving a transiting planet whose light curve is
diluted by the presence of a second star do not suffer from the same
limitations because the radius of the transiting object can be reduced
practically without limits. In this way, the BTP and PiB scenarios
can mimic the signal of an undiluted planetary transit well, and as a
consequence, they cannot be correctly identified based on the light
curve alone, as shown in Table 6. This fact has already been reported
by Torres et al. (2011) for much lower S/N transits. These authors
note that in general it is possible to approximately reproduce the
transit light curve of a planetary object of radius Rp by a diluted
system where both stars have the same brightness and the transiting
planet has a radius larger by a factor of

√
2. We show here that

even in the case of very high S/N transit light curves, additional
observations are in general needed to reject these scenarios (see
Section 8.2). In addition, because the planet host star in the PiB
scenario is bound to the target star, its prior probability is roughly
of the same order than the planet hypothesis, and AO observations
cannot reduce it significantly.

Table 6. Results of fitting other FP scenarios to synthetic Earth-
size transit data.

Model Scenario Bayes factor
b snr Rpl log10BP; FP σ+ σ−

0.0 150 1.0 TRIPLE 21.63 0.11 0.14
BTP −0.813 0.051 0.084
PiB −0.491 0.045 0.077

0.5 150 1.0 TRIPLE 9.99 0.14 0.20
BTP −0.85 0.15 0.17
PiB −1.23 0.03 0.12

0.0 100 1.0 TRIPLE 9.55 0.13 0.18
BTP −0.72 0.09 0.12
PiB −0.95 0.06 0.11

0.0 20 1.0 TRIPLE 30.83 0.56 0.58
BTP 0.69 0.08 0.08
PiB 0.04 0.18 0.16

0.0 10 1.0 TRIPLE 18.58 0.09 0.16
BTP 0.48 0.05 0.07
PiB 2.99 0.09 0.14
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8 D ISCUSSION

The results from the previous section show that PASTIS is able to val-
idate planets and to correctly identify FPs based on the analysis of
light curve data alone. However, we find that only when the signal is
large enough do light curves alone strongly favour one model over
the other, and this not even for all FP scenarios. In particular, FP
scenarios involving a transiting (giant) planet system, whose light
curve is diluted by the presence of a second star (either in the system
or aligned with it) seem to be able to mimic small-planet transits
very precisely, and cannot be rejected by the light curve data alone,
even in the high-S/N regime we have explored. Strong reliance on
the priors odds is then required to validate transiting planets against
these scenarios. On the other hand, the hierarchical triple system
scenario is unable to reproduce the transits of small-size planets.
BEBs are correctly identified as such when the secondary eclipse
of a diluted EB has an S/N above around 5. In the particular cases
simulated here, the out-of-transit variation does not seem to con-
tribute to the correct identification of BEBs: no significant changes
in the Bayes factor are observed when only the eclipses are fitted.
Of course, this will depend on the orbital period of the system, and
it is to be expected that reflected light, ellipsoidal modulation, and
Doppler ‘boosting’ variations (e.g. Faigler et al. 2012) would be
relevant for shorter period candidates. Concerning transiting plan-
ets, our synthetic light curve data conclusively support the correct
model if the transit S/N is higher than about 50–100 (for central
transits; see Fig. 3). For the lower S/N the correct identification
rests instead on the priors odds. Assuming typical conditions and
follow-up observations of a target in the Kepler field, transiting plan-
ets are correctly recognized down to transit S/N = 10. Of course,
additional follow-up observations could provide additional support
to validate the low-S/N transit signals without depending as much
on the prior odds. We investigate this briefly in Section 8.2.

8.1 Implication for the validation of Kepler candidates

Transits of Neptune-size and Jupiter-size objects are observed with
S/N well above 150 by the Kepler mission, except for the faintest
target stars or the longest period candidates for which a reduced
number of transits have been observed. On the other hand, only 168
(respectively, 67) Kepler candidates with estimated radius below
4 R⊕ have S/N above 100 (respectively, 150). These numbers are
reduced to 25 and 5 for candidates smaller than 2 R⊕.11 No candidate
with estimated radius below 1.4 R⊕ has S/N above 150, and only
five have S/N above 100.12 In Fig. 10 we present the histogram
of the cumulated S/N of all the Kepler candidates.13 Additionally,
our results assume that the cadence of the observations is roughly
1 min. This is not true for most of the Kepler targets, which are
measured on a 30-min cadence. In these cases, the light curves
are smeared and the resolution of the ingress and egress phases is
reduced. This should mainly affect our results for small-size planets
(see Section 8.5).

The vast majority of Kepler candidates, then, cannot be validated
by this method by studying their light curve alone. Strong reliance
on additional data and on the hypotheses prior odds seems to be

11 The five candidates with S/N above 150 are KOI-69.01, KOI-70.02
(Kepler-20 b), KOI-72.01 (Kepler-10 b), KOI-245.01 (Kepler-37 d), KOI-
268.01.
12 Kepler-10 b, KOI-82.02, KOI-85.02 (Kepler-65 b), KOI-1300.01, KOI-
1937.01.
13 Data was obtained from the NExScI: http://nexsci.caltech.edu/

Figure 10. Transit S/N for all Kepler objects of interest (KOIs). The S/N
is computed over all quarters of available data. The inset shows the range
between S/N 100 and 240. Only five KOIs with estimated radius below
2 R⊕ have transit S/N above 150. The 3592 KOIs marked as CANDIDATES
in the NExScI table are included.

ineluctable. The BLENDER validations (e.g. Fressin et al. 2011,
2012; Borucki et al. 2012) exemplify this fact. On the other hand,
over 360 Kepler planet candidates have S/N above 150. Among
them, there are all the unresolved cases from Santerne et al. (2012).
Since Santerne et al. (2012) focused on giant-planet candidates, the
scenarios involving diluted planetary companions should be easily
discarded, and the candidates could be promptly confirmed using
the Kepler light curve alone. This is outside the scope of this paper
and is deferred to a follow-up paper.

8.2 Contribution from RV observations

RV and absolute photometry can help constrain FP scenarios, and
tip the scale for the cases where the light curve alone is not enough
to decide between different scenarios. A detailed study of the contri-
bution of RV observations will be given elsewhere (Santerne et al.,
in preparation). Here, we study the issue by considering some of the
FP hypotheses simulated above. We computed the RV signal of the
maximum-posterior model for each parameter set at the quadratures
of the orbit, which are usually the first orbital phases observed when
performing ground-based follow-up. Additionally, we computed the
signal that would be observed if the orbit is randomly sampled in
10 or 25 phases, since, depending on the relative centre-of-mass
velocities of the objects, the maximum RV signal (including also
the maximum bisector, contrast, and width variations) can occur at
any moment of the orbit.

For the BEB and BTP scenarios, we randomly assigned a centre-
of-mass velocity for the background system and the target star by
drawing samples from the Nordström et al. (2004) distribution of
RVs of nearby stars. The rotational velocities of all stars were fixed
to v sin i� = 4 km s−1. The process was repeated 200 times for each
parameter set, and the observed amplitude was recorded. We then
computed what fraction of the sample exhibited an amplitude of the
RV and bisector velocity span larger than a certain value.

Only a few of the BEB models to synthetic BEB light curves
exhibit RV amplitudes larger than 2.5 m s−1, and none exhibits vari-
ations above 25 m s−1. This is expected given the level of dilution
produced by the target star. Indeed, the brightness differences be-
tween the target star and the background binary are larger than
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Table 7. Percentage of cases in which a RV signal
larger than a given amplitude will be observed if 25
data points sample the orbital phase for selected sim-
ulated BEB systems (see the text).

Model Amplitude (m s−1)
b q snr � ma

V >2.5 >10 >25

0.00 0.1 7 3.0 65.0 46.0 00.0
0.50 0.1 7 2.6 64.5 57.5 00.0
0.75 0.1 5 2.6 59.0 53.5 00.0
0.75 0.1 7 2.7 61.5 37.0 00.0
0.00 0.1 2 4.6 35.0 00.0 00.0
0.50 0.1 2 4.3 74.0 00.0 00.0
0.75 0.1 2 4.3 57.0 00.0 00.0
0.00 0.3 2 6.8 00.0 00.0 00.0
0.00 0.5 2 7.7 00.0 00.0 00.0

aApparent magnitude difference in the V band be-
tween the target star and the diluted binary.

5 mag in the Johnson V band for these models, which is too large to
expect substantial signal in any of these observables (see Santerne
et al. in preparation). A similar situation is found for the bisector
velocity span of the CCF. Eight BEB models include binaries that
are between 3.0 and 5.0 mag fainter than the target star. They exhibit
RV amplitudes above 2.5 m s−1 for most of the sampled centre-of-
mass velocity differences, but for none of them the RV amplitude
is above 10 m s−1. In a few BEB models the brightness difference
between the binary and the target star is less than 3 mag. These sys-
tems show RV variations with amplitudes above 10 m s−1 in around
half of the sampled velocity differences. All these systems have sec-
ondary eclipses with S/N 5 or 7, and are therefore clearly identified
from the light-curve analysis. We list them in Table 7, together with
some examples of more strongly diluted BEBs. We conclude that
RV observations do not help in pinpointing the BEB scenarios that
cannot be identified from the light curve data alone.

On the other hand, the maximum-posterior BEB models to syn-
thetic planet data, in principle, produce detectable RV amplitudes.
Failure to detect these variations in available velocimetric data could
help discarding a BEB as a viable hypothesis. Following the same
procedure as above, we find that some of the BEB maximum-
posterior models produce a detectable signal both in the RV am-
plitude and in the bisector velocity span, specially for large planet
candidates. In Fig. 11 we show the median amplitude obtained us-
ing 10 points to sample the orbit. It can be seen that the amplitude
increases for bigger planets, reaching values around 100 m s−1, and
sometimes above 1 km s−1, even for low-S/N transits. The trend is
opposite to the one observed in Fig. 3, which implies that RV data
are helpful in the analysis of the transiting planets that cannot be
identified using only the light curve. These amplitudes are explained
by the magnitude difference between the target star and the back-
ground binary system. Except for the Earth-size simulations, all
the maximum-posterior BEB models have magnitude differences
smaller than 5 in the V band. For the simulations with 7.8 and
11.2 R⊕ the difference is usually smaller than 2 mag. In these cases,
we also expect absolute photometry (SED fitting) or spectroscopic
data to provide additional constraints.

The BTP model does not exhibit RV variations above 2.5 m s−1

for any of the planet scenarios explored. As in the BEB simulations,
this is due to the high level of dilution needed to reproduce Earth-
size transits.

Finally, the RV signal produced by the maximum-posterior PiB
scenarios should also be detectable. Indeed, when sampling the or-

Figure 11. Median expected RV (black) and bisector velocity span (red)
amplitude of the maximum-posterior BEB scenarios as a function of the
planetary radius of the synthetic light curve, based on 200 randomly drawn
relative RVs (see the text). The orbital phase of the EB is sampled randomly
using 10 points. The horizontal line indicates the 1 m s−1 level. The satura-
tion seen for the largest planet scenarios at b = 0.0 is due to the magnitude
condition mentioned in Section 7.1.

bit with 10 randomly distributed measurements, the median am-
plitude of the RV and signal is between 20 and 30 m s−1. The
median bisector amplitude, on the other hand, is smaller than
2 m s−1.
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8.3 Comparison with the frequentist approach

It is interesting to compare the results from the Bayesian model
comparison to what would be obtained by a frequentist hypothesis
testing method. The main difficulty faced by frequentist hypothesis
testing is that the ranking of models cannot be rigorously made:
either a hypothesis is rejected or nothing else can be said about
it, the concept of the probability of propositions being completely
alien to the frequentist. None of the fits obtained during our tests,
whether using the correct model or not, can be rejected based on a
χ2 test. Indeed, the values of the reduced χ2 statistics are below 1
for all models (see Tables A1 and A2). All the fits are reasonably
‘good’.

A series of workarounds to overcome this limitation exists. For
example, the F-test permits comparing the reduced χ2 of two com-
peting fits to the same data set, but it is known to be extremely
sensitive to the assumption of normality of the error distribution.
The likelihood-ratio test is also a possible way to compare models,
but it only works for nested models (i.e. pairs of models where the
simplest one is equal to the more complex one with constraints on
one or many parameters).

Disregarding these conditions, we nevertheless applied these two
tests to our results. In Tables A1 and A2 we list the F-test probabil-
ity and the likelihood-ratio test statistics D = −2 ln(L0/L1), where
L0 and L1 represent the maximum likelihood value of the null
and alternative hypotheses, respectively. For the likelihood-ratio
test we took the PLANET model as the null (simplest) hypothesis.
We also list the p-value of D (for D > 0), which was computed by
approximating the distribution of D as a χ2 distribution with number
of degrees of freedom equal to the difference between the number of
parameters of each model. For the planetary synthetic data, we found
that the F-test is not capable of distinguishing between both models,
the p-values being above 23 per cent for all parameter sets. Similarly,
the likelihood-ratio test does not allow rejecting the null hypotheses
over the more complex BEB model. For some cases, specially those
with central, high-S/N transits, the PLANET model even fits better
than the BEB model. The F-test does not perform better for the
BEB synthetic data: the p-values are above 0.27 for all simulated
contaminated binaries. On the other hand, the likelihood-ratio test
allows discarding the PLANET model for practically all tested pa-
rameters, in some cases with a very high significance. Note that the
D statistics is well correlated with the S/N of the primary eclipse,
which are all above 50 for these examples. The largest p-value is 7.7
per cent, for a system with primary S/N = 65. It is to be expected
that the D statistics would fail to reject the PLANET model for sys-
tems with an even higher level of dilution, where the primary eclipse
would have S/N < 50, and the secondary eclipse would be com-
pletely absent. In those cases, one would expect the performances
of our method to resemble those of the planetary cases.

Frequentist hypothesis testing methods are therefore less efficient
in confirming the nature of the majority of the synthetic light curves
used in Section 7, specially for the planetary cases. The reason is
that these tests are based on point estimations of the best likelihood
value. The relevant quantity in Bayesian approach, instead, is the
hypothesis evidence (equation 3), which is the expectation value
of the likelihood over the entire prior space. The evidence has
information on the entire distribution of the likelihood, and not
only its maximum value. It provides, therefore, more information
about the hypotheses being tested, and permits, in particular, to
rigorously select one over the other.

Additionally, Bayesian analyses naturally separate the contribu-
tion of the data and the hypotheses priors to the odds ratio. This

permits studying the weight of prior odds on the final outcome,
as we have done, but also coming back to the same system with
updated knowledge on the priors, without need to reanalyze the
data.

8.4 Comparison with previous validation methods

Some features of the BLENDER tool and the method by M12 have
already been mentioned in Section 2. Here we describe in detail
some of the most important differences between PASTIS and these
two techniques.

Concerning the statistical formalism, the BLENDER approach
relies on a grid of χ2 differences between a series of FP models and
the planetary model, which is constant over the grid. The χ2 is com-
puted using only the Kepler light curve. The critical values are taken
from a χ2 distribution with number of degrees of freedom equal to
the number of free parameters in the FP model studied (Fressin
et al. 2011). By doing this, BLENDER uses a kind of likelihood-
ratio test,14 even if the models compared are not nested. Therefore,
although intuitively the χ2 difference seems a reasonable way to
quantify the relative merits of the models, the use of this statistics
to perform a rigorous model comparison is not justified from a sta-
tistical point of view. M12, on the other hand, obtains the Bayesian
evidence of each competing hypothesis by computing the integral
over the three parameters of the trapezoidal model employed to fit
the light curve. A clear advantage of this approach is the low dimen-
sionality of the problem, which allows direct integration. Because
the model is non-physical, the likelihood distribution is exactly the
same for all hypotheses. Only the prior distribution changes from
one hypothesis to the other, producing different values of the evi-
dence. On the other hand, the simplicity of the model implies that
not all information available in the data is being used, although the
three parameters of the trapezoid model do contain the essential
characteristics of a transit light curve, which may suffice for low-
S/N transits, such as those detected by Kepler. In PASTIS, as much
information as possible is taken into account by employing more
complex, physically motivated models of the data. This largely in-
creases the dimensionality of the problem, with all the difficulties
this implies, but should permit to conclude on candidates where
the M12 technique cannot. For example, our simulations from the
previous section show that, using data that will be characteristic
of future space missions, our technique should validate candidates
independently of the prior distribution (or the populations of M12).

BLENDER and the M12 technique share the way additional ob-
servations are taken into account: a given FP model is either com-
patible with them or not at all. In BLENDER, the Kepler light curve
is also used in this yes/no manner to eliminate FPs (e.g. Torres et al.
2011). This methodology raises the issue of where the limit shall be
put. For example, in BLENDER, a 3σ limit is used for the stellar
colours and the Spitzer transit depth; M12 uses 0.1 mag as the max-
imum allowed difference in the stellar colours. The choice of these
limits, although reasonable, remains arbitrary. Additionally, the FPs
located outside these limits will usually be much more numerous
than those inside the limits, which compensates (at least partly) their
inadequacy to explain the observations. PASTIS treats complementary
data and the transit light curve issued from discovering survey on
equal footing. The philosophy is to model all data simultaneously.

14 For it to be an actual likelihood-ratio test, the number of degrees of
freedom of the χ2 distribution used to compute the critical values should be
the difference of degrees of freedom between both models.
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In this way we guarantee that the uncertainties of all data sets are
correctly propagated to the final odds ratio, and we do not need to
mind about the limiting values at which FPs are discarded. In fact,
as the Bayesian approach presented here integrates over the entire
parameter space, all FPs are considered, weighting each scenario,
in a way, by its likelihood value.

All validation procedures use Galactic population syntheses mod-
els to compute the frequency of background FPs. BLENDER uses
the Besançon Galactic simulations together with a Monte Carlo
procedure that compare synthetically generated blends with the
BLENDER constraints (e.g. Borucki et al. 2013). M12 uses a sim-
ilar procedure but employing the TRILEGAL (Girardi et al. 2002)
model. As mentioned in Section 5, PASTIS also uses these models.
In any case, since the observed colour index is compared with that
of simulated stars, the interstellar extinction employed is of crucial
importance. Additionally, the number of possible blends depends
as well on the extinction in the line of sight. To model the extinc-
tion the Besançon Galactic model uses, by default, a disc of diffuse
absorbing matter, which is not suitable for low Galactic latitudes
(Robin et al. 2003). Torres et al. (2011) show that extinction does
not have a strong effect on their results, but they use a representative
constant extinction coefficient. Similarly, M12 uses a calibration of
the extinction at the infinity. Some regions of the Kepler field being
around l = 10◦ (e.g. Ballard et al. 2011), these techniques may
suffer from an inadequately chosen interstellar extinction model.
For PASTIS, we couple the Galactic models with a realistic three-
dimensional model of the Galactic extinction, which reproduces
correctly the distribution of stars obtained from observations (see
Section 5).

8.5 Caveats and limitations

The results of the analysis using synthetic light curves presented in
Section 7, and some of the implications described in this section
depend on some implicit assumptions that we discuss here.

In the first place, the synthetic signals have been injected in the re-
duced Presearch Data Conditioning Kepler light curve of KOI-189.
At this stage of the Kepler pipeline, the data have gone through a se-
ries of corrections (see Jenkins et al. 2010; Christiansen et al. 2013,
and references therein), which, we assume, preserves the features
of the injected signal identically. In reality, some level of distortion,
albeit small, or suppression of features, is to be expected. This is
specially the case for the diluted secondary eclipses, which have
low S/N and are therefore more prone to be affected by the Kepler
pipeline (Christiansen et al. 2013). By neglecting this effect, we are
probably overestimating the capacity of our method to distinguish
one model from the other, which relies on light-curve features such
as the duration of the ingress and egress phases, or the presence of
secondary eclipses and out-of-transit modulation.

Secondly, in our simulations, we have fixed the ephemerides of
the transits, and set the eccentricity equal to zero (the correct value).
In reality, eccentric orbits add to the complexity of the problem. For
example, an eccentric BEB not exhibiting secondary eclipses could
resemble more closely a planetary light curve than the same EB
on a circular orbit. This should be kept in mind when interpreting
our results. On the other hand, eccentric EB should be more easily
identified from RV data because the amplitude is larger for a given
q, and therefore there are increased chances that velocity of the
binary components will coincide with that of the target star at a
given point in the orbit, which would produce an effect in the
bisector velocity span. Concerning the ephemerides, the effect of
fixing it is not expected to have an important effect on our results,

because these parameters are usually well constrained. Additionally,
scenarios where the period of the EB is twice the nominal period
of the candidate seem in general unable to reproduce the transit of
a small planet (Fressin et al. 2011; Torres et al. 2011).

The simulated models were injected in real Kepler SC data. SC
data have a cadence resembling that of PLATO, which will have 32
‘normal’ telescopes read out with a cadence of 25 s (Rauer et al.
2013). However, this should be taken into account when interpreting
our results in the context of the Kepler mission, because most of the
Kepler targets do not have this high sampling rate but rather have one
point every about 30 min. This sampling rate smears out the transit
curve and reduces the resolution of the ingress and egress phases,
which are of fundamental importance to compare planetary and FP
models. As a consequence, our simulations surely overestimate the
capabilities of PASTIS for general application to Kepler candidates.
Of course, this issue is more stringent for small-size planets, for
which the duration ingress/egress phases are comparable with the
Kepler long-cadence data sampling rate. The results on giant planets
should not be strongly affected by this assumption.

Our results depend strongly on the method used to estimate the
Bayesian evidence (equation 3). The TPM estimator by Tuomi &
Jones (2012) has the advantage of being easy to compute based on
the posterior samples obtained with the MCMC. However, being
insensitive to the size and shape of the parameter priors employed
(Tuomi & Jones 2012), TPM underestimates the penalization ex-
ercised by the Occam’s factor on models with large number of
parameters. As all FP models have more parameters than the planet
model, the reported Bayes factors for the PLANET model are un-
derestimated. On the one hand, this reduces the possibility of vali-
dating the planet hypothesis simply because the underlying model
has fewer parameters than the competing FP hypotheses. On the
other hand, comparing models based on the values provided by the
TPM estimate might not be statistically rigorous. We have recently
started testing additional methods (e.g. Chib & Jeliazkov 2001) to
study this potential issue.

We have shown that for most currently available small-size tran-
siting candidates, statistical validation must rely heavily on the prior
odds. However, our knowledge on the factors on which these priors
depend is not without uncertainty, and correctly quantifying these
uncertainties in the final odds ratio value does not seem straight-
forward. At its current state, this is perhaps the main limitation of
the statistical validation procedure, independently of the procedure
or approach taken. This is certainly bound to change in the future:
Gaia should permit refining the Galactic population and reddening
models, as well as improve our knowledge on giant-planet popu-
lations and binary statistics, and PLATO should provide high-S/N
transits of small-size candidates, which will permit validation based
mostly on the data (see Section 7).

9 C O N C L U S I O N S

At present, planet validation is the only technique capable of es-
tablishing the planetary nature of the smallest transiting candidates
detected by the CoRoT and Kepler space missions. The planetary
hypothesis is compared with all possible FPs, and the planet is con-
sidered validated if it is found to be much more probable than all the
others. Unless one of the competing hypotheses can be rejected as a
possible explanation for the data, which is rarely the case, a rigorous
comparison of the different hypotheses has to be made in a Bayesian
framework. We have presented a method to self-consistently model
most of data usually available on a given candidate – the discovery
light curve, the RV follow-up observations, light curves obtained
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in different photometric filters, absolute photometric observations
of the target star – under different competing hypotheses relevant to
the problem of planet validation. Using these models, we compute
the Bayesian odds ratio via the importance sampling technique.
This procedure has been implemented in a PYTHON package named
PASTIS.

The posteriors of the model parameters are sampled with an
MCMC algorithm. MCMC algorithms are much more efficient in
sampling the posterior distribution of multidimensional problems
than other more straightforward methods, such as grid evaluation.
Therefore, we can use models with an arbitrary number of param-
eters. This allows us to add complexity to our models (such as
limb-darkening parameters, or planetary and stellar albedos) at vir-
tually no cost. Furthermore, the samples obtained with the MCMC
algorithm are used to estimate the Bayesian evidence via impor-
tance sampling. The MCMC algorithm implemented in PASTIS deals
with parameter correlations by regularly performing a PCA, and
takes into account the correlated nature of MCMC samples by thin-
ning the chains using the measured CL. This method was shown
to produce satisfactory results by comparing it to another existing
MCMC code (emcee; Foreman-Mackey et al. 2013).

The entire PASTIS planet-validation procedure was tested using
synthetic light curves of transiting planets and BEBs whose eclipses
are diluted by a brighter star. We separated the analysis in two parts,
naturally present in Bayesian model comparison: (a) the computa-
tion of the Bayes factor, which contains all the information con-
cerning the support the data provide to one model over the other
and (b) the computation of the odds ratio, which includes the prior
odds, independent of the data.

For part (a), we have found that the light curves of BEBs posing
as transiting planets strongly support the BEB model if the dilution
level is such that the secondary eclipse has S/N above about 5.
Light curves with secondary eclipse S/N of 2, on the other hand, give
marginal support for the correct model (see Fig. 6). The dependence
on the mass ratio q seen in Fig. 6 is dominated by the S/N of the
primary eclipse for the cases with low dilution (secondary S/N of
5 and 7). The curves with secondary S/N = 2 show the opposite
trend – i.e. data support increasing for larger q – because the primary
eclipse S/N varies proportionally less in this case.

The light curves of planetary transits give a varying level of
support for the PLANET model over the BEB model, depending on
the radius of the planet, the impact parameter and the transit S/N
(Fig. 3). The Bayes factor conclusively support the PLANET model
if the transit is (close to) central and the transit S/N is higher than
about 50–100. For a given S/N and impact parameter, the Bayes
factor of smaller planets is larger because the short ingress/egress
times of the transit are difficult to reproduce by the BEB model.
A systematic effect in the light curve, located close to the transit
ingress for b = 0.5 provoke a strong decrease in the support for
the PLANET hypothesis for b = 0.5, and hinders the interpretation
of the dependence of the Bayes factor with impact parameter. For
b = 0.75, only Earth-sized or Neptune-sized planets with high-S/N
transits are supported strongly by the data.

For Earth-size planets, we computed further the Bayes factor
between the PLANET model and models representing other FP hy-
pothesis. We found that triple hierarchical systems are discarded
by the data, as already noted, for example, by Torres et al. (2011).
On the other hand, the scenario consisting of a background star
hosting a transiting (giant) planet whose light is diluted by the
target star, received equal, or slightly stronger, support than the
correct PLANET model. Similarly, the Bayes factor between
the PLANET model and the model including a transiting planet

orbiting the secondary component of a wide-orbit binary is too
close to unity to allow preference for one model over the other. This
is true even for transit light curves with S/N = 150.

Part (b) of the analysis shows that the hypotheses prior odds, com-
puted for conditions typical of Kepler candidates, strongly favour
the PLANET model over the BEB model. This is mainly due to the
strong constrain brought forth by the AO follow-up observations.
As a consequence, the final odds ratio for the PLANET hypothesis
based on planetary light curves is above 150 for all the planet sce-
narios (Fig. 8), with the exception of the scenarios with b = 0.5,
affected by the systematic effect discussed above, for which the S/N
needs to be above 100–150. On the contrary, the odds ratio in favour
of the BEB model based on BEB light curves is consequently re-
duced. BEB scenarios with low and intermediate dilution level can
still be correctly identified, but for scenarios with secondary S/N =
2 the odds ratio does not conclusively support one model over the
other (Fig. 9).

Given this result, one might wonder if it is possible for an ac-
tual BEB to be identified as a transiting planet because the prior
odds p(PLANET|I)

p(BEB|I) is large enough. For example, if field around the
target was less crowded than the one assumed here, or if the AO
contrast curve was stronger, this might occur. However, one might
argue that actual BEBs could not produce in this case the follow-up
observations (in particular the AO contrast curve) used to compute
the prior odds. In any case, our simulations coupled with the com-
putation of the hypotheses ratios show the relative weight given by
the Bayesian model comparison to data and priors.

Furthermore, we have shown that RV follow-up observations can
lead to the correct identification of the cases where the light curve
alone does not suffice to conclude, even if a measurement of the
mass of the transiting object is unattainable. Indeed, many of these
FP scenarios exhibit RV and bisector signals that could be detected
with a relatively small number of RV observations, compared to
those that would be needed to detect the reflex motion of the star
(e.g. Queloz et al. 2009). Because the RV and bisector signal pro-
duced by a FP can occur at any moment of the orbit, depending
on the relative velocities of the target star and the blended system,
the scheduling constraints usually associated with the follow-up
of transiting candidates become less stringent. The BTP scenario
exhibits RV signals less frequently than other scenarios. This kind
of FP will certainly prove among the hardest to discard. In any
case, our results underline the importance of intensive follow-up
observations of transiting candidates, in particular of ground-based
velocimetry measurements.

PASTIS has already been employed for analysing data sets of tran-
siting planets and brown dwarfs (e.g. Dı́az et al. 2013; Hébrard et al.
2013), and to validate transiting candidates for which no reflex mo-
tion of the parent star is detected (such as CoRoT-22 b; Moutou
et al. submitted). It is currently being used to study real unresolved
candidates from the CoRoT space mission. A thorough comparison
with BLENDER and the M12 procedure, based on the analysis of
already validated candidates, will be presented in a forthcoming
paper.

We have already identified a few features of PASTIS that will be
improved in the future. The treatment of systematic errors in the
data might be an important issue to deal with in order to improve
the method presented here. For the moment, systematic effects are
treated as a source of additional Gaussian noise whose amplitude is
a model parameter. However, the example of the systematic feature
affecting planetary light curves with b = 0.5 shows that this simple
model is not sufficient. It also highlights the interest of performing
these simulations using real data. A more realistic error distribution
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modelling, using techniques such as the autoregressive-moving-
average model (e.g. Tuomi et al. 2013) could permit detecting more
subtle effects in the available data, and lead to a more robust de-
termination of the Bayesian odds ratio. Another example of the
need of a more sophisticated noise model is the case of Kepler-68 c
(Gilliland et al. 2013), whose validation is conditional to the nature
of a small eclipse exactly in opposite phase to the transits. The au-
thors claim that similar features are present in the light curve, which
would render that particular ‘eclipse’ non-significant. An adequate
noise model could permit to quantify this statement.

Some observations that are usually available for transiting candi-
dates, such as high angular resolution imaging, or centroid motion –
as provided, for example, by the Kepler pipeline – are currently not
modelled by PASTIS as is done for the light curves, RVs, etc. For the
time being, PASTIS includes the information provided by these data
sets in the prior odds computation, but self-consistently modelling
these data is envisaged. This should increase the robustness of our
determination of the evidences used for model comparison.

Future space missions such as PLATO will provide transits of
small-size planet candidates at very high S/N, due to the brightness
of their target stars. Fully exploiting these data for statistical valida-
tion will require detailed physical modelling of the light curve. We
have shown that PASTIS should be able to validate these candidates.
Subsequent ground-based RV observations, focused on already val-
idated candidates, would provide a measurement of their mass.
Combined with the precise measurement of the radius from the
space-based discovery light curve, the bulk density of Earth-size
objects would be known with unprecedented precision.
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APPENDI X A : TABLES

Table A1. Results based on the transiting planet synthetic data.

Model # Indep. samples Bayes factor/odds ratio [log10] χ2
PLANET χ2

BEB F-test D p-value
b snr Rpl PLANET BEB BPB ORPB σ+ σ− prob.

(R⊕) (dex) (dex)

0.00 10 1.0 100989 4858 0.45 4.01 0.02 0.06 0.93201 0.93480 0.44 1.40 0.92
0.00 10 4.4 120491 6598 0.39 2.79 0.02 0.06 0.93554 0.93324 0.55 0.68 0.98
0.00 10 7.8 136852 8342 0.20 2.95 0.02 0.13 0.93106 0.93212 0.48 2.37 0.80
0.00 10 11.2 138711 6493 0.07 3.30 0.04 0.06 0.93283 0.93602 0.43 1.49 0.91
0.00 20 1.0 85846 2112 0.93 4.49 0.09 0.10 0.93679 0.92976 0.65 2.10 0.84
0.00 20 4.4 114168 2360 0.71 3.11 0.05 0.07 0.93525 0.93631 0.48 1.95 0.85
0.00 20 7.8 107104 2319 0.63 3.38 0.03 0.07 0.93388 0.93213 0.54 0.68 0.98
0.00 20 11.2 104127 3254 0.57 3.79 0.05 0.10 0.93618 0.93125 0.60 0.54 0.99
0.00 50 1.0 54916 1450 1.20 4.75 0.04 0.06 0.93397 0.93337 0.51 −1.99 –
0.00 50 4.4 71055 1398 1.21 3.61 0.05 0.07 0.93373 0.93087 0.56 −3.48 –
0.00 50 7.8 89813 1510 1.68 4.43 0.05 0.08 0.93875 0.93623 0.55 −4.57 –
0.00 50 11.2 104625 2469 1.73 4.95 0.04 0.07 0.93840 0.93558 0.56 −6.24 –
0.00 100 1.0 4602 1558 7.80 11.36 0.05 0.09 0.93311 0.94038 0.35 −31.52 –
0.00 100 4.4 29266 1227 5.98 8.38 0.10 0.12 0.93372 0.93051 0.57 −24.75 –
0.00 100 7.8 52806 1385 5.05 7.79 0.04 0.16 0.93832 0.93668 0.54 −20.54 –
0.00 100 11.2 77357 1495 6.40 9.62 0.06 0.08 0.93700 0.94299 0.38 −27.25 –
0.00 150 1.0 2607 4186 19.59 23.15 0.07 0.09 0.93367 0.94215 0.33 −85.46 –
0.00 150 4.4 23076 5406 13.78 16.18 0.07 0.10 0.93847 0.94395 0.39 −59.42 –
0.00 150 7.8 49800 1030 10.54 13.29 0.07 0.11 0.93889 0.93692 0.54 −44.84 –
0.00 150 11.2 72934 2103 13.23 16.46 0.08 0.12 0.93685 0.92556 0.73 −58.03 –

0.50 10 1.0 112310 6268 −0.35 3.20 0.03 0.05 0.93910 0.94034 0.47 1.04 0.96
0.50 10 4.4 124581 9092 −0.37 2.03 0.01 0.08 0.93447 0.93599 0.47 2.34 0.80
0.50 10 7.8 139455 8309 −0.40 2.35 0.02 0.08 0.93494 0.93583 0.48 2.72 0.74
0.50 10 11.2 136480 8852 −0.43 2.79 0.02 0.05 0.93667 0.92381 0.76 3.14 0.68
0.50 20 1.0 104871 3289 −1.14 2.42 0.04 0.06 0.93540 0.93245 0.56 7.50 0.19
0.50 20 4.4 108591 2394 −1.10 1.30 0.03 0.05 0.93758 0.94582 0.33 6.52 0.26
0.50 20 7.8 114044 3790 −0.81 1.94 0.05 0.06 0.93636 0.93925 0.44 6.60 0.25
0.50 20 11.2 107599 2782 −0.71 2.51 0.05 0.06 0.93458 0.92945 0.61 4.27 0.51
0.50 50 1.0 32748 1100 −1.13 2.43 0.04 0.10 0.93613 0.93090 0.61 3.91 0.56
0.50 50 4.4 20593 1037 −1.68 0.72 0.04 0.07 0.93505 0.92921 0.62 7.54 0.18
0.50 50 7.8 43817 1523 −1.90 0.85 0.03 0.08 0.94088 0.94298 0.46 6.42 0.27
0.50 50 11.2 51981 2022 −1.58 1.65 0.04 0.08 0.93109 0.93701 0.38 5.06 0.41
0.50 100 1.0 9408 1776 0.47 4.03 0.04 0.06 0.94104 0.93015 0.72 0.45 0.99
0.50 100 4.4 15604 3074 −0.46 1.94 0.05 0.08 0.93651 0.93251 0.58 3.26 0.66
0.50 100 7.8 24370 2025 −1.13 1.61 0.04 0.08 0.92973 0.94368 0.23 4.52 0.48
0.50 100 11.2 60682 1328 −1.17 2.06 0.05 0.08 0.93869 0.93768 0.52 4.12 0.53
0.50 150 1.0 3934 1663 5.76 9.32 0.09 0.09 0.93617 0.93756 0.47 −24.11 –
0.50 150 4.4 10341 1385 2.18 4.58 0.09 0.10 0.93406 0.94182 0.34 −7.88 –
0.50 150 7.8 31760 1705 −0.06 2.68 0.04 0.06 0.93941 0.93767 0.54 1.26 0.94
0.50 150 11.2 65257 1173 0.35 3.57 0.07 0.09 0.93728 0.94398 0.36 −1.17 –
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Table A1 – continued

Model # Indep. samples Bayes factor/odds ratio [log10] χ2
PLANET χ2

BEB F-test D p-value
b snr Rpl PLANET BEB BPB ORPB σ+ σ− prob.

(R⊕) (dex) (dex)

0.75 10 1.0 72652 8919 −0.58 2.98 0.03 0.06 0.93686 0.93962 0.44 1.66 0.89
0.75 10 4.4 79115 5611 −0.65 1.75 0.04 0.06 0.94027 0.93326 0.65 2.12 0.83
0.75 10 7.8 84596 7868 −0.73 2.01 0.04 0.06 0.93593 0.93926 0.43 4.16 0.53
0.75 10 11.2 66029 9165 −0.82 2.40 0.04 0.07 0.93489 0.93765 0.44 4.74 0.45
0.75 20 1.0 121978 3093 0.84 4.40 0.04 0.07 0.93679 0.93699 0.50 2.69 0.75
0.75 20 4.4 130159 3521 0.62 3.02 0.04 0.06 0.93390 0.93987 0.38 2.05 0.84
0.75 20 7.8 110822 4129 0.35 3.09 0.03 0.08 0.93557 0.93523 0.51 0.27 1.00
0.75 20 11.2 124580 4031 −0.08 3.15 0.02 0.09 0.93623 0.92781 0.67 1.43 0.92
0.75 50 1.0 110823 1051 1.64 5.20 0.07 0.10 0.93344 0.93572 0.45 −4.31 –
0.75 50 4.4 117143 2695 0.71 3.11 0.06 0.10 0.93405 0.94063 0.36 0.59 0.99
0.75 50 7.8 121605 1539 0.12 2.86 0.05 0.07 0.93334 0.93226 0.52 1.92 0.86
0.75 50 11.2 75865 3027 0.74 3.96 0.04 0.10 0.93796 0.93438 0.58 0.59 0.99
0.75 100 1.0 91985 6659 6.95 10.51 0.05 0.11 0.93651 0.93583 0.51 −26.80 –
0.75 100 4.4 105617 3390 2.42 4.82 0.06 0.14 0.93937 0.92997 0.69 −6.38 –
0.75 100 7.8 96691 3436 0.33 3.08 0.02 0.13 0.93566 0.92618 0.69 0.43 0.99
0.75 100 11.2 107104 3073 0.64 3.86 0.04 0.07 0.94024 0.94558 0.39 −1.64 –
0.75 150 1.0 85042 9325 15.71 19.27 0.06 0.15 0.93476 0.93627 0.47 −66.96 –
0.75 150 4.4 107104 5299 5.72 8.12 0.09 0.17 0.93810 0.94018 0.46 −21.56 –
0.75 150 7.8 106138 1737 1.10 3.85 0.06 0.09 0.93827 0.93672 0.53 −2.22 –
0.75 150 11.2 95204 1051 1.64 4.86 0.04 0.08 0.94156 0.94707 0.39 −5.68 –

Table A2. Results based on the BEB synthetic data.

Model # Indep. samples Bayes factor/odds ratio [log10] χ2
BEB χ2

PLANET F-test D p-value
b S/Nsec S/Npri q BEB PLANET BBP ORBP σ+ σ− prob.

(dex) (dex)

0.00 2.0 106 0.1 1771 105616 1.81 −1.38 0.06 0.16 0.92851 0.93720 0.32 16.26 6.2e−03
0.00 2.0 89 0.3 3946 100285 2.39 −1.10 0.05 0.12 0.93804 0.93412 0.58 11.78 3.8e−02
0.00 2.0 65 0.5 8211 106360 2.32 −1.16 0.05 0.14 0.93563 0.93505 0.51 9.94 7.7e−02
0.00 5.0 266 0.1 3158 31920 13.00 9.81 0.09 0.29 0.93787 0.93068 0.65 66.93 4.5e−13
0.00 5.0 223 0.3 3010 17043 6.04 2.84 0.10 0.23 0.93847 0.93773 0.52 33.48 3.0e−06
0.00 5.0 162 0.5 2439 24697 6.07 2.88 0.14 0.19 0.93231 0.93709 0.40 26.38 7.5e−05
0.00 7.0 373 0.1 2651 1884 21.83 18.64 0.08 0.23 0.94135 0.94273 0.47 93.81 0.0e+00
0.00 7.0 313 0.3 2637 98230 11.05 7.85 0.09 0.20 0.93195 0.93298 0.48 54.08 2.0e−10
0.00 7.0 227 0.5 1511 14681 9.00 5.81 0.09 0.16 0.94476 0.93913 0.62 42.10 5.6e−08

0.50 2.0 100 0.1 1370 104625 2.38 −0.81 0.05 0.15 0.92869 0.93067 0.46 14.94 1.1e−02
0.50 2.0 83 0.3 4621 44229 3.21 −0.27 0.04 0.16 0.93544 0.93497 0.51 14.52 1.3e−02
0.50 2.0 59 0.5 9967 73582 2.50 −0.98 0.04 0.13 0.93787 0.93228 0.62 10.54 6.1e−02
0.50 5.0 251 0.1 2284 91984 11.69 8.50 0.08 0.21 0.94182 0.93866 0.57 58.94 2.0e−11
0.50 5.0 208 0.3 1828 1661 6.40 3.21 0.18 0.22 0.93956 0.92872 0.72 26.90 6.0e−05
0.50 5.0 148 0.5 4322 2944 5.82 2.63 0.15 0.20 0.93812 0.93850 0.49 23.14 3.2e−04
0.50 7.0 352 0.1 2128 20641 20.74 17.55 0.08 0.24 0.94275 0.93920 0.57 91.31 0.0e+00
0.50 7.0 292 0.3 1889 13937 9.15 5.96 0.03 0.33 0.93087 0.93965 0.32 45.07 1.4e−08
0.50 7.0 208 0.5 3500 43210 8.41 5.22 0.08 0.15 0.92630 0.93792 0.27 37.97 3.8e−07

0.75 2.0 88 0.1 1874 119375 1.83 −1.36 0.05 0.14 0.94558 0.93112 0.78 16.82 4.9e−03
0.75 2.0 71 0.3 7782 99284 2.25 −1.23 0.06 0.13 0.93433 0.93419 0.50 10.96 5.2e−02
0.75 2.0 53 0.5 7371 85539 2.38 −1.11 0.04 0.14 0.93973 0.93857 0.53 12.63 2.7e−02
0.75 5.0 222 0.1 1937 62499 11.55 8.36 0.06 0.21 0.92450 0.93293 0.33 54.15 1.9e−10
0.75 5.0 177 0.3 2366 3849 5.19 2.00 0.11 0.16 0.93712 0.93276 0.59 23.15 3.2e−04
0.75 5.0 132 0.5 8816 98924 7.19 3.99 0.04 0.16 0.93341 0.93481 0.47 33.68 2.8e−06
0.75 7.0 311 0.1 1525 37110 19.13 15.93 0.08 0.35 0.92688 0.93736 0.29 85.93 0.0e+00
0.75 7.0 249 0.3 4397 68283 7.85 4.65 0.08 0.18 0.93759 0.93526 0.55 38.16 3.5e−07
0.75 7.0 185 0.5 7654 11715 7.93 4.74 0.06 0.17 0.93521 0.93271 0.55 34.68 1.7e06
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