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Guaranteeing that the parties of a network application respect a given protocol is a crucial

issue. Session types offer a method for abstracting and validating structured communication

sequences (sessions). Object-oriented programming is an established paradigm for large scale

applications. Union types, which behave as the least common supertypes of a set of classes,

allow the implementation of unrelated classes with similar interfaces without additional

programming. We have previously developed an integration of the features above into a

class-based core language for building network applications, and this successfully

amalgamated sessions and methods so that data can be exchanged flexibly according to

communication protocols (session types).

The first aim of the work reported in this paper is to provide a full proof of the type safety

property for that core language by renewing syntax, typing and semantics. In this way, static

typechecking guarantees that after a session has started, computation cannot get stuck on a

communication deadlock.

The second aim is to define a constraint-based type system that reconstructs the appropriate

session types of session declarations instead of assuming that session types are explicitly

given by the programmer. Such an algorithm can save programming work, and

automatically presents an abstract view of the communications of the sessions.

1. Introduction

When developing network applications it is crucial to have a linguistic mechanism to

write safe communication protocols. The current mainstream programming languages,

such as Java, still leave the programmer with most of the responsibility for guaranteeing

that the communication will evolve as agreed by all the involved agents. The standard

type systems can only provide a means of declaring the types of the exchanged data, but
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they cannot guarantee that a communication protocol is respected so that a client–server

application avoids getting stuck because of an error in the communication sequence.

Session types (Honda 1993; Honda et al. 1998) were introduced as a mechanism for

abstracting structured communication sequences (sessions) and for validating communic-

ation protocols. In this approach, communication channels are given types representing

the values sent or received. For instance, the type ?int.!bool expresses the fact that

an integer will be received and then a boolean value will be sent (as usual in process

calculi, ? and ! are used here for input and output, respectively). In order to respect

a communication protocol, a session must involve channels of dual session types, thus

guaranteeing that after a session has started, the values sent and received will be of the

appropriate type and the communication will not get stuck. For instance, if one channel

has the type ?int.!bool, the other must have the dual type !int.?bool. Since the

specification of a session is a type, the conformance test of programs with respect to

specifications becomes type checking.

Furthermore, it is important in network applications for us to be able to rely on the type-

safe flexibility of exchanged data. This means we need a mechanism for abstracting over

the actual types that are communicated over a network protocol. This is even more crucial

when execution paths are chosen according to the run-time type of the exchanged objects.

For this reason, it seems natural for us to try to merge communication mechanisms

into the popular object-oriented programming paradigm. However, mainstream object-

oriented class-based programming languages do not provide linguistic constructs that

deal directly with communications and protocols, and writing network communication

programs typically involves relying on specific libraries. Instead, we would like to write

class definitions that include communication primitives in a natural way. With this in

mind, an amalgamation of communication centred and object-oriented programming was

first proposed in Drossopoulou et al. (2007), where methods are unified with sessions and

choices are based on the classes of exchanged objects.

In an object-oriented class-based context, reusability is based both on subclassing and

on the substitutability implied by subtyping, which coincides with subclassing (or interface

implementation) in Java-like languages. Thus, this form of reuse must be designed from

the start by choosing the right base classes or interfaces, since, although two classes may

share some features (methods and fields), if they do not belong to the same hierarchy, their

reuse will require a refactoring of existing code. A solution to deal with these problems

is provided by union types, which represent the set unions of objects of several types: a

union type behaves as the least common supertype of a set of objects, without requiring

the writing of a specific base class or interface. With union types, in an object-oriented

programming scenario, developing independent classes with similar interfaces requires no

additional programming (Igarashi and Nagira 2007).

For these reasons, union types seem to be very useful when communications involve

data exchange in the shape of objects as class instances: we can express communications

between parties that manipulate heterogeneous objects by just sending and receiving

objects that belong to subclasses of one of the classes in the union type. For instance,

consider a communication between a bank and a client, where the bank can answer yes

or no to a client request, according to the account balance. If yes and no are objects of
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classes OK and NoMoney, respectively, then the class of the object answer is naturally the

union of the two classes OK and NoMoney, that is, OK ∨ NoMoney. Without union types,

typing answer would require a superclass of both OK and NoMoney to be already defined,

and, as well as the need for manual programming, and possible code refactoring, this

superclass might also include unwanted objects. This does not happen with a union type

(least common supertype). In this way, the flexibility of object-oriented depth-subtyping

is enhanced by greatly improving the expressiveness of choices based on the classes of

sent/received objects.

In this paper we merge union types in the amalgamation of sessions and methods

in order to enhance the network communications of class-based programs relying on

session types. In Bettini et al. (2008a), we introduced FSAM∨ (Featherweight Sessions

Amalgamated with Methods plus union types), which formalises the use of union types

for session-centred communications in a core object-oriented calculus. FSAM∨, like the

language of Drossopoulou et al. (2007), is agnostic with respect to other aspects of the

language, such as whether the language is distributed or concurrent, and the features

used for synchronisation. In FSAM∨, sessions are defined in a class (which may also

have fields). Sessions and methods are ‘amalgamated’ so that invocation is made on an

object and the execution takes place immediately and concurrently with the requesting

thread (FSAM∨ is indeed multi-threaded and the communication is asynchronous). Thus,

it keeps the method-like invocation mechanism while involving two threads, which is

typical for session-based communication mechanisms. Just like the dynamic binding of

object-oriented method invocation, the body is determined by the class of the receiving

object (in this way we avoid the usual branch/select primitives (Honda et al. 1998)),

and any number of communications may be interleaved with computation. We believe

that this amalgamated session model reflects our intuition of services in a natural way.

Furthermore, it can neatly encode ‘standard’ methods.

This paper extends the work in Bettini et al. (2008a) in many ways. First, the syntax

(and consequently the typing and semantics) are slightly modified. Second, we present

a full formalisation of FSAM∨, together with proofs of the type soundness property

(from a technical point of view, the amalgamation of union types and session-centred

communications poses specific problems in formulating reduction and typing rules to

ensure that communications are safe but flexible). Finally, we also introduce a type

inference system for the session types of the sessions in classes. In particular, while the

type system derives session types for expressions assuming that all session declarations

are decorated with explicit session types (and expressions can have many types due to the

presence of subsumption), the inference algorithm gives an expression its minimal type

and calculates the constraints that must be satisfied in order to reconstruct the related

session type (which will be proved unique).

With the type inference system, the programmer is no longer responsible for declaring

the session types. Therefore, this inference has a pragmatic motivation since, due to their

‘behavioural’ nature, session types are often quite long to write out when the communic-

ation protocol is not a simple one (especially when recursive types are involved). Thus,

having a type inference system for session types can save some programming work, and

automatically presents an abstract view of the communications of the sessions. However, in

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000886
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000886
https:/www.cambridge.org/core


L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino and B. Venneri 1166

an implementation of our approach, the inference algorithm does not necessarily prevent

the programmer from writing session types. For instance, the programmer might decide to

write the session types explicitly, and then use the inference system as a tool for verifying

the written protocols. Alternatively, the inference system might insert the inferred types

in the text of the program so that the programmer can have an abstract view of the

protocol and verify that the protocol is as it was intended. Finally, a mixed approach

could be employed in which the programmer writes the explicit session types for at least

one side of the protocol, and then lets the type inference system generate the session type

for the other part. Summarising, in an implementation, the session type inference system

does not necessarily require that all the session type declarations are removed from a

program, but is meant as a tool to help the programmer while designing and implementing

communication protocols. The aim of our presentation of the type inference system in

this paper is just to study its theory and properties; we do not consider how it might be

employed in practice by a language designer.

1.1. Structure of the paper

The calculus FSAM∨ is described together with its operational semantics in Sections 2, 3

and 4. Section 5 presents the type system, whose properties are then proved in Section 6.

Sections 7 and 8 are devoted to the type inference system. Finally, in Sections 9 and 10,

we discuss related work and draw some conclusions.

2. The calculus FSAM∨

In this section we present the syntax of FSAM∨ (Figure 1), which is a minimal concurrent

and imperative core calculus based on Featherweight Java (Igarashi et al. 2001), which

we will refer to as FJ for short. FSAM∨ supports the basic object-oriented features and

session requests, session delegation, branching sending/receiving and loops.

Figure 1 shows run-time expressions against a grey background – these are produced

during the reduction process and do not occur in user expressions. We use the standard

convention of writing ξ to denote a sequence of elements ξ1, . . . , ξn.

Types, ranged over by T, are defined as in Igarashi and Nagira (2007): they are built

out of class names by the union operator (denoted by ∨ ).

Programs are defined from a collection of classes. The metavariables C and D, possibly

with subscripts, range over class names. Each class has a suite of fields of the form T f,

where f represents the field name and T its type, and a suite of session declarations S. As

in FJ, the fields declared by a class are added to those of the superclass and the resulting

sequence of fields is assumed to contain no duplicate names. We declare sessions in the

same way as we declare methods in Java classes, with the new remarkable feature that

their bodies can include communication operations. Since, as we shall see at the end of

this section, sessions can encode methods, for simplicity, we will omit standard methods

in our classes. Session declarations are of the form T t s { e }, where s is the session

name, e the session body, T the return type and t is the session type, which describes

the communication protocol in the way standard method types describe the protocols
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(type) T ::= C | T ∨ T

(class) L ::= class C � D { T f; S }
(session) S ::= T t s { e }
(expression) e ::= x | this | contT | o | e; e | e.f:= e | e.f | new C(e)

| e.s {e} | e • s { k }
| k. sendC(e){C1 ⇒ e � C2 ⇒ e}
| k. recvC(x){C1 ⇒ e � C2 ⇒ e}
| k. sendW(e){C1 ⇒ e � C2 ⇒ e}
| k. recvW(x){C1 ⇒ e � C2 ⇒ e}

(parallel threads) P ::= e | P || P
(session type) t ::= ε | t.t | α | †{C1 ⇒ t � C2 ⇒ t} | μα.†{C1 ⇒ t � C2 ⇒ t} | �

Fig. 1. Syntax, where syntax occurring only at run time appears shaded .

for method-call interactions. For conciseness, we use the symbol � to represent class

extension, as in Igarashi et al. (2001). The class Object is implicitly defined in every

program; it has no fields and no sessions. A class definition always includes the superclass

(even when it is Object).

Expressions include variables, which include both standard term variables x and the

special variables this and contT. The variable this is considered implicitly bound in any

session declaration. sendW and recvW are the only binders for the free occurrences of contT

inside their bodies, where contT represents the continuation by recursive computation.

The intuition is that sendW and recvW expressions will, when necessary, be unfolded

during evaluation by replacing the free occurrences of contT in their bodies with the

whole expressions. Note that for any type T, a special variable contT is provided: it is

decorated by the type T in order to represent the recursive computation of an expression

of type T.

As usual, an expression is closed if it does not contain any free variables.

Object identifiers, denoted by o, are generated at run time when creating objects (by

new expressions).

The expression e.s {e′} is a session request, where e′ is called the co-body of the request:

by the operational rules, e is evaluated to an object o, and the session body of s in o’s

class is executed concurrently with e′ by introducing a new pair of fresh channels, k and

its dual k̃ (one for each communication direction), to perform communications between

the session body and the co-body. This means that the evaluation of session requests has

a crucial effect on the syntax: it generates parallel threads and introduces communication

channels (which are implicit in the source language).

The expression e • s {k} represents the session delegation in the sense that the execution

of the session s is delegated to the object resulting from the evaluation of e. This means

that in order for the current object to continue the communication with its partner safely,

it needs to borrow a capability from another object. In this sense, we are using the term

‘delegation’ in the same way as it is usually used in the session types literature. However,

our notion of delegation diverges slightly from the standard one. In our case, the current

object asks another object to provide a functionality in its place, without releasing control
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of the session: the session channel is not moved around and the current thread executes the

code of the delegated object. Technically, this is very close to standard method invocation.

By contrast, the standard form of session delegation requires that a private channel is

sent to another thread, which will take care of the session communication on the received

channel, while the current thread is excluded from the session. It is not easy to express

this higher order use of channels in our setting, where channels are only created at run

time. The channel k corresponds to the subject of communication expressions inside the

session body. See Section 4 for further details (in particular, for an explanation of the

reduction rule SessDel-R).

The body of a communication expression is a pair of alternatives {C1 ⇒ e1 � C2 ⇒ e2},
whose choice depends on the class of the object that is sent or received. The expression

sendC(e){C1 ⇒ e1 � C2 ⇒ e2} evaluates e to an object and sends it on the active channel,

and then continues with ei, where Ci is the class that best fits the class of the object

sent (if C1 = C2, the whole expression evaluates to e1). The counterpart of sendC is the

expression recvC(x){C1 ⇒ e1 � C2 ⇒ e2}, where the choice is based on the class of the

object received. The expression sendW(e){C1 ⇒ e1 � C2 ⇒ e2} (where W means While)

is similar to sendC(e){C1 ⇒ e1 � C2 ⇒ e2}, except that it allows for the possibility of

an enclosed contT, which continues the execution at the nearest enclosing sendW. The

expression recvW(x){C1 ⇒ e1 � C2 ⇒ e2} has the obvious meaning.

Note that in our setting, recursion on objects (via this) is not suitable for expressing

cycles within single sessions since it would give rise to different sessions.

Parallel threads, ranged over by P , are run-time expressions or parallel compositions

of run-time expressions, where a run-time expression is either a user expression (that is,

an expression in Figure 1 without shaded syntax) or an expression containing channels

and/or object identifiers.

In session types, we use † as a symbol that stands for either ! or ?. We use ε to denote

the empty communication, and the concatenation t1.t2 denotes the communications in

t1 followed by those in t2. Concatenation of session types is used for typing sequential

composition of expressions – see rule Seq-T in Figure 9. The session type ε is the neutral

element of concatenation, so ε.t = t = t.ε for all t.

The types !{C1 ⇒ t1 � C2 ⇒ t2} and ?{C1 ⇒ t1 � C2 ⇒ t2} are used to express the

sending and receiving of an object, respectively: depending on the class Ci of this object,

the communication will proceed with the one of type ti. In μα.†{C1 ⇒ t1 � C2 ⇒ t2} the

session type variable α can occur inside ti with the usual meaning of representing the

whole session type. We consider recursive session types modulo fold/unfold: that is,

μ α.t = [μ α.t/α]t. So we equate

μα.†{C1 ⇒ t1 � C2 ⇒ t2}

to

†{C1 ⇒ t1 � C2 ⇒ t2}

when α does not occur in

†{C1 ⇒ t1 � C2 ⇒ t2}.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000886
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000886
https:/www.cambridge.org/core


Deriving session and union types for objects 1169

1 sessiontype Sum ST = μα.?{Int ⇒ α, Char ⇒ ?{Paper ⇒ ε, Video ⇒ ε} }

2

3 sessiontype Print ST = ?{Paper ⇒ ε, Video ⇒ ε}

4

5 class Calculator{

6 Int value;

7 Video∨Paper Sum ST sum{

8 recvW(x){

9 Int ⇒ value:=value+x; contVideo∨Paper;

10 �

11 Char ⇒ this•print;
12 }

13 }

14 Video∨Paper Print ST print{

15 recvC(y){

16 Paper ⇒ . . .; new Paper(); // print the result on paper

17 �

18 Video ⇒ . . .; new Video(); // print the result on the screen

19 }

20 }

21 }

Fig. 2. The class Calculator.

The type � is only used as session type for contT: it plays the role of a place holder

that will be replaced by a type variable when the while expression is completed – see

rules SendW-T and ReceiveW-T in Figure 9.

The following example shows the expressiveness of FSAM∨ in a typical collaboration

pattern – see Bettini et al. (2008a) for further motivating examples of our language

constructs.

Example 2.1. The interaction we show is between a calculator and a client (Figures 2

and 3). The Client sends integer values, which are summed by the Calculator. This

interaction then iterates until the Client sends a character to signal that the addends are

complete. The Client then sends the Calculator an object indicating the display-mode

to be used for the result (Paper or Video). Finally, the Calculator displays the result.

The session types Sum ST and Print ST (Figure 2) describe the protocol from the point

of view of the Calculator. The recursive type

μα. ?{Int ⇒ α, Char ⇒?{Paper ⇒ ε, Video ⇒ ε}}

describes the Calculator getting the addends from the Client. The first branch represents

the case in which the Calculator receives an integer from the Client, in which case the

iteration continues, that is, the Calculator receives the next input. The second branch

represents the case in which the Client sends to the Calculator a character to signal

that the addends are complete, in which case a further object is expected specifying the
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1 sessiontype Request ST = μα.!{Int ⇒ α, Char ⇒ !{Paper ⇒ ε, Video ⇒ ε} }

2

3 class Client{

4 Int∨Char msg;

5 Paper∨Video mode;

6 Calculator c;

7 . . .

8

9 c.sum{

10 sendW(msg){

11 Int ⇒ update(msg); contVideo∨Paper; // update the content of msg

12 �

13 Char ⇒ sendC(mode){

14 Paper ⇒ . . .;

15 �

16 Video ⇒ . . .;

17 }

18 }

19 }

20 . . .

21 }

Fig. 3. The class Client.

mode for displaying the result. In the two branches {Paper ⇒ ε, Video ⇒ ε}, there is no

further communications (the session type is ε) since the only action is the printing (or

displaying) of the result.

Figure 2 shows the implementation of the class Calculator. It has the field value,

which is used to store the sum of the addends. The class supports two sessions, called

sum and print. The session sum has session type Sum ST and return type Video∨Paper:
this union type represents the possible results of the session, that is, the possible display

modes of the result of the sum. Note that the return type of the session represents the

type of the session body (exactly as return types in standard object-oriented languages).

Indeed, it is used for dealing with session delegation when the body of the session is

incorporated in the current execution. In this case, we know that the execution of the

session body of sum will reduce to a value of type Video∨Paper. On the other hand,

the session type is needed to deal with session invocation, and to check the correctness

of the communication. In this case, we see that an invocation of the session sum must

perform a dual communication with respect to its session type Sum ST. The session print

has session type Print ST and return type Video∨Paper again. In the body of sum, the

Calculator receives an object (line 8) which can be:

(i) of type Int, in which case it will be summed to value and then the recursion will

continue (contVideo∨Paper); or
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(ii) of type Char, in which case the remaining part of the session is delegated to the

Calculator itself, which goes on with session print (line 10).

The body of the session print begins by receiving an object indicating the display mode

(line 15): according to the class of the received object the field value will be printed on

paper or displayed on the video.

The session type Request ST (Figure 3) describes the protocol from the point of view

of the Client. The recursive type

μα. !{Int ⇒ α, Char ⇒!{Paper ⇒ ε, Video ⇒ ε}}

describes the Client sending the addends to the Calculator. The first branch represents

the case in which the Client sends an integer to the Calculator, in which case the

iteration goes on updating and sending the next message. The second branch represents

the case in which the Client sends the Calculator a character to signal that the addends

are complete, in which case a further object is sent to indicate the mode the result must

be displayed in. Figure 3 shows the implementation of the class Client. It has a field of

type Calculator, and two fields msg and mode, which are used to store the values sent to

the Calculator. The types of the msg and mode fields, Int ∨ Char and Paper ∨ Video,

respectively, describe the possible classes of the sent values. Line 9 provides an example of

session invocation: the Client invokes on the Calculator c the session sum. The body

of the session invocation (lines 10-16) has session type Request ST. This will be executed

in parallel with the body of the session sum in the class Calculator. Note that the class

Client is not fully specified: we just show the code of the session invocation, which must

appear somewhere inside a session declaration of the Client.

Clearly, this example would not be typeable if we replaced Char by another type, say

Bool, in the code of the Client.

We adopt some simplifications in FSAM∨. First, unary choices and n-ary choices are

omitted since they can be simply encoded using binary choices (as shown in Bettini

et al. (2008a)). Moreover, types used for selecting branches in a choice are required to be

class names, rather than union types. This is not a limitation since, for instance,

{C1 ∨ C2 ⇒ e � C3 ⇒ e′}

can be encoded as

{C1 ⇒ e � C2 ⇒ e � C3 ⇒ e′}.
Unlike FJ, we do not have cast and overriding in FSAM∨ since they are orthogonal to

the issues we are concerned with. We do not have explicit constructors either, so in the

object instantiation expression new C(e), the values o to which e reduce are the initial

values of the fields. Furthermore, we omit standard methods since they are viewed as

special cases of sessions. In fact, a method declaration can be encoded as a session with

nested recvCs (one for each parameter) and with one sendC returning the method body.

Similarly, method calls are just special cases of session requests: the passing of arguments

is encoded as nested sendCs (one for each argument) and the object returned by the

method body is retrieved using one recvC.
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T <: T
T <: T′ T′ <: T′′

T <: T′′

class C � D { T f; S }
C <: D

T <: T ∨ T′ T′ <: T ∨ T′ T′ <: T T′′ <: T

T′ ∨ T′′ <: T

Fig. 4. Subtyping.

3. Auxiliary functions

As in FJ, a class table CT is a mapping from class names to class declarations with

domain dom(CT). A program is then a pair (CT, e) of a class table (containing all the

class definitions of the program) and an expression e (an expression belonging to the

source language representing the program’s main entry point). The class Object does not

appear in CT. We assume a fixed CT that satisfies some usual sanity conditions as in FJ

(Igarashi et al. 2001). Thus, in the following, instead of writing CT(C) = class . . . we

will simply write class C . . . .

From any CT we can read off the subtype relation between classes as the transitive

closure of � clause. Moreover, subtyping is extended to union types as in Figure 4.

As usual, by considering union types modulo the equivalence relation induced by <:, we

get the commutativity and associativity of ∨ . Therefore, each union type can be written

as C1 ∨ . . . ∨ Cn for n � 1, and we say that the classes C1, . . . , Cn build the union type

C1 ∨ . . . ∨ Cn. A union type C1 ∨ . . . ∨ Cn is proper if n > 1.

We define auxiliary lookup functions (see Figure 5) for looking up fields and sessions

in CT : these functions are used in the typing rules and the operational semantics. As in

FJ, these functions have to inspect the class hierarchy when the required element is not

present in the current class. The difference is that all these functions, apart from function

sbody , take a type as argument (not just a class name) because the receiver expression of

a field/session access may be of a proper union type.

For field-type lookup, we distinguish between the contexts where the field is used for

reading (ftyper) from those where it is used for writing (ftypew). When the field is used in

read mode, in case of a proper union type, we simply return the union type of the result

of ftyper invoked on the argument types (if both retrievals succeed). On the other hand,

when a field is updated, due to the contravariance relation, in the case of a proper union

type, we must return the intersection of the results of ftypew on the arguments. However,

in the absence of multiple inheritance, either the results are related by subtyping, that

is, the intersection is exactly one of the classes, or they are not related at all, that is,

the intersection is empty, so we can avoid introducing intersection types. For example,

if the objects of class Ci have a field f of class Di for i ∈ {1, 2} with D1 <: D2, then

ftyper(C1 ∨ C2) = D1 ∨ D2 and ftypew(C1 ∨ C2) = D1. Otherwise, if D1 and D2 are unrelated,

we again get ftyper(C1 ∨ C2) = D1 ∨ D2, but ftypew(C1 ∨ C2) is undefined.

The functions stype and rtype return a set of session types and the return type of a

session, respectively, and sbody returns the body of a session. The stype function returns

a singleton when it is invoked with a class name as argument. But the interesting case
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fields(Object) = •
fields(D) = T′ f′ class C � D { T f; S }

fields(C) = T f, T′ f′

fields(C) = T f

ftypew(fi, C) = ftyper(fi, C) = Ti

ftyper(f, T1 ∨ T2) = ftyper(f, T1) ∨ ftyper(f, T2)

ftypew(f, Ti) <: ftypew(f, Tj) i �= j i, j ∈ {1, 2}
ftypew(f, T1 ∨ T2) = ftypew(f, Ti)

class C � D { T f; S } T t s { e } ∈ S

stype(s, C) = {t}
class C � D { T f; S } s �∈ S

stype(s, C) = stype(s, D)

stype(s, T1 ∨ T2) = stype(s, T1) ∪ stype(s, T2)

class C � D { T f; S } T t s { e } ∈ S

rtype(s, C) = T

class C � D { T f; S } s �∈ S

rtype(s, C) = rtype(s, D)

rtype(s, T1 ∨ T2) = rtype(s, T1) ∨ rtype(s, T2)

class C � D { T f; S } T t s { e } ∈ S

sbody(s, C) = e

class C � D { T f; S } s �∈ S

sbody(s, C) = sbody(s, D)

Fig. 5. Lookup functions.

is when it is invoked with a proper union type, when it will return the union of the sets

corresponding to the types of the classes that build the union type so that we have all

the session types (see Figures 9 and 12 for how it is used in the type system). The rtype

function behaves covariantly since the resulting object cannot be used in writing mode.

Note that sbody is only invoked with a class name as type argument since we invoke

sessions on objects only, and an object has a class name as its type.

It is easy to verify that all lookup functions applied to equivalent union types return

either equivalent union types or the same sets of session types, whenever they are defined.

4. Operational semantics

Objects passed in asynchronous communications are stored in a heap. A heap h is a finite

mapping whose domain consists of objects and channel names. Its syntax is given by

h ::= [ ] | o 	→ (C, f = o) | k 	→ o | h ::h

where :: denotes heap concatenation.

During evaluation, any expression new C(o) will be replaced by a new object identifier

o. The heap will then map the object identifier o to the pair (C, f = o), which consists
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e � k� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 � k � ;e2 � k� if e = e1;e2,

e1 � k � .f if e = e1.f,

e1 � k � .f:=e2 � k� if e = e1.f:=e2,

e1 � k � .s {e2} if e = e1.s {e2},
e1 � k � •s {k} if e = e1•s { },
k.sendC(e0){C ⇒ e � k�} if e = sendC(e0){C ⇒ e},
k.recvC(x){C ⇒ e � k�} if e = recvC(x){C ⇒ e},
k.sendW(e0){C ⇒ e � k�} if e = sendW(e0){C ⇒ e},
k.recvW(x){C ⇒ e � k�} if e = recvW(x){C ⇒ e},
e otherwise.

Fig. 6. Channel addition.

of its class name C and a list of its fields with corresponding objects o: this mapping is

denoted by o 	→ (C, f = o).

The form h[o 	→ h(o)[f 	→ o′]] denotes the update of the field f of the object o with the

object o′.

Channel names are mapped to queues of objects: k 	→ o. The heap produced by

h[k 	→ o] maps the channel k to the queue o. With some abuse of notation, we

write o :: o and o :: o to denote the queue whose first and last element, respectively,

is o.

Heap membership for object identifiers and channels is checked using standard set

notation, by identifying h with its domain, we can also write o ∈ h and k ∈ h.

The queues of dual channels are used to exchange messages. A message receive on

channel k takes the top object in the queue associated with k, while a message send will

add the object to the queue associated with k̃. As usual, ˜. . . is an involution, so ˜̃k = k.

The values that can result from normal termination are parallel threads of objects.

In the reduction rules, we make use of the special channel addition operation � . . . � –

see Figure 6 for a formal definition, where {C ⇒ e} is short for {C1 ⇒ e1 � C2 ⇒ e2}. We

use e � k� to denote the source expression e in which all occurrences of communication

(receive, send) and delegation expressions that are not within the co-body of a session

request have been extended so that they explicitly mention the channel k they will use

(remember that channel names are not written by the programmer).

We also use e�e′/cont� to denote the expression e in which all expressions contT

that are free in e, independently of the type annotations T, are replaced by e′. Thus,

this substitution preserves the correct nested structure of while expressions. Note that the

type annotation T of contT plays no role in the evaluation, it is only used to guide the

typechecker.

For example,

recvC(x){C1 ⇒ x � C2 ⇒ contT} � k � �e′/cont� = k.recvC(x){C1 ⇒ x � C2 ⇒ e′}.

The reduction is a relation between pairs of threads and heaps:

P , h −→ P ′, h′.
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Par-R

e, h −→ P , h′

e || P1, h −→ P || P1, h
′

Seq-R

E [o; e], h −→ E [e], h

Fld-R

h(o) = (C, f = o)

E [o.fi], h −→ E [oi], h
NewC-R

fields(C) = T f o �∈ h

E [new C(o)], h −→ E [o], h :: [o 	→ (C, f = o)]

FldAss-R

E [o.f := o′], h −→ E [o′], h[o 	→ h(o)[f 	→ o′]]

SessReq-R

h(o) = (C, ) sbody(s, C) = e′ k, k̃ �∈ h

E [o.s {e}], h −→ E [e � k�] || [o/this]e
′ � k̃�, h[k, k̃ 	→ ()]

SessDel-R

h(o) = (C, ) sbody(s, C) = e

E [o • s {k}], h −→ E [[o/this]e � k�], h

SendCase-R

h(k̃) = o h(o) = (C, ) C ⇓ {C1, C2} = Ci

E [k.sendC(o){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [ei], h[k̃ 	→ o :: o]

ReceiveCase-R

h(k) = o :: o h(o) = (C, ) C ⇓ {C1, C2} = Ci

E [k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [[o/x]ei], h[k 	→ o]

SendWhile-R

E [k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [k.sendC(e){C1 ⇒ e′
1 � C2 ⇒ e′

2}], h

where e′
i = ei�k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}/cont�

ReceiveWhile-R

E [k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [k.recvC(x){C1 ⇒ e′
1 � C2 ⇒ e′

2}], h

where e′
i = ei�k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}/cont�

Fig. 7. Reduction rules.

Reduction rules use evaluation contexts (based on the run-time syntax) that capture

the notion of the ‘next subexpression to be reduced’:

E ::= [−] | E ; e | E .f | new C(o,E , e)| E .f := e | o.f := E | E .s {e} |
E • s {k} | k.sendC(E ){C1 ⇒ e1 � C2 ⇒ e2} .

The reduction rules are given in Figure 7, where any reducible expression is expressed

as a composition of an evaluation context and a redex expression. The explicit inclusion

of the evaluation context is needed in rule SessReq-R, in which a new thread is generated

in parallel with the evaluation context. It is easy to verify that the set of redexes is defined

by

o; e | o.f | new C(o) | o.f := o | o.s {e} | o • s {k}
k.sendC(o){C1 ⇒ e1 � C2 ⇒ e2} | k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2}
k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} | k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}.

We call redexes of the form o • s {k} delegation redexes, and those having one of the last

four forms are called communication redexes.

An arbitrary expression is equal to at most one evaluation context filled with one redex,

and if it reduces, then there is exactly one reduction rule that applies. So the evaluation

strategy is deterministic.
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Rule Par-R models the execution of parallel threads. In this rule, parallel composition

is considered modulo structural equivalence. As usual, we define structural equivalence

rules asserting that parallel composition is associative and commutative:

P || P1 ≡ P1 || P P || (P1 || P2) ≡ (P || P1) || P2 P ≡ P ′ ⇒ P || P1 ≡ P ′ || P1 .

Rule SessReq-R models the connection between the co-body e of a session request

o.s {e} and the body e′ of the session s, in the class of the object o. This connection

is established through a pair of fresh channels k, k̃. To this end, the expression o.s {e}
reduces, in the same context, to its own co-body e � k� and, in parallel and outside the

context, it spawns the body [o/this]e′ � k̃� of the called session. The explicit substitution

of k in e and k̃ in e′ ensures that the communication uses the fresh dual channels k and

k̃. Thus, an object can serve any number of session requests. For example,

o.s {sendC(5){C1 ⇒ e1 � C2 ⇒ e2}}; new C( ) −→
k.sendC(5){C1 ⇒ e1 � k� � C2 ⇒ e2 � k�}; new C( ) ||
k̃.recvC(x){C′

1 ⇒ [o/this]e′
1 � k̃� � C′

2 ⇒ [o/this]e′
2 � k̃�}

if recvC(x){C′
1 ⇒ e′

1 � C′
2 ⇒ e′

2} is the body of session s in the class of the object o.

Rule SessDel-R replaces the session delegation o • s {k} by [o/this]e � k�, where e is

the body of the session s, in the class of the object o. This allows the current session

to be enriched by the capabilities provided by the session s of the object o. The current

thread executes the body e in which the current session channel k is used as the subject

for the communication, so the delegation remains transparent for the thread using the

dual channel k̃. When the delegated job is over, the communication may continue within

the current session, possibly using the value of [o/this]e � k�. Note that since the value

produced by the execution of the delegated session body may be used after the delegation

is over, we need both the return type and the session type of that body, and this is why

we kept them both in the declaration of a session. See the explanation of Example 2.1

and the session declaration syntax in Figure 1. For instance,

o • s {k} −→ k.recvC(x){C1 ⇒ [o/this]e1 � k� � C2 ⇒ [o/this]e2 � k�}

if

recvC(x){C1 ⇒ e1 � C2 ⇒ e2}
is the body of session s in the class of the object o.

To sum up, we can say that:

— session invocation creates a new channel and spawns the body of the called session;

— session delegation gives the active channel to another session whose body is executed

in the same thread.

Since channels are implicit, only one session can be executed at a given time and the

only possible interleaving of sessions is nesting. A session can be started while executing

another session, but must complete before resuming the (outer scoped) previous session,

so we can have nesting, but not general interleaving. This is the main reason the progress

property holds for communications in our calculus (see Theorem 6.2).
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The communication rule for sendC, SendCase-R, puts the object o in the queue

associated with the dual channel k̃ of the communication channel k. The computation

then proceeds with the expression ei if C1 �= C2 and Ci is the smallest class in {C1, C2} to

which the object o belongs. Otherwise, if C1 = C2 and o belongs to C1, then the computation

proceeds with e1. This is given by the condition h(o) = (C, ) and the following definition

of C ⇓ {C1, C2} = Ci using the subtyping relation (see Figure 4):

C ⇓ {C1, C2} =

⎧⎪⎪⎨
⎪⎪⎩
Ci if C <: Ci and [C <: Cj with i �= j implies Cj �<: Ci],

C1 if C <: C1 = C2,

⊥ otherwise.

Note that the only reason for selecting the smallest index is so that we avoid introducing

non-deterministic choices. In a more realistic context, for instance, we could adopt

linguistic restrictions on the expressions ei, for example, the condition e1 = e2 whenever

C1 = C2. Dually, the receive communication rule takes an object o from the queue

associated with the channel k and returns the expression [o/x]ei if h(o) = (C, ) and

C ⇓ {C1, C2} = Ci.

In the rules SendCase-R and ReceiveCase-R, it is understood that the transition

cannot fire if C ⇓ {C1, C2} = ⊥. However, we will see that C ⇓ {C1, C2} is always defined in

well-typed expressions.

The rules SendWhile-R and ReceiveWhile-R simply realise the repetition through the

case communication expressions, where the sendW and recvW expressions are unfolded

in e1 and e2. Observe that sendW(E ){C1 ⇒ e1 � C2 ⇒ e2} is not an evaluation context

since we do not reduce the expression that controls the loop before the application of

SendWhile-R. This means that the application of SendWhile-R and ReceiveWhile-R

cannot create any free occurrences of contT.

We will write P , h −→ P ′, h′ to mean that either P is a parallel composition and

P , h −→ P ′, h′ is obtained by rule Par-R (that is, by reducing one of the expressions that

are in parallel in P ) or P is an expression e that reduces to P ′ by a reduction rule different

from Par-R.

We use the standard convention that the multi-step reduction −→∗ is the reflexive,

transitive closure of −→.

Note that communication and delegation expressions are reduced if and only if they

contain explicit channels. So, for example, sendC(o){. . .} and o • s {} are stuck. We say

that an expression e is channel-complete if all communication and delegation expressions

of e without explicit channels occur inside session co-bodies. The shapes of closed and

channel-complete expressions are easy to characterise by looking at the syntax of FSAM∨

(Figure 1).

Proposition 4.1. A closed and channel-complete expression is either an object identifier or

an evaluation context filled with one redex.

By inspecting the rules in Figure 7, it is easy to verify that no reduction can create new

free variables or destroy the channel-completeness starting from the empty heap.
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ε � ε α � α
t1 � t′

1 t2 � t′
2

t1.t2 � t′
1.t

′
2

C1 ∨ C2 <: C′
1 ∨ C′

2 Ci ⇓ {C′
1, C

′
2} = C′

j ⇒ ti � t′
j C′

l ⇓ {C1, C2} = Ck ⇒ tk � t′
l

μα.!{C1 ⇒ t1 � C2 ⇒ t2} � μα.?{C′
1 ⇒ t′

1 � C′
2 ⇒ t′

2}

Fig. 8. Duality relation.

Proposition 4.2. If e is closed and channel-complete and e, [ ] −→∗ e′ || P , h, then e′ is

closed and channel-complete.

5. Typing

We consider two type systems, the first is for user expressions with occurrences of

object identifiers, which are not directly expressible in the user syntax. We call these

expressions channel-free expressions. The second system types run-time expressions. The

use of channel-free expressions rather than user expressions simplifies the formulation of

the run-time typing rules, as we will see in Section 5.2.

We say that a session type is cont-free if it does not contain occurrences of free session

type variables or �. Therefore, each cont-free session type has one of the following forms:

— ε

— μα.†{C1 ⇒ t1 � C2 ⇒ t2} or †{C1 ⇒ t1 � C2 ⇒ t2},
or is a concatenation of the above session types. For simplicity, whenever possible, we will

use unfolded recursive types in definitions.

5.1. Typing of channel-free expressions

In this section we consider channel-free expressions. This means that the term environ-

ments will also contain type assignments to object identifiers. The typing judgement has

the form

Γ � e : T � t

where Γ is a term environment, which maps this, standard term variables and objects

to types T, and t represents the session type of the (implicit) active channel. Note that

closed expressions can contain object identifiers, so term environments having those object

identifiers in their domain are required to type them (unlike the usual notion of closed

expressions, which are typable from empty environments).

To guarantee a safe communication between two threads, we must require their session

types be dual, that is, that each send will correspond to a receive and vice versa. The

duality is then the symmetric relation generated by the rules of Figure 8, in which we

consider folded recursive types, since otherwise the definition would not be well founded.

The exchanged values must also be of one of the classes expected by the receiver. All

possible choices on the basis of the class of the exchanged value must continue with

session types that are dual of each other. For this reason, we have to perform checks on

the type of the exchanged values in both directions:
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— for any sent value of type Ci such that Ci ⇓ {C′
1, C

′
2} = C′

j for some 1 � j � 2, we require

ti � t′
j;

— for any received value of type C′
l such that C′

l ⇓ {C1, C2} = Ck for some 1 � k � 2, we

require tk � t′
l .

For instance, consider the session types

!{Shape ⇒ t1 � String ⇒ t2}

and

?{Triangle ⇒ t3 � Object ⇒ t4}

where

Triangle <: Shape.

At run time, a Triangle can be sent as a Shape, thus the types t1 and t3 have to be

dual. Moreover, both a Shape, which is not a subclass of Triangle, and a String can

be seen as Objects, so both t1 and t2 must be duals of t4. Notice that, thanks to the

absence of generics, we can be more flexible than Capecchi et al. (2009): the types used

in the choices (actually their union) of a send can be subtypes of the ones expected (in

the dual receive).

The typing rules for channel-free expressions are given in Figure 9.

The axiom Cont-T means that contT has type T from any Γ since it is explicitly

decorated with its type T.

Following the standard notion of object instantiation, rule NewC-T requires that the

initialisation of an object does not involve any communications.

In rule Seq-T, we use session type concatenation to represent the fact that the

communications in e are performed first, and then those in e′.

Rule FldAss-T exploits the writing and reading uses of e′.

The rule for session requests, SessReq-T, relies on the duality relation (Figure 8) to

ensure that all the bodies of the session s in the classes that build the type T and the

co-body e′ of the request will communicate properly. Since � has no dual session type,

this rule ensures that there are no free occurrences of contT in session bodies and co-

bodies. For this reason, in well-typed expressions, the reduction rules SendWhile-R and

ReceiveWhile-R never replace contT in session bodies and co-bodies.

In typing session delegation (rule SessDel-T), we take into account the fact that the

whole expression will be replaced by the session body defined in the class of the expression

to which the session is delegated (cf. the SessDel-R reduction rule – see Figure 7). Note

that the condition stype(s, T)={t′} does not imply that T is one class, but only that all

definitions of s in the classes that build T have the same session types. Moreover, if a

session has session type ε, it is meaningless to use it in a delegation (while it is sensible to

use it in a request). For this reason, we require t′ �= ε in rule SessDel-T.

In the rules for communication expressions (SendC-T, ReceiveC-T, SendW-T and

ReceiveW-T), the alternative branches ei are both given type T. However, this does not

require both of them to have the same type since T can be a proper union type. For

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000886
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000886
https:/www.cambridge.org/core


L. Bettini, S. Capecchi, M. Dezani-Ciancaglini, E. Giachino and B. Venneri 1180

Axiom-T

Γ � z : Γ(z) � ε
Cont-T

Γ � contT : T � �

Sub-T

Γ � e : T � t T <: T′

Γ � e : T′ � t
NewC-T

fields(C) = T f Γ � ei : Ti � ε

Γ � new C(e) : C � ε

Fld-T

Γ � e : T � t

Γ � e.f : ftyper(f, T) � t

Seq-T

Γ � e : T � t Γ � e′ : T′ � t′

Γ � e;e′ : T′ � t.t′

FldAss-T

Γ � e : T � t Γ � e′ : ftypew(f, T) � t′

Γ � e.f := e′ : ftyper(f, T) � t.t′

SessReq-T

Γ � e : T � t Γ � e′ : T′ � t′ t′ � t′′ ∀t′′ ∈ stype(s, T)

Γ � e.s {e′} : T′ � t

SessDel-T

Γ � e : T � t stype(s, T) = {t′} t′ �= ε rtype(s, T) = T′

Γ � e • s {} : T′ � t.t′

SendC-T

Γ � e : C1 ∨ C2 � ε Γ � ei : T � ti

Γ � sendC(e){C1 ⇒ e1 � C2 ⇒ e2} : T � !{C1 ⇒ t1 � C2 ⇒ t2}
ReceiveC-T

Γ, x : Ci � ei : T � ti

Γ � recvC(x){C1 ⇒ e1 � C2 ⇒ e2} : T � ?{C1 ⇒ t1 � C2 ⇒ t2}
SendW-T

Γ � e : C1 ∨ C2 � ε Γ � ei : T � ti T <: T′ ∀T′ ∈ tc(e1) ∪ tc(e2) α fresh in t1, t2

Γ � sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T � μα.!{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}
ReceiveW-T

Γ, x : Ci � ei : T � ti T <: T′ ∀T′ ∈ tc(e1) ∪ tc(e2) α fresh in t1, t2

Γ � recvW(x){C1 ⇒ e1 � C2 ⇒ e2} : T � μα.?{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}

Fig. 9. Typing rules for channel-free expressions. The function tc is defined in Figure 10.

instance, we may have

Γ � e1 : T1 � t1

Γ � e2 : T2 � t2,

but by subsumption (rule Sub-T), we also have

Γ � e1 : T1 ∨ T2 � t1

Γ � e2 : T1 ∨ T2 � t2.

So T = T1 ∨ T2. Because of the lack union types, the typing rules for these constructs in

Drossopoulou et al. (2007) were much more demanding and less clear.

The rules SendW-T and ReceiveW-T take into account the fact that the free occurrences

of contT in the bodies are used to make recursive calls of the whole expression. This

means that the type decorations of all these occurrences must be greater than or equal

to the resulting type of the whole expression. This property is checked by the condition
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tc(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tc(e1) ∪ tc(e2) if e = e1;e2,

e = e1.f:=e2,

e = e1.s {e2},
e = k.sendC(e0){C1 ⇒ e1 � C2 ⇒ e2},
e = k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2},

tc(e1) if e = e1.f,

e = e1•s {k},
{T} if e = contT,

� otherwise.

Fig. 10. The function tc.

Sess-WF

{this : C} � e : T � t t is cont-free

T t s { e } ok in C

Class-WF

D ok S ok in C

class C � D { T f; S } ok

Fig. 11. Well-formed class tables.

T <: T′ for all T′ ∈ tc(e1) ∪ tc(e2) using the function tc, which is defined in Figure 10.

Moreover, the resulting session type is obtained by replacing the occurrences of � by a

fresh variable α, which is bound by the μ operator.

Observe that in the rules SendC-T and SendW-T, typing e with session type ε prevents

e from containing occurrences of communications and contT. However, this restriction is

not significant. If e contained communications, a possible dual for the sendW expression

should be able to perform the dual communications at each iteration before receiving the

object that would select its continuation. Such a dual should be of the form

e′; receiveW(x){C1 ⇒ . . . ; e′; contT; . . . . � C2 ⇒ . . . ; },

where e′ contains the dual communications of e. This suggests how we can encode a

sendW expression with communications inside the argument in our system. In order to

maintain a sort of symmetry, we also have this restriction in the typing of sendC. Note

that this problem only affects communications in the current sessions, and has no effect

on new sessions opened in e: in fact, the typing allows e to contain session requests.

Figure 11 defines well-formed class tables. Rule Sess-WF says that a session declaration

in a class C is well typed if its body has the declared return type and session type by

assuming that this is of type C. Note that � has no dual type, so sessions whose bodies

would be typed with types containing � would be useless. This justifies the condition that

t must be cont-free in rule Sess-WF, which implies that well-typed session bodies do not

contain free occurrences of contT.

We conclude this section by observing that the system presented in Figure 9, given

a typable expression e and the related class table, actually infers the session type of e.

In fact, that system is itself an inference algorithm of the session type of an expression,

which expects session types of sessions to be declared in the class table.

It is easy to prove the following proposition by induction on typing rules.
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Proposition 5.1. If Γ � e : T � t and Γ � e : T′ � t′, then t = t′.

The unicity of session types follows from the fact that receiving actions are modelled

through expressions in which the classes of received objects are explicitly declared. This is

a characteristic feature of our approach to session types compared with standard systems

(Yoshida and Vasconcelos 2007).

In Section 7, we will present an inference algorithm that reconstructs the session types

of session declarations given a class table where these session types are omitted.

5.2. Typing of run-time expressions

During evaluation of well-typed programs, channel names are made explicit in send

and receive expressions, as well as in session delegation expressions. Thus, in order to

show how well-typedness is preserved under evaluation, we need to define new typing

rules for run-time expressions. Furthermore, in typing run-time expressions, we must take

into account the session types of more than one channel: run-time expressions contain

explicit channel names (used for communications), so session types must be associated

with channel names in an appropriate way. Hence, judgements have the form

Γ �r e : T � Σ

where Σ denotes a session environment that maps channels to session types.

A session environment only maps a finite set of channels to session types different from

ε, and all the rest to ε. We can then represent one session environment with an infinite

number of finite sets that give all the meaningful associations and some of the others. For

example, {k : t} and {k : t, k′ : ε} represent the same environment. This choice avoids an

explicit weakening rule for session environments.

Figure 12 gives the typing rules for run-time expressions, which differ from those for

channel-free expressions by having session environments instead of a unique session type.

For this reason, we extend the concatenation of session types to session environments as

follows:

Σ.Σ′(k) = Σ(k).Σ′(k).

In rule NewC-RT, the expressions for field initialisation can be partially evaluated, and

for this reason, they can contain channel names. For example,

new C(o.s{sendC(5){C1 ⇒ e1 � C2 ⇒ e2}})

evaluates to

new C(k.sendC(5){C1 ⇒ e1 � k� � C2 ⇒ e2 � k�})
|| k̃.recvC(x){C′

1 ⇒ [o/this]e′
1 � k̃� � C′

2 ⇒ [o/this]e′
2 � k̃�}

if

recvC(x){C′
1 ⇒ e′

1 � C′
2 ⇒ e′

2}
is the body of session s in the class of object o.
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Axiom-RT

Γ �r z : Γ(z) � �
Cont-RT

Γ �r contT : T � {k : �}

Sub-RT

Γ �r e : T � Σ T <: T′

Γ �r e : T′ � Σ
NewC-RT

fields(C) = T f Γ �r ei : Ti � Σi

Γ �r new C(e) : C �
⋃
i

Σi

Fld-RT

Γ �r e : T � Σ

Γ �r e.f : ftyper(f, T) � Σ

Seq-RT

Γ �r e : T � Σ Γ �r e′ : T′ � Σ′

Γ �r e;e′ : T′ � Σ.Σ′

FldAss-RT

Γ �r e : T � Σ Γ �r e′ : ftypew(f, T) � Σ′

Γ �r e.f := e′ : ftyper(f, T) � Σ.Σ′

SessReq-RT

Γ �r e : T � Σ Γ � e′ : T′ � t′ t′ � t′′ ∀t′′ ∈ stype(s, T)

Γ �r e.s {e′} : T′ � Σ
SessDel-RT

Γ �r e : T � Σ stype(s, T) = {t} t �= ε rtype(s, T) = T′

Γ �r e • s {k} : T′ � Σ.{k : t}
SendC-RT

Γ �r e : C1 ∨ C2 � Σ Γ �r ei : T � {k : ti}
Γ �r k.sendC(e){C1 ⇒ e1 � C2 ⇒ e2} : T � Σ, {k :!{C1 ⇒ t1 � C2 ⇒ t2}}
ReceiveC-RT

Γ, x : Ci �r ei : T � {k : ti}
Γ �r k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2} : T � {k :?{C1 ⇒ t1 � C2 ⇒ t2}}

SendW-RT

Γ �r e : C1 ∨ C2 � �
Γ �r ei : T � {k : ti} T <: T′ ∀T′ ∈ tc(e1) ∪ tc(e2) α fresh in t1, t2

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.!{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}}
ReceiveW-RT

Γ, x : Ci �r ei : T � {k : ti} T <: T′ ∀T′ ∈ tc(e1) ∪ tc(e2) α fresh in t1, t2

Γ �r k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.?{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}}

Fig. 12. Typing rules for run-time expressions.

In rule SessReq-RT, we make use of the judgement Γ � e′ : T � t′, where the expression

e′ does not contain channels, but may contain object identifiers. For example, by reducing

k.recvC(x){C ⇒ o.s {sendC(x){ }} � }, h

where h(k) = o′ and h(o′) = (C, ), we get o.s {sendC(o′){ }}. This justifies our use of

channel-free expressions rather than user expressions in the typing rules of Section 5.1.

Note that in the typing of communications expressions, the expressions e1 and e2 in the

two branches only contain the current channel k as subject since channels are only created

at run time, and these expressions will never be reduced before the selection has been

done. In rule SendC-RT, we know that the session environment Σ, which is obtained by

typing the expression e, cannot contain occurrences of the channel k since e is obtained by

reducing a channel-free expression with session type ε, as prescribed by rule SendC-T. In

rule SendW-RT, we can assume the emtpy session environment for typing the expression
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e since the evaluation of e cannot start before the sendW expression has been unfolded

to a sendC.

The following lemma gives the weakening property for term environments.

Lemma 5.1 (weakening). Let Γ �r e : T � Σ. Then:

(1) If x �∈ dom(Γ), then Γ, x : T′ �r e : T � Σ.

(2) If o �∈ dom(Γ), then Γ, o : C �r e : T � Σ.

Proof. The proof is by induction on the derivation of Γ �r e : T � Σ.

The typing rules for run-time expressions only differ from those for user expressions in

assigning the session type to explicit channels, and not in the type T.

The relation between the two systems is clarified by the following proposition, which

will be useful in showing the subject reduction property.

Proposition 5.2. Γ � e : T � t implies Γ �r e � k� : T � {k : t}.

Note that Γ �r e : T � � is equivalent to Γ �r e : T � {k : ε} by our convention on session

environments. Analogously, Σ = Σ.� = �.Σ for any Σ.

As a final remark, note that we do not provide an explicit rule for typing parallel

threads. Typing rules give type to single (run-time) expressions only, while expressions can

also reduce to parallel threads by reduction rules. Indeed, in this case, we only use the

notion of well-typedness: a parallel composition of expressions is considered to be well

typed (in the environment Γ) if each single expression is typed (in Γ). We will take this

point into account when formulating the subject reduction property in Section 6, where

we prove that the semantics preserves typing.

6. Properties

In this section we prove type safety, which is the fundamental property ensuring that our

system is well founded.

A program consists of a set of declarations and a main expression to be evaluated. So

a well-typed executable program means that the induced class table is well formed and

the main expression is typed, using that class table, according to the rules of Figure 9.

We require the main expression to be a typable closed user expression; furthermore, all

communication and delegation expressions must occur inside session co-bodies. It is easy

to verify that this is equivalent to requiring typability in the system of Section 5.1 from

the empty term environment with an empty session type using a well-formed class table.

We introduce the notion of initial expression as follows.

Definition 6.1. An initial expression e is an expression satisfying � � e : T � ε for some T.

Proposition 6.1. An initial expression e is a closed and channel-complete user expression.

For example, the expressions sendC(o){. . .} and o • s {} are not initial expressions since

if they are typed, their term environments and session types are not empty.
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Proposition 5.2 guarantees that initial expressions are also given the same type, with

no assumption about communications, using the typing for run-time expressions.

The type safety property ensures that the evaluation of an initial expression cannot get

stuck. The proof is carried out in two steps. First we state the subject reduction property,

that is, we prove that not only are types preserved, but the heap also evolves during the

evaluation in a way that is consistent with the term and session environments. Then we

prove type safety, dealing with the crucial case of communication expressions to show

that they cannot get stuck on a communication deadlock.

6.1. Subject reduction

We begin with some preliminary definitions and lemmas required for the proof of the

Subject Reduction Theorem.

The first definition formalises the evolution of session types and session environments.

Definition 6.2.

(1) A session type t′ is at a later stage than another session type t, written t � t′, if it is

deducible from the following rules:

Later-0

t � ε

Later-1

t � t

Later-2

t � t′′ t′′ � t′

t � t′

Later-3

t � t′

t.t′′ � t′.t′′

Later-4

†{C1 ⇒ t1 � C2 ⇒ t2} � ti

(2) A session environment Σ′ is at a later stage than another session environment Σ,

Σ � Σ′, if k : t ∈ Σ and t �= ε imply k : t′ ∈ Σ′ and t � t′.

The evolution of session environments also takes into account the fact that new channels

can be created by session calls, so, for example, assuming that t3 and t4 are dual, we have

{k :!{Shape ⇒ t1 � String ⇒ t2}} � {k : t1, k1 : t3, k̃1 : t4}.

The next definition gives standard conditions on heap well-formedness and agreement

between heaps and term environments.

Definition 6.3 (well-formed heap and agreement). A term environment Γ and a heap h

agree, written ag(Γ; h), if both:
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(1) h is well formed, that is

h(o) = (C, f = o)

ftyper(C, fi) = T ⇒ h(o)(fi) = (C′, )

C′ <: T.

(2) The classes of objects in h are the classes associated with them by Γ, that is,

∀o ∈ dom(Γ), h(o) = (Γ(o), ).

In part (1) of the above definition, recall that ftyper(C, fi)=ftypew(C, fi), where C is a

class.

The following lemma states the obvious property that in any type derivation ending

with rule Sub-RT, there is a subderivation giving a subtype to the same expression such

that its final rule is different from Sub-RT.

Lemma 6.1. In any derivation of Γ �r e : T′ � Σ, there is a subderivation of Γ �r e : T � Σ,

with T <: T′, where the last applied rule is different from Sub-RT.

Proof. The proof is by a straightforward induction on the derivation of Γ �r e : T � Σ.

Lemma 6.1 means that in the following proofs we can assume without loss of generality

that the given typing derivations end with a rule different from Sub-RT.

In order to simplify the proof of Subject Reduction, we will first show the preservation

of typing under the substitution of subexpressions. In our calculus, the difficulty is that

we must deal carefully with session environments in substitutions.

Lemma 6.2 uses evaluation contexts as defined in Section 4. Note that this lemma does

not require that the expression in the hole of the context be a redex.

Lemma 6.2 (evaluation context substitution). In any derivation of Γ �r E [e] : T � Σ, there

exist Σ1, Σ2, T′ such that:

(1) There is a subderivation of Γ �r e : T′ � Σ1 and Σ = Σ1.Σ2.

(2) Γ �r E [e′] : T � Σ′
1.Σ2, for any e′ such that Γ �r e′ : T′ � Σ′

1 with Σ1 � Σ′
1.

Proof. The proof is by induction on the definition of E . The base case is when E is the

empty context and is trivial. In the induction step, each case proceeds by analysing the

final rule used in the derivation of Γ �r E [e] : T � Σ, which is assumed to be different from

Sub-RT by Lemma 6.1.

— E [e] = E ′[e]; e′′:

This case is immediate from rule Seq-RTand the induction hypothesis.

— E [e] = E ′[e].s {e′′}:
The final rule is SessReq-RT, which implies that

Σ = Σ′.Σ′′

and there is a subderivation of

Γ �r E ′[e] : T1 � Σ′.
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Hence, by the induction hypothesis, we have

Γ �r e : T′ � Σ1

where Σ′ = Σ1.Σ
′
2, that is, Σ = Σ1.Σ2 by taking Σ2 = Σ′

2.Σ
′′. Moreover, by the induction

hypothesis,

Γ �r E ′[e] : T1 � Σ′

implies

Γ �r E ′[e′] : T1 � Σ′
1.Σ

′
2.

Hence, we can substitute a derivation of

Γ �r E ′[e′] : T1 � Σ′
1.Σ

′
2

for the subderivation of

Γ �r E ′[e] : T1 � Σ1.Σ
′
2,

in the derivation of

Γ �r E [e] : T � Σ1.Σ2.

Rule SessReq-RT still applies since the other premises stay the same, so we obtain

Γ �r E [e′] : T � Σ′
1.Σ2.

— E [e] = E ′[e] • s {k}:
The final rule is SessDel-RT, which implies that there is a subderivation of

Γ �r E ′[e] : T1 � Σ′

such that

Σ = Σ′.{k : t}
stype(s, T1) = {t}
rtype(s, T1) = T.

Hence, by the induction hypothesis, we have a subderivation of

Γ �r e : T′ � Σ1

where Σ′ = Σ1.Σ
′
2 for some Σ′

2. So we have Σ = Σ1.Σ2 by defining Σ2 = Σ′
2.{k : t}.

Moreover, by the induction hypothesis,

Γ �r E ′[e] : T1 � Σ′

implies

Γ �r E ′[e′] : T1 � Σ′
1.Σ

′
2,

so we can replace

Γ �r E ′[e] : T1 � Σ1.Σ
′
2

with

Γ �r E ′[e′] : T1 � Σ′
1.Σ

′
2
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in the derivation of

Γ �r E [e] : T � Σ1.Σ2

and rule SessDel-RT still applies. So we obtain

Γ �r E [e′] : T � Σ′
1.Σ2.

— E [e] = k.sendC(E ′[e]){C1 ⇒ e1 � C2 ⇒ e2}:
The final rule is SendC-RT, which implies that there is a subderivation of

Γ �r E ′[e] : C1 ∨ C2 � Σ′,

such that

Σ = Σ′, {k :!{C1 ⇒ t1 � C2 ⇒ t2}}
Γ �r ei : T � {k : ti}.

Hence, by the induction hypothesis, there is a subderivation of

Γ �r e : T′ � Σ1

where

Σ′ = Σ1.Σ
′′,

for some Σ′′, that is, we have Σ = Σ1.Σ2 by taking

Σ2 = Σ′′, {k :!{C1 ⇒ t1 � C2 ⇒ t2}}.

Moreover, the induction hypothesis on

Γ �r E ′[e] : C1 ∨ C2 � Σ1.Σ
′′

tells us that

Γ �r E ′[e′] : C1 ∨ C2 � Σ′
1.Σ

′′.

Hence, since

Γ �r ei : T � {k : ti},
we obtain

Γ �r k.sendC(E ′[e′]){C1 ⇒ e1 � C2 ⇒ e2} : C1 ∨ C2 � Σ′
1.Σ2,

by rule SendC-RT.

The remaining cases follow straightforwardly by using the same proof pattern as in the

above cases.

Lemma 6.3 (term substitution).

(1) If

Γ, z : C �r e : T � Σ

Γ �r o : C � �,

then

Γ �r [o/z]e : T � Σ.
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(2) If

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.!{C1 ⇒ t1 � C2 ⇒ t2}},
then, for i ∈ {1, 2},

Γ �r ei�k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}/cont� : T � {k : t′
i}

where

t′
i = [μα.!{C1 ⇒ t1 � C2 ⇒ t2}/α]ti.

(3) If

Γ, x : Ci �r k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.?{C1 ⇒ t1 � C2 ⇒ t2}},

then, for i ∈ {1, 2},

Γ, x : Ci �r ei�k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}/cont� : T � {k : t′
i}

where

t′
i = [μα.?{C1 ⇒ t1 � C2 ⇒ t2}/α]ti.

Proof.

(1) This part is immediate by substituting

Γ �r o : C � �

for

Γ, z : C �r z : C � �,

in any derivation of

Γ, z : C �r e : T � Σ.

(2) By rule SendW-RT, we have

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.!{C1 ⇒ t1 � C2 ⇒ t2}}

implies

Γ, x : Ci �r ei : Ti � {k : t′′
i },

for t′′
i = [�/α]ti and T <: T′ for all T′ ∈ tc(e1) ∪ tc(e2). The last condition and the

definition of tc ensure that if contT
′
occurs free in e1 or e2, then T <: T′, so any free

occurrence of contT
′
in ei is given type by

Γ �r contT
′
: T′ � {k : �}.

From

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T � {k : μα.!{C1 ⇒ t1 � C2 ⇒ t2}} ,

we derive

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T′ � {k : μα.!{C1 ⇒ t1 � C2 ⇒ t2}}
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by rule Sub-RT. Observe that the only constraint satisfied by � that appears in the

premises of the typing rules is � �= ε since no session type is the dual of �. Thus, if

we replace

Γ �r contT
′
: T′ � {k : �}

by

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T′ � {k : μα.!{C1 ⇒ t1 � C2 ⇒ t2}},
inside the derivation of

Γ, x : Ci �r ei : Ti � {k : t′′
i },

we obtain a derivation of

Γ, x : Ci �r ei�k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}/cont� : T � {k : t′
i}.

(3) This part is similar to part (1), but using ReceiveW-RT in place of SendW-RT.

Lemma 6.4 (typing of session bodies). If

sbody(s, C) = e

stype(s, C) = t

rtype(s, C) = T,

then

{this : C} � e : T � t.

Proof. The proof is by induction on the definition of sbody(s, C), using the definitions

of stype and rtype. In the base case, s is defined in C and the proof then follows from rule

Sess-WF. The induction step is straightforward.

We can now prove the Subject Reduction Theorem. We will only type single expressions,

though they can result in parallel threads. Since we do not have a typing for parallel

threads, we require each single expression to be well typed. Moreover, we want to get

our property in the most general form, allowing the property to hold for all well-typed

expressions, which can sometimes only be generated by initial expressions in parallel with

other expressions. For example, no initial expression can reduce to the expression

e = o.s {sendC(5){e1}}; k.sendC(3){e2 � k�},

but

e0 = o′.s′ {o.s {sendC(5){e1}}; sendC(3){e2}}
reduces to

e || k̃.recvC(x){[o′
/this]e′ � k̃�}

if recvC(x){e′} is the body of session s′ in the class of the object o′.

Note also that receive expressions can never get objects of the wrong types. For example,

the execution of

k.recvC(x){Bool ⇒ ¬x � Int ⇒ −x}
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if h(k)="a" is simply stopped, that is, it does not produce a run-time error. In fact,

the reduction rule ReceiveCase-R requires the class of the object in the heap to be a

subclass of at least one of the classes declared in the recvC expression. Note that such

a configuration cannot be generated starting from an initial expression. For this reason,

in contrast to the calculus of Coppo et al. (2007), we do not need to require agreement

between the objects in the queues associated with channels by the heap and the session

types of the same channels in the session environment.

Theorem 6.1 (subject reduction). If ag(Γ; h) and Γ �r e : T � Σ, then:

(1) e, h −→ e′, h′ implies that there exist Σ′, Γ′ such that

Γ ⊆ Γ′

Σ � Σ′

ag(Γ′; h′)

Γ′ �r e′ : T � Σ′.

(2) e, h −→ e1 || e2, h
′ implies that

h′ = h[k, k̃ 	→ ( )]

for some fresh k, and ag(Γ; h′), and that there exist T′, t, t′ such that

Γ �r e1 : T � Σ ∪ {k : t}
Γ �r e2 : T′ � {k̃ : t′},

and t � t′.

Proof. The proof is by induction on the definition of −→. We proceed by case analysis

on the final rule applied (by Lemma 6.1, we only need to consider cases in typing

derivations of Γ �r e : T � Σ where the last rule applied is different from Sub-RT):

— SessReq-R:

h(o) = (C, ) sbody(s, C) = e′ k, k̃ �∈ h

E [o.s {e}], h −→ E [e � k�] || [o/this]e′ � k̃�, h[k, k̃ 	→ ( )]

.

By h(o) = (C, ) and ag(Γ; h), we get

Γ �r o : C � �

using Axiom-RT.

By hypothesis,

Γ �r E [o.s {e}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r o.s {e} : T′ � Σ1
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and Σ = Σ1.Σ2. From rule SessReq-RT, we have

Σ1 = �

Σ2 = Σ

Γ � e : T′ � t′

stype(s, C) = t

t � t′.

By Proposition 5.2, we get

Γ �r e � k� : T′ � {k : t′}.
By Lemma 6.2 (2), we have

Γ �r E [e � k�] : T � {k : t′}.Σ.

Let rtype(s, C) = T0. So

this : C � e′ : T0 � t

by Lemma 6.4, which implies

this : C �r e′ � k̃� : T0 � {k̃ : t}

by Proposition 5.2. Therefore, by Lemmas 5.1 and 6.3 (1), we can conclude that

Γ �r [o/this]e′ � k̃� : T0 � {k̃ : t}.

Note that the new heap h[k, k̃ 	→ ( )] still agrees with Γ since the only changes are

about channels.

— SessDel-R:

h(o) = (C, ) sbody(s, C) = e

E [o • s {k}], h −→ E [[o/this]e � k�], h
.

By h(o) = (C, ) and ag(Γ; h), we get

Γ �r o : C � �

using Axiom-RT.

By hypothesis,

Γ �r E [o • s {k}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r o • s {k} : T′ � Σ1

and Σ = Σ1.Σ2. From rule SessDel-RT, we have

Σ1 = {k : t}
stype(s, C) = t

rtype(s, C) = T′.
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By Lemma 6.4,

this : C � e : T′ � t,

so by Proposition 5.2,

this : C �r e � k� : T′ � {k : t}.
Therefore, by Lemmas 5.1 and 6.3 (1), we have

Γ �r [o/this]e � k� : T′ � {k : t},

and by Lemma 6.2 (2), we can conclude that

Γ �r E [[o/this]e � k�] : T � Σ.

— SendCase-R:

h(k̃) = o h(o) = (C, ) C ⇓ {C1, C2} = Ci

E [k.sendC(o){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [ei], h[k̃ 	→ o :: o]
.

By h(o) = (C, ) and ag(Γ; h), we get

Γ �r o : C � �

using Axiom-RT. By hypothesis,

Γ �r E [k.sendC(o){C1 ⇒ e1 � C2 ⇒ e2}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r k.sendC(o){C1 ⇒ e1 � C2 ⇒ e2} : T′ � Σ1

and Σ = Σ1.Σ2. From rule SendC-RT, we have

Σ1 = {k :!{C1 ⇒ t1 � C2 ⇒ t2}}
Γ �r ei : T′ � {k : ti}.

By Lemma 6.2 (2), we have

Γ �r E [ei] : T � Σ′,

where

Σ′ = {k : ti}.Σ2.

From Definition 6.2 (Later-3 and Later-4), we can then conclude that Σ � Σ′.

Note that the new heap h[k̃ 	→ o :: o] still agrees with Γ since the only changes are

about channels.

— ReceiveCase-R:

h(k) = o :: o h(o) = (C, ) C ⇓ {C1, C2} = Ci

E [k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [[o/x]ei], h[k 	→ o]
.

By h(o) = (C, ) and ag(Γ; h), we get

Γ �r o : C � �
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using Axiom-RT. Applying rule Sub-RT, we get

Γ �r o : Ci � �.

By hypothesis,

Γ �r E [k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r k.recvC(x){C1 ⇒ e1 � C2 ⇒ e2} : T′ � Σ1

and Σ = Σ1.Σ2. From rule ReceiveC-RT, we have

Σ1 = {k :?{C1 ⇒ t1 � C2 ⇒ t2}}
Γ, x : Ci �r ei : T′ � {k : ti}.

By Lemma 6.3 (1), we have

Γ �r [o/x]ei : T′ � {k : ti}.

By Lemma 6.2 (2), we have

Γ �r E [[o/x]ei] : T � Σ′,

where

Σ′ = {k : ti}.Σ2.

From Definition 6.2 (Later-3 and Later-4), we can then conclude that Σ � Σ′.

Note that the new heap h[k 	→ o] still agrees with Γ since the only changes are about

channels.

— SendWhile-R:

E [k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [k.sendC(e){C1 ⇒ e′
1 � C2 ⇒ e′

2}], h

where

e′
i = ei�k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}/cont�.

By hypothesis,

Γ �r E [k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r k.sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T′ � Σ1

and Σ = Σ1.Σ2. From rule SendW-RT, we have

envS1 = {k : μα.!{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}}
Γ �r e : C1 ∨ C2 � �

Γ �r ei : T′ � {k : ti}

and α fresh in t1, t2 and T′ <: T′′ for all T′′ ∈ tc(e1) ∪ tc(e2).

Let

t′
i = [(μα.!{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2})/�]ti.
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By Lemma 6.3 (2), we have

Γ �r e′
i : T′ � {k : t′

i}.
By rule SendC-RT, we get

Γ �r k.sendC(e){C1 ⇒ e′
1 � C2 ⇒ e′

2} : T′ � k :!{C1 ⇒ t′
1 � C2 ⇒ t′

2},

and by Lemma 6.2 (2), we can conclude that

Γ �r E [k.sendC(e){C1 ⇒ e′
1 � C2 ⇒ e′

2}] : T � Σ′,

where

Σ′ = {k :!{C1 ⇒ t′
1 � C2 ⇒ t′

2}}.Σ2

and Σ � Σ′ by Definition 6.2 (Later-1 and Later-3), since we consider recursive types

modulo fold/unfold.

— ReceiveWhile-R:

E [k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}], h −→ E [k.recvC(x){C1 ⇒ e′
1 � C2 ⇒ e′

2}], h

where

e′
i = ei�k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}/cont�.

By hypothesis,

Γ �r E [k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2}] : T � Σ,

so by Lemma 6.2 (1), we have

Γ �r k.recvW(x){C1 ⇒ e1 � C2 ⇒ e2} : T′ � Σ1

and Σ = Σ1.Σ2. From rule ReceiveW-RT, we have

Σ1 = {k : μα.?{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2}}
Γ, x : Ci �r ei : T′ � {k : ti},

and α fresh in t1, t2 and T′ <: T′′ for all T′′ ∈ tc(e1) ∪ tc(e2).

Let

t′
i = [(μα.?{C1 ⇒ [α/�]t1 � C2 ⇒ [α/�]t2})/�]ti.

By Lemma 6.3 (3), we have

Γ, x : Ci �r e′
i : T′ � {k : t′

i}.

By rule ReceiveC-RT, we get

Γ �r k.recvC(x){C1 ⇒ e′
1 � C2 ⇒ e′

2} : T′ � k :?{C1 ⇒ t′
1 � C2 ⇒ t′

2}.

By Lemma 6.2 (2), we can then conclude that

Γ �r E [k.recvC(x){C1 ⇒ e′
1 � C2 ⇒ e′

2}] : T � Σ′,

where

Σ′ = {k :?{C1 ⇒ t′
1 � C2 ⇒ t′

2}}.Σ2
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and Σ � Σ′ by Definition 6.2 (Later-1 and Later-3), since we consider recursive types

modulo fold/unfold.

The remaining cases follow easily from the induction hypothesis.

Using the Subject Reduction Theorem, we can show that expressions, which are obtained

by reducing initial expressions, are typed from environments that agree with the current

heap.

Corollary 6.1. If e is an initial expression and e, [ ] −→∗ e′ || P , h, then Γ �r e′ : T � Σ for

some Γ, T, Σ such that ag(Γ, h).

Proof. The proof is by induction on −→∗. The base case is immediate by the definition

of initial expression. In the induction case, by definition,

e, [ ] −→∗ e′ || P , h

means

e, [ ] −→∗ e1 || e2 || . . . || en, h′

and either

e1, h
′ −→ e′, h and P ≡ e2 || . . . || en

or

e1, h
′ −→ e′ || e′′, h and P ≡ e′′ || e2 || . . . || en.

By the induction hypothesis, e1 is well typed from a term environment that agrees with h′.

Therefore, e′ is well typed from a term environment that agrees with h by Theorem 6.1.

6.2. Type safety

The run-time errors our type system has to prevent are:

(1) the selection of a field and the request of a session which do not belong to the class

of the current object;

(2) the creation of a pair of dual channels whose communication sequences do not

perfectly match.

In particular, for the second point, we want to show that the communications of well-

typed sessions cannot become stuck. To this end, we have to study the global properties

of type preservation during the reduction of parallel threads: specifically, we need to take

into account the objects in the queues associated with channels and their relations with

the session types of the channels themselves.

In the following definition we extend the notion of duality between session types to

take account also of the objects already sent by a thread and waiting to be read by the

thread that has the dual channel.

Definition 6.4. Let h be a heap, o be a queue of objects in h and t, t′ be two session types.

The relation t �o
h t

′ is defined by:

(1) t �( )
h t′ if t � t′.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000886
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000886
https:/www.cambridge.org/core


Deriving session and union types for objects 1197

(2) ti.t′ �o::o
h t′′ for i ∈ {1, 2} if

!{C1 ⇒ t1 � C2 ⇒ t2}.t′ �o
h t

′′

h(o) = (C, )

and

C ⇓ {C1, C2} = Ci.

Intuitively, this definition describes an agreement between the session type t of a

channel k and the session type t′ of k̃ after the objects o have been put in the queue

associated with k̃ in h (recall that communication is asynchronous and that only one of

the queues h(k) and h(k̃) can be non-empty). Thus, when the queue is empty (case (1) of

the definition), t′ and t agree if they are dual. When the queue is o :: oi (case (2)), if the

session type t′′ agrees with

!{C1 ⇒ t1 � C2 ⇒ t2}.t′

after the objects o have been put in the queue, then it also agrees with the type ti.t′,

where ti is the session type of the branch obtained after putting the object oi in the

queue. For instance, t′′ agrees with t1.t′ through the queue "a"::true::3 (written

t1.t′ �"a"::true::3
h t′′) if it agrees with

!{Int ⇒ t1 � Object ⇒ t2}.t′

through the queue "a"::true. Indeed, after branch selection (the sent value 3 is an Int),

the continuation of

!{Int ⇒ t1 � Object ⇒ t2}.t′

is t1.t′.

The main lemma concerning the above relation says that if the type t of a channel k

agrees with the type ?{C1 ⇒ t1 � C2 ⇒ t2}.t′ of k̃ when h maps k̃ to the queue o :: o, and

C ⇓ {C1, C2} = Ci, where i ∈ {1, 2} and C is the class of o in h, then t agrees with ti.t′ when

h maps k̃ to the queue o.

Lemma 6.5. If

t �o::o
h ?{C1 ⇒ t1 � C2 ⇒ t2}.t′

and

h(o) = (C, )

C ⇓ {C1, C2} = Ci,

then t �o
h ti.t

′.

Proof. The proof is by induction on the length of o.

In the base case o = ( ), the relation

t �o
h?{C1 ⇒ t1 � C2 ⇒ t2}.t′
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can only have been obtained by Definition 6.4 (2). So we have t = t′
j .t

∗ for some t′
j

(j ∈ {1, 2}) and t∗, and

C ⇓ {C′
1, C

′
2} = Cj

and

!{C′
1 ⇒ t′

1 � C′
2 ⇒ t′

2}.t∗ �( )
h ?{C1 ⇒ t1 � C2 ⇒ t2}.t′.

By Definition 6.4 (1), we get

!{C′
1 ⇒ t′

1 � C′
2 ⇒ t′

2}.t∗ �?{C1 ⇒ t1 � C2 ⇒ t2}.t′.

From

C ⇓ {C1, C2} = Ci

C ⇓ {C′
1, C

′
2} = Cj ,

we can derive either

Ci ⇓ {C′
1, C

′
2} = Cj

or

Cj ⇓ {C1, C2} = Ci,

which implies ti � t′
j and t∗ � t′ by the definition of duality. Therefore, we can conclude

ti.t∗ � t′
j .t

′, which gives ti.t∗ �( )
h t′

j .t
′ by Definition 6.4 (1).

For the induction case, we assume

o = o′ :: o+.

So the hypothesis becomes

t �o::o′::o+

h ?{C1 ⇒ t1 � C2 ⇒ t2}.t′.

This relation can only have been obtained from Definition 6.4 (2). So we have t = t+
j .t

′′

for some t+
j (j ∈ {1, 2}) and t′′, and

h(o+) = (C+, )

C+ ⇓ {C+
1 , C

+
2 } = C+

j

and

!{C+
1 ⇒ C+

2 � t+
1 ⇒ t+

2 }.t′′ �o::o′
h ?{C1 ⇒ t1 � C2 ⇒ t2}.t′.

By the induction hypothesis, we have

C ⇓ {C1, C2} = Ci

and

!{C+
1 ⇒ C+

2 � t+
1 ⇒ t+

2 }.t′′ �o′
h ti.t

′,

so applying Definition 6.4 (2) again, we get the result.

We will now extend the definition of agreement to session environments.
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Definition 6.5.

(1) The predicate ag(Σ; h) is defined by

ag(Σ; h) if

{
k∈dom(Σ) ⇔ k∈dom(h),

∀k∈dom(Σ) : h(k) = ( ) ⇒ Σ(k) �h(k̃)
h Σ(k̃).

(2) ag(Γ; Σ; h) if ag(Γ; h) and ag(Σ; h).

We then say a session environment and a heap agree if:

— the same set of channels occurs in the session environment and in the heap;

— when the queue of a channel k is empty, the queue of k̃ relates the session type of k

to the session type of k̃.

A term environment, a session environment and a heap agree if both the heap with the

standard environment and the heap with the session environment agree.

The following key lemma generalises Theorem 6.1 by asserting that the above agreement

is preserved under reduction of well-typed parallel threads.

Lemma 6.6 (subject reduction generalisation). We let Γ �r ei : Ti � Σi, (1 � i � n) and

assume ag(Γ; Σ; h) where Σ =
⋃

1�i�n Σi. Then, if

e1 || . . . || en, h −→ e′
1 || . . . || e′

n′ , h′ where 1 � n � n′,

there exist Γ′ and Σ′
i such that

Γ′ �r e′
i : Ti � Σ′

i (1 � i � n′)

and

ag(Γ′; Σ′; h′),

where

Σ′ =
⋃

1�i�n′

Σ′
i.

Proof. We have that for some i (1 � i � n), either ei, h −→ e′
i || e′′

i , h
′ by an application of

rule SessReq-R or ei, h −→ e′
i, h

′ by the application of any one of the other reduction rules.

In the first case, the proof follows immediately from Theorem 6.1 (2) and Definition 6.5.

So we let ei, h −→ e′
i, h

′. If this reduction has not been obtained by a communication

rule, the proof is trivial by Theorem 6.1 (1). The interesting cases are when the reduction

ei, h −→ e′
i, h

′ is obtained by a communication rule. By Theorem 6.1, we immediately

obtain Γ′ �r e′
i : Ti � Σ′

i and ag(Γ′; h′), so we only have to show ag(Σ′; h′), which implies

ag(Γ′; Σ′; h′).

— SendCase-R:

Assume

ei = E [k.sendC(o){C1 ⇒ e′′
1 � C2 ⇒ e′′

2}].
We have

E [k.sendC(o){C1 ⇒ e′′
1 � C2 ⇒ e′′

2}], h −→ E [e′′
j ], h

′ with j ∈ {1, 2}
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where

h(k̃) = o

h(o) = (C, )

h′ = h[k̃ 	→ o :: o]

C ⇓ {C1, C2} = Cj .

Since

Γ �r ei : Ti � Σi,

by the proof of the same case in Theorem 6.1, we get

Σi = {k :!{C1 ⇒ t1 � C2 ⇒ t2}}.Σ′′
i

and

Γ �r E [e′′
j ] : T� Σ′

i

where

Σ′
i = {k : tj}.Σ′′

i for j ∈ {1, 2}.
So we can derive

Σ′(k) �h′(k̃)
h′ Σ′(k̃)

from

Σ(k) �h(k̃)
h Σ(k̃)

by Definition 6.4 (2)), and then conclude ag(Σ′; h′).

— ReceiveCase-R:

Assume

ei = E [k.recvC(x){C1 ⇒ e′′
1 � C2 ⇒ e′′

2}].
We have

E [k.recvC(x){C1 ⇒ e′′
1 � C2 ⇒ e′′

2}], h −→ E [[o/x]e′′
j ], h

′ with j ∈ {1, 2}

where

h(k) = o :: o

h(o) = (C, )

h′ = h[k 	→ o]

C ⇓ {C1, C2} = Cj .

Since Γ �r ei : Ti � Σi, by the proof of the same case in Theorem 6.1, we get

Σi = {k :?{C1 ⇒ t1 � C2 ⇒ t2}}.Σ′′
i

and

Γ �r E [[o/x]e′′
j ] : T� Σ′

i

where

Σ′
i = {k : tj}.Σ′′

i for j ∈ {1, 2}.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000886
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:54:59, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000886
https:/www.cambridge.org/core


Deriving session and union types for objects 1201

So we can derive

Σ′(k̃) �h′(k)
h′ Σ′(k)

from

Σ(k̃) �h(k)
h Σ(k)

by Lemma 6.5, and then conclude ag(Σ′; h′).

It is convenient to take into account the order in which communication and delegation

redexes (see Section 4) occurring in the same expression are reduced. To this end, we

introduce the ‘follows’ relation between redexes.

Definition 6.6. Let e be an expression and r1, r2 be two different occurrences of

communication or delegation redexes in e. We say that r2 follows r1 in e if there is

a subexpression e′ of e such that e′ = E [r1] and r2 occurs in e′.

Note that by the definition of the evaluation context, r1 cannot be a subexpression of r2,

but r2 can be a subexpression of r1.

It is easy to check that, if r1 and r2 are as in the previous definition, then r1 needs

to be reduced before r2, since r1 occurs in the hole of an evaluation context E , while r2

occurs elsewhere in the same expression.

By convention, we assume that all fresh channels created when reducing parallel threads

take successive indexes according to the order of creation, that is, they are named k0,

k1, . . .. This means that if

P , h −→∗ Q, h′ −→∗ Q′, h′′

and ki is a channel created in the reduction P , h −→∗ Q, h′, and kj is a channel created in

the reduction Q, h′ −→∗ Q′, h′′, then i < j.

The subject of a communication or delegation redex is the channel specified in its syntax

on which the communication takes place. The index of a communication or delegation redex

is the index of its subject.

The following crucial lemma states that a channel and its dual cannot occur in the

same thread. Moreover, it states that the order of the indexes of the communication and

delegation redexes agrees with the ‘follows’ relation between redexes.

Lemma 6.7. Let e be an initial expression and e, [ ] −→∗ e1 || . . . || en, h. Then:

(1) No expression ei can contain occurrences of both k and k̃ for some channel k.

(2) If r1, r2 are two different occurrences of communication or delegation redexes in ei
(i ∈ {1, . . . , n}) and r2 follows r1, then the index of r1 is greater than or equal to the

index of r2.

Proof.

(1) This part follows straightforwardly by noting that the channels k and k̃ are introduced

by the rule SessReq-R in two different parallel threads.

(2) � � e : T � ε implies that no channel occurs in e, so the property holds trivially. We

now prove that the reduction preserves the property: that is, if all the channels in the

subexpressions of an expression are indexed in a non-increasing order in the sense of
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Definition 6.6, starting from the redex to all the following redexes, then after one step

of reduction, we get expressions that have the same property. The proof is by case

analysis on the definition of −→:

— SessReq-R:

We have

h(o) = (C, ) sbody(s, C) = e′′ k, k̃ �∈ h

E [o.s {e′}], h −→ E [e′ � k�] || [o/this]e′′ � k̃�, h[k, k̃ 	→ ()]

.

Let E [o.s {e′}] be an expression in which the desired property holds. After one

step of reduction, the new channel k in the expression e′ � k� is the one with the

highest index and no other channel occurs in it. Moreover, all communication

and delegation redexes occurring in E follow all communication and delegation

redexes in e′ � k�. Finally, note that by the induction hypothesis, the desired

property holds for all communication and delegation redexes occurring in E .

In parallel, we have the expression [o/this]e′′ � k̃�, where e′′ is a session body, so

the only channel in this expression is k̃. Hence, this reduction rule preserves the

property.

— SessDel-R:

We have

h(o) = (C, ) sbody(s, C) = e′

E [o • s {k}], h −→ E [[o/this]e′ � k�], h
.

Let E [o•s {k}] be an expression in which the desired property holds. Since o•s {k}
is the redex, k is the channel with the highest index. After one step of reduction,

the next expression to be reduced is [o/this]e′ � k�, and k is still the only channel

that occurs in it.

— SendCase-R:

We have

h(k̃) = o h(o) = (C, ) C ⇓ {C1, C2} = Ci

E [k.sendC(o){C1 ⇒ e′
1 � C2 ⇒ e′

2}], h −→ E [e′
j], h[k̃ 	→ o :: o]

.

If the expression

E [k.sendC(o){C1 ⇒ e′
1 � C2 ⇒ e′

2}]
is an expression in which the desired property holds, then k is the channel with

the highest index. The channel k is the only channel occurring in the expressions

e′
1, e

′
2. So, after one step of reduction, the expression e′

j can either contain only the

channel k, which is the one with the highest index, or it can contain no channel,

so the property still holds.

— ReceiveCase-R, SendWhile-R and ReceiveWhile-R:

The proof in these cases is similar to the previous one.
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In all the remaining cases, no channel is introduced or modified, so the property is

trivially preserved.

The above lemma is a technical step in proving the deadlock freedom property for

communication expressions. Indeed, it is easy to verify that well-typed sending redexes

always reduce, as well as while-receiving redexes. So the crucial case is when we obtain

a parallel composition of case-receiving redexes, and in the following lemma, we prove

that these receiving actions are not stuck since their expectations match the values on the

channel queue.

Lemma 6.8 (deadlock freedom). We let e be an initial expression and assume

e, [ ] −→∗ o1 || . . . || om || e1 || . . . || en, h,

such that m � 0 and that for all i (1 � i � n), we have ei = Ei[ri], where Ei is an evaluation

context and ri is a case-receiving redex. Then there is i (1 � i � n) such that ei, h −→ P , h′

for some P , h′.

Proof. By Corollary 6.1, each ei is well typed from a term environment Γ that agrees

with h.

Let j be the highest of the indexes of the channels occurring in e1 | . . . | en.
If both kj and k̃j occur in e1 | . . . | en, then, by Lemma 6.7 (1), they occur in two different

expressions: let them be ep and eq with 1 � p �= q � n. By Lemma 6.7 (2), the subjects

of the two redexes rp and rq are the channels kj and k̃j . Moreover, we must have that

Σp(kj ), Σq (k̃j ) are of the forms

?{D1 ⇒ t1 � D2 ⇒ t2}.t,
?{D′

1 ⇒ t′
1 � D′

2 ⇒ t′
2}.t′

since rp and rq are case-receiving redexes. If h(kj ) is not empty, we let h(kj ) = o :: o′. By

Lemma 6.5, h(o) = (C, ) and C ⇓ {D1, D2} is defined, so rp can perform a ReceiveCase-R

step, which is contrary to the hypothesis. We can reason similarly if h(k̃j ) is not empty.

Otherwise, if both h(kj ) and h(k̃j ) are empty, then by Lemma 6.6, we get ag(Σ; h), where Σ

is the session environment of e1 | . . . | en. This implies Σ(k) �( )
h Σ(k̃) by Definition 6.5 and

thus Σq (k̃j ) � Σp(kj ) by Definition 6.4 (1). But this is impossible since Σp(kj ) and Σq (k̃j )

have the forms

?{D1 ⇒ t1 � D2 ⇒ t2}.t
?{D′

1 ⇒ t′
1 � D′

2 ⇒ t′
2}.t′.

If only kj occurs in e1 | . . . | en, we must have

Σ(kj ) �= ε

Σ(k̃j ) = ε.

From ag(Σ; h), by Definition 6.5, we get that Σ(k̃j ) = ε implies h(k̃j ) = ( ), and thus

ε �h(kj )
h Σ(kj ). We conclude that h(kj ) is not empty, so we can proceed as before.
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Theorem 6.2 (type safety). If e is an initial expression and e, [ ] −→∗ e1 || . . . || en, h, then

one of the following conditions holds:

— There is i (1 � i � n), such that ei, h −→ P , h′ for some P , h′.

— ei is an object for all i (1 � i � n).

Proof. By Proposition 6.1, e is closed and channel-complete, so by Proposition 4.2, each

ei is closed and channel-complete. Therefore, by Proposition 4.1, either ei is an object

identifier or ei = Ei[ri] for some evaluation context Ei and some redex ri. If ei = Ei[ri],

then, by Corollary 6.1, ei can be typed from a term environment Γ that agrees with h, so,

by Lemma 6.2 (1), we have ri can be typed from Γ too.

If some ri is of one of the shapes

o;e′

new C(o)

k.sendC(o){C ⇒ e � C ⇒ e}
k.sendW(e){C ⇒ e � C ⇒ e}
k.recvW(x){C ⇒ e � C ⇒ e},

we can immediately verify that ei reduces.

Otherwise, let some ri be of one of the shapes

o.f

o.f := o′

o.s {e′}
o • s {k}.

Since an object identifier cannot occur in an initial expression, the run-time expression o

has been obtained by reducing new C(o) for some C, f : o, which implies h(o) = (C, f : o) by

rule (NewC-R). By Definition 6.3 (2), this implies Γ(o) = C. If ri = o.f, rule (Fld-RT) has

been applied with a premise Γ �r o : T � � for some T such that C <: T and f ∈ fields(T),

so f ∈ fields(C). If ri = o.s{. . .}, rule (SessReq-RT) has been applied with a premise

Γ �r o : T � � for some T such that C <: T and stype(s, T) is defined. Therefore, stype(s, C)

is also defined, so sbody(s, C) is defined. We can similarly show that sbody(s, C) is defined

when ri = o • s{. . .}. Hence, we can conclude that ei reduces in all the above cases.

The only remaining alternative, which is when all ri are case-receiving redexes, follows

from Lemma 6.8.

7. Session type reconstruction

The type system presented in Figure 9 derives session types for expressions assuming that

all session declarations are decorated with explicit session types. Moreover, because of

the subsumption rule, expressions can have many types. In this section we present an

inference algorithm (Figure 13) that:

(i) gives an expression its minimal type;
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Axiom-T-I

Γ �i z : Γ(z) � ε � �, �
Cont-T-I

Γ �i cont
T : T � � � �, �

NewC-T-I

fields(C) = T f Γ �i ei : T′
i � ε � Ci, Di T′

i <: Ti

Γ �i new C(e) : C � ε �
⋃
i

Ci,
⋃
i

Di

Fld-T-I

Γ �i e : T � θ � C , D

Γ �i e.f : ftyper(f, T) � θ � C , D

Seq-T-I

Γ �i e : T � θ � C , D Γ �i e
′ : T′ � θ′ � C ′, D ′

Γ �i e;e
′ : T′ � θ.θ′ � C ∪ C ′, D ∪ D ′

FldAss-T-I

Γ �i e : T � θ � C , D Γ �i e
′ : T′ � θ′ � C ′, D ′ T′ <: ftypew(f, T)

Γ �i e.f := e′ : ftyper(f, T) � θ.θ′ � C ∪ C ′, D ∪ D ′

SessReq-T-I

Γ �i e : C1 ∨ · · · ∨ Cn � θ � C , D Γ �i e
′ : T′ � θ′ � C ′, D ′ D ′′ = D ∪ D ′ ∪ {χsCi � θ′|i ∈ {1, . . . , n}}

Γ �i e.s {e′} : T′ � θ � C ∪ C ′, D ′′

SessDel-T-I

Γ �i e : C1 ∨ · · · ∨ Cn � θ � C , D
rtype(s, C1 ∨ · · · ∨ Cn) = T C ′ = C ∪ {χsC1

�= ε} ∪ {χsCi = χsCj |i �= j ∈ {1, . . . , n}}
Γ �i e • s {} : T � θ.χsC1

� C ′, D

SendC-T-I

Γ �i e : T � ε � C , D Γ �i ei : Ti � θi � Ci, Di T <: C1 ∨ C2

Γ �i sendC(e){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2� !{C1 ⇒ θ1 � C2 ⇒ θ2} � C ∪ C1 ∪ C2, D ∪ D1 ∪ D2

ReceiveC-T-I

Γ, x : Ci �i ei : Ti � θi � Ci, Di

Γ �i recvC(x){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2� ?{C1 ⇒ θ1 � C2 ⇒ θ2} � C1 ∪ C2, D1 ∪ D2

SendW-T-I

Γ �i e : T � ε � C , D
Γ �i ei : Ti � θi � Ci, Di α fresh in θ1, θ2 T1 ∨ T2 <: T′ ∀T′ ∈ tc(e1) ∪ tc(e2) T <: C1 ∨ C2

Γ �i sendW(e){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2 � μα.!{C1 ⇒ [α/�]θ1 � C2 ⇒ [α/�]θ2} � C ∪ C1 ∪ C2, D ∪ D1 ∪ D2

ReceiveW-T-I

Γ, x : Ci �i ei : Ti � θi � Ci, Di α fresh in θ1, θ2 T1 ∨ T2 <: T ∀T ∈ tc(e1) ∪ tc(e2)

Γ �i recvW(x){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2 � μα.?{C1 ⇒ [α/�]θ1 � C2 ⇒ [α/�]θ2} � C1 ∪ C2, D1 ∪ D2

Fig. 13. Constraint-based typing rules for channel-free expressions.

(ii) calculates the constraints that must be satisfied in order to reconstruct the related

session type (which is unique, as stated in Proposition 5.1).

This means that programmers need no longer be responsible for declaring the session

types.

We define an inference class table ICT as a class table in which each session declaration

s, in each class C, is decorated by the session-in-class variable χsC representing the session

type that will be inferred by the algorithm.

Then we extend the syntax of session types to session type schemes in order to include

session-in-class variables:

θ ::= t | χsC | θ.θ | †{C1 ⇒ θ � C2 ⇒ θ} | μα.†{C1 ⇒ θ � C2 ⇒ θ} .
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Sess-WF-I

{this : C} �i e : T � θ � C ′, D C = C ′ ∪ {χsC = θ} � does not appear in θ

T χsC s { e } ok in C with C ,D

Class-WF-I

D ok Si ok in C with Ci,Di

class C � D { T f; S } ok with
⋃
i

Ci,
⋃
i

Di

Fig. 14. Well-formed inference class tables.

If CT is a class table, we use CT− to denote the inference class table obtained by

replacing in CT the declared session type of any session s in any class C by χsC.

In order to reconstruct the session types of session declarations, we use two kinds of

constraints:

— A set of equality (and disequality) constraints, denoted by C , will collect assertions of

the form χsC = θ and χsC �= ε.

— A set of duality constraints, denoted by D , will collect assertions of the form χsC � θ.

The constraint-based type inference system is presented in Figure 13. Note that if a

session-in-class variable χsC occurs in a session type that is inferred for an expression, then

χsC has been introduced by rule SessDel-T-I, so the related set of constraints must contain

χsC �= ε. This means that no derived session type can be equated to ε by a substitution that

satisfies the set of constraints. For this reason, when required, we explicitly write ε in the

antecedents of the inference rules.

The resulting minimal type in the communication rules is the union of the types of the

two branches, that is, their least supertype.

The rules for well-formedness of session and class declarations are given in Figure 14.

The declaration of a session s in a class C is well formed under the constraints C and D

if the body e is well typed under constraints C ′ and D . The set C includes the constraints

collected typing the body e (C ′) and the equation χsC = θ that assigns to the session

variable χsC the session type scheme θ representing the communications performed in the

body e. The condition in rule Sess-WF that � does not appear in θ is justified by the fact

that � has no dual type, so sessions whose bodies would be typed with types containing

� would be useless.

The well-formedness of a class declaration is checked under the union of the constraints

collected checking the well-formedness of session declarations in C.

We define the set of constraints of an inference class table ICT as the pair 〈
⋃

i∈I Ci;
⋃

i∈I
Di〉, where Ci for i ∈ I is the set of classes defined in ICT and class Ci . . . ok with Di,Ci.

8. Properties of the constraint-based typing

In this section we prove that the constraint typing rules of Figure 13 are sound and

complete with respect to the typing rules of Figure 9.
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Indeed, given an inference class table ICT that is well formed under constraints 〈C ; D〉,
if σ is a substitution that satisfies C and D , then σ(ICT) gives a well-formed class table

according to the type derivation � (Soundness).

Conversely, for any well-formed class table CT, the corresponding inference class table

CT− will be well formed under constraints 〈C ; D〉 such that there is a unique substitution

σ that satisfies C and D (Completeness). Furthermore, we prove that σ(CT−) = CT.

Definition 8.1 (type substitution). A type substitution σ is a finite mapping from session

type variables to session types. The application of a substitution to a session type scheme

is defined as follows:

σ(t) = t

σ(χsC) =

{
t if (χsC 	→ t) ∈ σ

χsC if χsC �∈ dom(σ)

σ(θ.θ′) = σ(θ).σ(θ′)

σ(†{C1 ⇒ θ1 � C2 ⇒ θ2}) = †{C1 ⇒ σ(θ1) � C2 ⇒ σ(θ2)}
σ(μα.†{C1 ⇒ θ1 � C2 ⇒ θ2}) = μα.†{C1 ⇒ σ(θ1) � C2 ⇒ σ(θ2)}.

Substitutions on inference class tables are defined as expected.

In the soundness property formulation, it is enough to consider expressions that occur

in class tables.

Theorem 8.1 (soundness). Let ICT be an inference class table with set of constraints

〈C ′; D ′〉. If Γ �i e : T � θ � C , D using ICT is such that C ⊆ C ′ and D ⊆ D ′ and σ is a

substitution that satisfies C ′ and D ′, then Γ � e : T � σ(θ) using the class table σ(ICT).

Proof. The proof is by induction on the type derivation of Γ �i e : T � θ � C , D , with

a case analysis on the final rule. We will only consider the most interesting cases.

Note that σ satisfies C ′ and D ′, so σ(ICT ) is a class table and σ(θ) is a session type.

— FldAss-T-I:

We have

Γ �i e1.f := e2 : T � θ � C , D .

From rule FldAss-T-I, we have

T = ftyper(f, T1)

C = C1 ∪ C2

D = D1 ∪ D2

θ = θ1.θ2

and

Γ �i e1 : T1 � θ1 � C1, D1

Γ �i e2 : T2 � θ2 � C2, D2
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for some C1,C2,D1,D2, T1 and some T2 such that

T2 <: ftypew(f, T1).

Since

C1 ⊆ C ⊆ C ′

C2 ⊆ C ⊆ C ′

D1 ⊆ D ⊆ D ′

D2 ⊆ D ⊆ D ′,

by the induction hypothesis,

Γ � e1 : T1 � σ(θ1)

Γ � e2 : T2 � σ(θ2)

using the class table σ(ICT). By applying rules Sub-T (since ftypew(f, T1) <: ftyper(f, T1)

by definition) and FldAss-T, we get the result

Γ � e1.f := e2 : T � σ(θ)

using the class table σ(ICT).

— SessReq-T-I:

We have

Γ �i e1.s {e2} : T � θ � C , D .

From rule SessReq-T-I, we have

C = C1 ∪ C2

D = D1 ∪ D2 ∪ {χsC � θ′|C ∈ T′}

and

Γ �i e1 : T′ � θ � C1, D1

Γ �i e2 : T � θ′ � C2, D2

for some C1,C2,D1,D2, T′. Since

C1 ⊆ C ⊆ C ′

C2 ⊆ C ⊆ C ′

D1 ⊆ D ⊆ D ′

D2 ⊆ D ⊆ D ′,

by the induction hypothesis,

Γ � e1 : T′ � σ(θ)

Γ � e2 : T � σ(θ′).

Moreover, the fact that σ satisfies D , implies that σ(χsC) � σ(θ′) for all C ∈ T′, and

{σ(χsC) | C ∈ T′} = stype(s, T′)
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using the class table σ(ICT). Applying rule SessReq-T, we then get the result

Γ � e1.s {e2} : T � σ(θ)

using the class table σ(ICT).

— SessDel-T-I:

We have

Γ �i e0 • s {} : T � θ � C , D .

From rule SessDel-T-I, we have

C = C1 ∪ {χsC1
�= ε} ∪ {χsCi = χsCj |i �= j ∈ {1, . . . , n}},

and

Γ �i e0 : T′ � θ � C1, D

and

rtype(s, T′) = T

T′ = C1 ∨ · · · ∨ Cn

for some C1, T′, C1, · · · , Cn. Since

C1 ⊆ C ⊆ C ′,

by the induction hypothesis,

Γ � e0 : T′ � σ(θ)

and

stype(s, T′) = {σ(χsC1
)},

with σ(χsC1
) �= ε, using the class table σ(ICT). Applying rule SessDel-T, we then get

the result

Γ � e0 • s {} : T � σ(θ)

using the class table σ(ICT).

— SendC-T-I:

We have

Γ �i sendC(e0){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2 � θ � C , D .

From rule SendC-T-I, we have

θ =!{C1 ⇒ θ1 � C2 ⇒ θ2}
C = C1 ∪ C2 ∪ C3

D = D1 ∪ D2 ∪ D3

and

Γ �i ei : Ti � θi � Ci, Di (i ∈ {1, 2})
for some θ1, θ2,C1,C2,C3,D1,D2,D3. Moreover,

Γ �i e0 : T′ � ε � C3, D3
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for some

T′ <: C1 ∨ C2.

Since

Cj ⊆ C ⊆ C ′

Dj ⊆ D ⊆ D ′

for j ∈ {1, 2, 3}, by the induction hypothesis,

Γ � e0 : T′ � ε

Γ � ei : Ti � σ(θi)

using the class table σ(ICT). Applying rule Sub-T, we then get

Γ � e0 : C1 ∨ C2 � ε

Γ � ei : T1 ∨ T2 � σ(θi).

So SendC-T applies, and we obtain

Γ � sendC(e0){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2 � σ(θ)

using the class table σ(ICT).

— ReceiveC-T-I, SendW-T-I, ReceiveW-T-I:

All these cases are similar to the above.

Theorem 8.2 (completeness). Let CT be a well-formed class table and σ be a substitution

such that {σ(χsC)} = stype(s, C), for any s, C ∈ CT.

Then, for any expression e, if Γ � e : T � t using CT, we have for some C ,D , T′:

(i) Γ �i e : T′ � θ � C , D using CT−.

(ii) T′ <: T.

(iii) σ satisfies C and D .

(iv) σ(θ) = t.

Proof. The proof is by induction on the type derivation of Γ � e : T � t, with a case

analysis on the final rule. We will only consider the most interesting cases:

— FldAss-T:

We have

Γ � e1.f := e2 : T � t.

From rule FldAss-T we have

T = ftyper(f, T1)

t = t1.t2

and

Γ � e1 : T1 � t1

Γ � e2 : ftypew(f, T1) � t2
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for some T1, t1, t2.

By the induction hypothesis, we have for some T′
1 <: T1, T2 <: ftypew(f, T1), θ1, θ2, C1,

C2,D1 and D2:

(1) Γ �i e1 : T′
1 � θ1 � C1, D1 and Γ �i e2 : T2 � θ2 � C2, D2.

(2) σ satisfies C1, C2, D1, D2, and σ(θ1) = t1 and σ(θ2) = t2.

The condition

T2 <: ftypew(f, T′
1)

holds by

T2 <: ftypew(f, T1)

since T′
1 <: T1 implies

ftypew(f, T1) <: ftypew(f, T′
1)

by the definition of ftypew . So we can apply rule FldAss-T-I to (1) to give

Γ �i e1.f := e2 : ftyper(f, T
′
1) � θ1.θ2 � C1 ∪ C2, D1 ∪ D2.

Note that T′
1 <: T1 implies

ftyper(f, T
′
1) <: ftyper(f, T1)

by the definition of ftyper . From (2), we can then conclude that σ satisfies

C1 ∪ C2

D1 ∪ D2,

and that

σ(θ1.θ2) = t.

— SessReq-T:

We have

Γ � e1.s {e2} : T � t.

From rule SessReq-T, we have

Γ � e1 : T1 � t

Γ � e2 : T � t2

and t2 � t′ for some T1, t2 and for all t′ such that t′ ∈ stype(s, T1).

By the induction hypothesis, we have for some T′
1 <: T1, T2 <: T, θ1, θ2, C2, C2, D1, D2:

(1) Γ �i e1 : T′
1 � θ1 � C1, D1 and Γ �i e2 : T2 � θ2 � C2, D2.

(2) σ satisfies C1, C2, D1, D2, and σ(θ1) = t and σ(θ2) = t2.

Let T1 = C1 ∨ . . . ∨ Cn. From rule SessReq-T-I and (1), we have

Γ �i e1.s {e2} : T2 � θ1 � C , D ,

where

C = C1 ∪ C2

D = D1 ∪ D2 ∪ {χsCi � θ2|i ∈ {1, . . . , n}}.
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Since, by hypothesis,

{σ(χsC)} = stype(s, C)

for all s, C ∈ CT, and by definition,

stype(s, T1) =
⋃

i∈{1,...,n}

stype(s, Ci),

by (2), the condition t2 � t′ for all t′ ∈ stype(s, T1) implies

σ(χsCi ) � σ(θ2)

for all i ∈ {1, . . . , n}. We can then conclude from (2) that σ satisfies C and D .

— SessDel-T:

We have

Γ � e0 • s {} : T � t.

From rule SessDel-T, we have

Γ � e0 : T0 � t0,

and

stype(s, T0) = {t′}
t′ �= ε

t = t0.t
′

rtype(s, T0) = T.

By the induction hypothesis, we have for some T′
0 <: T0, θ0, C0, D:

(1) Γ �i e0 : T′
0 � θ0 � C0, D .

(2) σ satisfies C0 and D and σ(θ0) = t0.

Let T0 = C1 ∨ . . . ∨ Cn. From rule SessDel-T-I and (1), we have

Γ �i e0 • s {} : rtype(s, T′
0) � θ0.χ

s
C1

� C , D ,

where

C = C0 ∪ {χsC1
�= ε} ∪ {χsCi = χsCj |i �= j ∈ {1, . . . , n}}.

Since stype(s, T0) = {t′} implies stype(s, Ci) = {t′} for i ∈ {1, . . . , n} and, by hypothesis,

{σ(χsCi )} = stype(s, Ci),

we get

σ(χsCi ) = t′.

So

σ(θ.χsC1
) = t0.t

′

and σ satisfies C .
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From T′
0 <: T0, we have

rtype(s, T′
0) <: rtype(s, T0),

so we obtain the result.

— SendC-T:

We have

Γ � sendC(e0){C1 ⇒ e1 � C2 ⇒ e2} : T � t.

From rule SendC-T, we have

t =!{C1 ⇒ t1 � C2 ⇒ t2}

and

Γ � e0 : C1 ∨ C2 � ε

Γ � ei : T � ti for i ∈ {1, 2}.

By the induction hypothesis, for some T′ <: C1 ∨ C2, C , D , Ti <: T, θi, Ci, and Di with

i ∈ {1, 2}:
(1) Γ �i e0 : T′ � ε � C , D .

(2) Γ �i ei : Ti � θi � Ci, Di.

(3) σ satisfies C , D , Ci, Di and σ(θi) = ti.

We can now apply rule SendC-T-I to obtain

Γ �i sendC(e0){C1 ⇒ e1 � C2 ⇒ e2} : T1 ∨ T2� !{C1 ⇒ θ1 � C2 ⇒ θ2} � C ∪ C1 ∪ C2,

D ∪ D1 ∪ D2.

Since T1 <: T and T2 <: T, we get T1 ∨ T2 <: T. We can now conclude from (3) that

σ(!{C1 ⇒ θ1 � C2 ⇒ θ2}) = t

and σ satisfies

D ∪ D1 ∪ D2

C ∪ C1 ∪ C2.

— ReceiveC-T-I, SendW-T-I, ReceiveW-T-I:

These are all similar to the above cases.

It is interesting to note that we do not need to consider principal solutions as in the

standard approach ((Pierce 2002), Chapter 22). The reason is that the classes of exchanged

objects are explicit in communication expressions.

Corollary 8.1 (uniqueness of the solution). Let CT be a class table and CT− be the

corresponding inference class table with constraints (C ,D). Let σ(CT−) = CT. For any

substitution σ′ that satisfies (C ,D) and such that dom(σ) = dom(σ′), we get σ′ = σ.

Proof. Let us suppose ad absurdum that σ′ �= σ, that is, σ′(CT−) = CT′ �= CT. The only

difference between CT′ and CT is in the session types declared in the sessions definitions.

This contradicts Proposition 5.1 and rule Sess-WF.
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Summarising, when read from bottom to top, the constraint typing rules determine an

algorithm that calculates the constraints that must be satisfied in order for a class table

ICT to be well formed. If a solution exists, it is the (unique) substitution σ that verifies

both C and D . The procedure for finding this substitution σ consists of two steps. First we

apply a standard unification algorithm on first-order type expressions (see Pierce (2002,

Chapter 22)) to solve the equality constraints in C . Then we verify that σ satisfies all the

duality constraints in D . If this procedure succeeds, then σ gives the session types that

decorate all the session declarations in such a way that σ(ICT) is well formed.

9. Related work

Union types have been shown to be useful for enhancing the flexibility of subtyping in the

following settings: functional languages (Barbanera et al. 1995; Frisch et al. 2008); object-

oriented languages (Igarashi and Nagira 2007); languages manipulating semi-structured

data (Gapeyev and Pierce 2003); and the π-calculus (Castagna et al. 2008; Castagna

et al. 2009).

It is interesting to compare FSAM∨ with FJ ∨ , which is an extension of FJ with

union types proposed in Igarashi and Nagira (2007). They define union types as in the

current paper: the essential difference is that they have traditional methods rather than

sessions. The method signatures are of the form T → T. The method type lookup function

applied to a method name m and a type T gives a set of method signatures, that is, all

the signatures of m in the classes that build T. This is similar to our stype function, which

returns a set of session types. The method-call rule checks that the types of the parameters

agree with all the signatures found by the method type lookup function for the type of

the object. Our SessReq-T rule also requires the session type of the co-body to be dual to

all the session types returned by the stype function. It is easy to check that the encoding

of methods by sessions sketched at the end of Section 2 extends without any changes to

methods with union types.

Session types were first introduced into model communication protocols between π-

calculus processes (Honda 1993; Takeuchi et al. 1994; Honda et al. 1998). They have

been made more expressive by enriching them with: correspondence assertions (Bonelli

et al. 2005); subtyping (Gay and Hole 2005); bounded polymorphism (Gay 2008); higher-

order processes (Mostrous and Yoshida 2007; Mostrous and Yoshida 2009); exceptions

(Carbone et al. 2008b); and concurrent constraints (Coppo and Dezani-Ciancaglini 2009).

They have also been made safer by assuring deadlock-freedom (Dezani-Ciancaglini

et al. 2008; Bettini et al. 2008b). Session types have also been extended to include: multi-

party communications (Bonelli and Compagnoni 2008; Carbone et al. 2008a); action

permutations (Honda et al. 2009); design by contracts (Bocchi et al. 2010); dependent

types for parametricity (Yoshida et al. 2010); upper bounds on buffer sizes (Deniélou

and Yoshida 2010); and access/information flow control (Capecchi et al. 2010a; Capecchi

et al. 2011). Session types have also been developed for: CORBA (Vallecillo et al. 2002);

functional languages (Gay et al. 2003; Vasconcelos et al. 2006; Bhargavan et al. 2009);

boxed ambients (Garralda et al. 2006); the W3C standard description language for Web
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Services CDL (Carbone et al. 2007; Web Services Choreography Working Group 2002;

Sparkes 2006; Honda et al. 2007); and object-oriented programming languages.

The rest of this section is devoted to the literature on session types in the object-oriented

paradigm.

The earlier papers Dezani-Ciancaglini et al. (2005), Dezani-Ciancaglini et al. (2006),

Coppo et al. (2007), Dezani-Ciancaglini et al. (2007) and Dezani-Ciancaglini et al. (2009)

discuss a multi-threaded object-oriented calculus augmented with session primitives that

supports session names as parameters of methods, spawning, iterative sessions and

delegation.

The language Sing# (Fähndrich et al. 2006) is a variant of C# that combines session

types with ownership types (Clarke et al. 2001), supports message-based communication

through a designed heap area (shared memory) and allows interfaces between OS-modules

to be described as message-passing conversations. CoreSing# (Bono et al. 2011) is a core

calculus inspired by the main features of Sing#. It is equipped with a type system that uses

session types and a novel form of ownership types to ensure the absence of communication

errors, memory faults and memory leaks in a communications model based on copyless

message passing.

SJ (Hu et al. 2008) is an extension of Java with syntax for session types and structured

communication operations. The main features of SJ are asynchronous message passing,

delegation, session subtyping, interleaving, class downloading and failure handling. Hu

et al. (2010) presents an extension of SJ that allows type-safe event-driven session

programming.

Gay et al. (2010) formalises a core distributed class-based object-oriented language

with a static type system that combines session-typed channels and a form of typestates.

Each class definition has a session type that specifies the possible sequences of method

calls. Channels can be stored in object fields, and separated methods implement parts of

sessions. The availability of methods depends on the state of objects.

The amalgamation of the notion of session-based communication with object-oriented

programming was first developed in Drossopoulou et al. (2007). A characteristic of this

design is that channel names are only generated at run time, and, as a consequence,

only delegation of a session to another session within the same thread is expressible.

Since the delegating and delegated sessions can have different objects as receivers, this

delegation is in this respect related to the delegation of method execution in object-based

calculi (Lieberman 1986). FSAM∨ extends the calculus of Drossopoulou et al. (2007)

with union types and a cleaner and simpler typing and operational semantics, since

delegation in Drossopoulou et al. (2007) requires ad hoc run-time constructors. Capecchi

et al. (2009) added generic types to a language/calculus based on the approach of

Drossopoulou et al. (2007), but we claim that union types are a better fit than generic

types for our communication primitives based on classes of exchanged objects. We

think that the present type reconstruction cannot be adapted easily to the session

types of Capecchi et al. (2009) because of intrinsic difficulties in performing type

inference with generic types. Giachino (2009) presents an extension of FSAM∨ with

intersection and negation types that allows a service-oriented interpretation of session

overloading.
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10. Conclusions

The core language FSAM∨, which was first presented in Bettini et al. (2008a), showed how

the addition of union types to an object-oriented language with session types enhances

flexibility.

In the current paper, we have presented a full formalisation of the language and proved

that the language is type safe. Moreover, we have presented an inference algorithm that

gives an expression its minimal type and calculates the constraints that must be satisfied

in order to reconstruct the related (unique) session type for each session declaration.

The language FSAM∨can be also viewed as a kernel proposal for generalising the

standard notion of sessionless methods in the object-oriented framework, where method

call interactions between two objects is limited to the initial sending of argument values

for parameters. Once the syntax of the expressions is extended to send/receive operations,

a method definition can include a sequence of interactions. The typechecking will be

responsible for deriving session types for methods, thereby determining the appropriate

evaluation rule to be used for method invocation: an empty session type will cause a

standard semantics, but a non-empty one will use the evaluation rules defined in the

current paper.

The amalgamation of communication-centred and object-oriented programming, as

developed in Drossopoulou et al. (2007), Capecchi et al. (2009) and the current paper,

does not allow some common patterns of concurrent programming to be expressed

naturally. Session nesting is a strong limitation in the programming design: for example,

the only way of implementing a ‘forwarder’ is to create a new session for each forwarded

message. Our restricted delegation does not allow us to write a server that does load-

balancing by delegation to worker threads in a straightforward way. We plan to remove

these drawbacks (presumably by adding explicit channels) and to extend our approach

in various directions. In particular, we plan to integrate this approach with multi-party

session communication (Carbone et al. 2008a; Bettini et al. 2008b), access and information

flow control (Capecchi et al. 2010a; Capecchi et al. 2011) and exception handling (Capecchi

et al. 2010b).

We plan to develop a prototype implementation of a language based on the approach

presented in this paper. A possible tool for the implementation of the run-time system of

our language is IMC†, which is a Java framework for implementing network applications

that provides reusable mechanisms for dealing with the implementation of communication

protocols. Indeed, IMC has already been used for implementing the run-time system of

calculi with session-based communication primitives (Bettini et al. 2008c). This would also

allow us to embed our type system for session types into a distributed setting; we do not

see any crucial issues arising from transposing our session type setting to a distributed

context since our approach, as stated in the Introduction, is agnostic with respect to other

aspects of the language. Of course, our session types do not deal with network failures

since they are only concerned with the correctness of the communication protocols.

† See http://imc-fi.sourceforge.net.
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