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ABSTRACT
Pattern recognition algorithms offer a promising approach to recognizing bat
species by their echolocation calls. Automated systems like synergetic classi-
fiers may contribute significantly to operator-independent species identifica-
tion in the field. However, it necessitates the assembling of an appropriate
database of reference calls, a task far from trivial. We present data on species
specific flexibility in call parameters of all Swiss bat species (except Nyctalus
lasiopterus and Plecotus alpinus). The selection of “training-calls” for the classi-
fier is crucial for species identification success. We discuss this in the context
of echolocation call variability differing between species and its consequences
for the implementation of an automated, species specific bat activity moni-
toring system.
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INTRODUCTION

Due to their active orientation system, echolocat-
ing bats are conspicuous. Therefore, by acousti-
cally monitoring bats we can eavesdrop on their
behaviour. In the course of evolution, bats have
occupied the nocturnal niche of almost every
possible habitat. In parallel with their evolution,
wing morphology, hearing abilities and echoloca-
tion call characteristics adapted to the specific
habitats and foraging method (Neuweiler 1999).
Today signal variability covers constant fre-
quency and frequency modulated calls of various
composition and temporal structure. Additio-
nally, bats adapt their calls to the particular situa-
tion, e.g., using short, broad-band signals at high
repetition rate when hunting close to clutter, or
long narrow-band signals when foraging in open
air space (Kalko 1995).
Despite this flexibility, recognition of bat species
by their calls can be tackled. This is an old theme
with new variations. In 1958 already, Griffin
described echolocation calls differing between

species (Griffin 1958). But it was not until 23 years
later, when the first publications dedicated to
acoustic bat species identification where published
by Ahlén (1981), and Fenton & Bell (1981).
The topic gained new momentum in recent years
in the light of affordable biodiversity monitoring
and conservation. Advances in technology further
facilitate registering and analysing of ultrasound
signals (Parsons and Obrist 2004). Different
approaches can be taken to quantitatively or
qualitatively analyse echolocation signals (Parsons
et al. 2000).
Heterodyning detectors look at a narrow fre-
quency band. Calls with differing energy content
or different temporal sweep structure in this fre-
quency band will sound differently in such a
detector (Fig. 1). Set to 45 kHz, a Pipistrellus
pipistrellus will be easily detected as strong plop,
while Vespertilio murinus will probably not be
heard at all and Eptesicus serotinus might just be
audible as weak tick. Species with short, broad-
band signals will mostly tick very similar, possibly
with different intensity depending on the energy
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RÉSUMÉ
Variabilité des signaux d’écholocation de 26 espèces de chauves-souris suisses :
conséquences, limites et options pour un système automatisé d’identification avec
une approche de reconnaissance synergique.
Les algorithmes de reconnaissance de patron représentent une approche pro-
metteuse pour identifier les espèces de chauves-souris à partir de leurs
signaux d’écholocation. Des systèmes automatisés tels que les classifications
synergiques peuvent contribuer à une identification sur le terrain indépen-
damment de l’expérience de l’opérateur. Cependant il est nécessaire de
constituer une solide base de données de signaux de référence, une tâche
délicate. Cet article présente des données sur la variabilité des paramètres des
signaux de toutes les espèces de chauves-souris suisses (à l’exception de
Nyctalus lasiopterus et Plecotus alpinus). La sélection des « signaux d’appren-
tissage » est déterminante pour une bonne identification des espèces. Ceci est
discuté dans le contexte d’une variabilité des signaux d’écholocation, diffé-
rente selon les espèces. Les conséquences de ces résultats sont évaluées dans la
perspective de réalisation d’un système automatisé de suivi d’activité spéci-
fique des chauves-souris.



maximum of their calls and their repetiton rates.
Interpretation and valuation of all these parame-
ters heavily depend on the experience of the
observing person.
A visual approach to echolocation call identifi-
cation can be taken by either calculating spec-
trograms or period-plots (Fig. 2). The latter
is achievable in real time with a limited amount
of hardware (e.g., ANABAT system, Titley

Electronics 1998; O’Farrell et al. 1999a), while
spectrogram calculation usually necessitates a fast
computer. However, period- or zero-crossing
plots do perform badly with weak or noisy sig-
nals, blurring the display considerably (Fig. 2).
This complicates the recognition in some situa-
tions and species, and their use is discussed very
controversially (Barclay 1999; O’Farrell et al.
1999b; Fenton 2000; Fenton et al. 2001). 
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FIG. 1. — Symbolic representation of the acoustic filter which a heterodyning bat detector implies. Echolocation calls of six species
are given as spectrograms. The central black rectangle enframes the few kHz around 45 kHz, at which the detector is tuned.
Eptesicus serotinus will be heard as weak “tick”, Vespertilio murinus will not be heard at all and Pipistrellus pipistrellus will sound as
full “tock”. The three Myotis species will all sound very similarly as loud short “tick”.
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25 ms

FIG. 2. — Spectrographic (dark grey) and zero-crossing (white dots) representation of echolocation calls of Myotis myotis and Myotis
nattereri. Period-plots (zero-crossing displays) do not show harmonics and dots may “jump” between harmonics of similar intensity
(see middle part of call of Myotis nattereri). The display becomes random for low intensity signals (beginning of calls). – The black
frame indicates parameters measured in Canary for statistical analysis: duration, highest and lowest frequency. The intersection of
the black cross indicates the measurement of the frequency of peak energy.



If real-time performance is not required, offline
analysis offers more accurate methods to species
recognition. It involves in most cases interaction
with an operator, who measures in the amplitude
or the spectrogram display critical parameters like
highest and lowest frequency, frequency of main
energy and duration of the signal (Fig. 2, black
frames with cross). With these discrete measure-
ments of spectral and temporal parameters, fur-
ther analyses with statistics, artificial neural
networks or decision trees can be performed, giv-
ing good performance (Herr et al. 1997; Parsons
& Jones 2000; Russo & Jones 2002; Obrist et al.
2004).
Still, in many cases, measurements will be identi-
cal for calls from different species. In some of
these cases, the spectrogram may show charac-
teristic signatures in the shape of the frequency
sweep. Here, a pattern recognition approach
using shape analysis may help to discriminate
signals.
In a pilot study, Obrist et al. (2004) had analyzed
echolocation signals of 12 species. With a less
advanced recording setup and a limited data set,
they had reached average recognition rates of
80%. Here we report on data of 26 species,
which were all recorded directly to digital media.
We tested the hypothesis, that a pattern recogni-
tion approach based on a synergetic algorithm
will outperform classical statistical analysis of
parametric measurements, even for larger species
assemblages.

MATERIAL AND METHODS

RECORDING

All recordings were done with a Pettersson D980
bat detector connected through a voltage ampli-
fier stage to a PCMCIA data acquisition card
(ComputerBoards PC-CARD-DAS16/330) in
an Apple Macintosh PowerBook laptop computer
(PowerBook 3400 or PowerBook G3) and driven
by custom made software. Thus, digital record-
ings of 26 bat species‘ echolocation calls where
acquired, mostly when releasing identified bats,
rarely in front of previously inspected roosts of

known species occupancy. Tadarida teniotis was
recorded in free hunting flight. 
643 sequences (3.6 hours), containing calls of
362 hand-identified specimens were recorded.
Prior to analysis, high-pass filtering (7.5 kHz)
was applied and single echolocation calls (26 ms
= 8192 data points) were cut from the sequences.
Most species’ calls fit into this window size
(except Rhinolophidae) and only rarely there
were more than one signal enclosed in a single
cutout.

SIGNAL ANALYSIS AND STATISTICS

52302 signals were cut from the recordings by
help of a simple integrating detector algorithm.
37948 of these were visually qualified as noise or
otherwise inadequate for the analysis. Of the
remaining 14354, 5153 where qualified suitable
for identification purposes and 9201 additionally
as suitable for training. Of these in a randomly
selected subset of 2398 calls we calculated high
resolution spectrograms (0.6 kHz resolution,
87.5% window overlap) with Canary (Cornell
University, Ithaca). Duration (DUR), highest
frequency (HFR), lowest frequency (LFR) and
frequency of main energy (MFR) were then man-
ually extracted for later statistical analysis with a
discriminant component analysis with resubstitu-
tion (PROC DISCRIM) in SAS (SAS Institute
Inc.). The discriminant function was ten times
repeated with 12.5%, 25% or 50% of all 2398
considered calls and tested with the remaining
ones. Percentage values of coefficients of varia-
tion (CV) were transformed arcsin (�CV ) for
statistical comparison (Zar 1984). 

SYNERGETICS

We apply a synergetic algorithm, which is also
used e.g., in product control (Haken, 1988;
Wagner et al. 1993; Wagner et al. 1995; Haken
1996). The classification of bat calls is achieved
with an algorithm termed SC-MELT (Wagner
et al. 1995; Hogg & Talhami 1996; Dieckmann
1997). This algorithm combines several train-
ing patterns per class into one feature vector,
which has the same dimension as the training
vectors. This ability enables the synergetic algo-
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rithm to handle big dimensions in contrast to
artificial neural networks (ANN). We calcula-
ted spectrograms each consisting of 159 128-
point-spectra for the pattern recognition
approach. The computational power needed to
train an ANN with an input vector of size
20352 (spectrogram of dimension 159x128) is
prohibitive.
The synergetic algorithm emphasizes unique
pattern content of training signals and dimin-
ishes of pattern contents common to all others.
Learning times are very fast: the generation of
the prototypes containing hundreds of bat calls
takes only a couple of minutes on a current G4
processor (Apple Macintosh Power Mac
G4/867). The classification of a signal is even
faster because it is simply a scalar product. Each
signals classification result consists of an array of
scalar product values, which reflects the signals
match to each stored class (i.e. the 26 acquired
bat species).
First, we performed learning tests on random
subsets of 520 echolocation calls, 20 calls per
each of the 26 species. The random sets were
issued from the full database of 9201 signals
which where visually approved as good for learn-
ing purposes, i.e. which did not contain e.g., calls
immediately after take-off or strong echoes. We
tested against a second set of 520 different signals
from the same database.
We performed three selections of learning calls
and tested each training set against three other
selections of classification calls.
Apart from the raw classification rates we also cal-
culated recognition rates with a filter criteria,
which rejected classifications with maximum
scalar product values smaller than 0.6 or with a
difference to the next best scalar product of less
than 0.2.
We then tried to optimize the training base by
picking from every species the calls from those
random sets, which had achieved the highest
classif ication rates.  Thus, we generated a
fourth training base consisting of a simplisti-
cally optimized sub-selection. Again we tested
the three classification sets against this training
base.

RESULTS

STATISTICS

Echolocation call parameters
Figures 3 and 4 illustrate the range of echoloca-
tion calls considered in this study for every inves-
tigated species. The results of the parametric
spectrogram measurements are given in Table 1.
For further analysis we split the species in two
groups: the genus Myotis and all other species.
Myotis have significantly shorter signals (DUR)
with significantly higher starting frequencies
(HFR; Table 1, t-test, the columns below the
mean values).
To test the within-species variability against the
between-species variability of echolocation call
parameters, we calculated the coefficients of vari-
ation (CV) for every species and parameter. We
then compared CVs averaged over all Myotis-
species against CVs averaged over all other
species with a t-test. Both groups show compara-
ble within-species variation in the duration and
highest frequency of their calls. However, Myotis
species show significantly higher variation in the
lowest frequency and the frequency of peak
energy (Table 1, t-test, the columns below the
CV values).
To compare between-species variation we per-
formed a variance ratio test, again between Myotis
and non-Myotis species. Here, the latter show sig-
nificantly higher variance in all four parameters
compared to the genus Myotis (Table 1, Variance
ratio test). Thus, variation within Myotis species
is larger than in other species, but species differ
less among each other relative to the non-Myotis
species.

Discriminant function analysis
With discriminant function analyses (DFA) we
explored the classification power of parametric
measurements to be able to compare against the
power of the pattern recognition approach.
Increasing the number of calls to calculate the
function did result in a general increase of the
percentage of correctly reclassified calls from
68% to 75%. However, for Myotis bechsteinii and
Myotis brandtii a decreased classification success
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was observed (33% to 31% and 33% to 28%
respectively).
The averaged results of 10 DFA, calculated with
equal numbers of data calls and test calls are
given in Table 2. Reclassification results varied
from 27% to 100%. Species of the genus Myotis
always scored considerably worse than did the
other species.

SYNERGETICS

Table 3 summarizes the classification results for
different settings. The fusion of a sub-selection of
well-performing training calls to a new training
base increased the average classification rate from
70% to 73% for raw classifications and from
86% to 88% in filtered classifications. Filtering
lead to a rejection of 37% of the calls of the ran-
dom set. The sub-selection slightly decreased this

number to 31%. Even though a reduced number
of signals qualify for classification, the filtering
approach improves classification rates by 12-
13%.
Figure 5 illustrates the percentage of correct
classifications with and without filter. The effect
differs strongly between species but is never
negative. Myotis species consistently show lower
classification rates than other species.

DISCUSSION

ECHOLOCATION CALLS

Digital recording at 312.5 kHz with 12 bit data
depth ensured a high fidelity of the recordings
(Parsons and Obrist 2004). The description and
illustration of echolocation call characteristics of
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FIG. 3. — Spectrograms of three exemplary echolocation calls of each investigated bat species not belonging to the genus Myotis.
In many species signals show high plasticity, ranging from broad-band, multiharmonic calls to very narrow-band, quasi-constant-
frequency vocalizations (e.g., Pipistrellus sp., Vespertilio murinus). Most signals in the Rhinolophidae where truncated by the chosen
window length (see methods).



26 Swiss bats species given here compare well
with other published reports (e.g., Ahlén, 1981).
Recordings made directly after releasing hand-
identified bats differ from those recorded later in

search flight. By recording sequences of 20 sec-
onds in a post-trigger mode and by monitoring
the acoustic behaviour of the animals, we could
verify and later select the type of calls contained
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FIG. 4. — Spectrograms of three exemplary echolocation calls of each investigated bat species in the genus Myotis. Variability
between species is considerably lower compared to Fig. 4.



in our data set during recording. Thus, very short
take-off calls were omitted from the analysis,
thereby obviously influencing perceived variance.
However, this was necessary to delimit the signals
to only include the range of probable search calls.
We thereby do not takle the task to identify
species during e.g., approach or capture of insects

but only within search flight. Recording bats of
known identity differently, e.g., bats which hit
the net after the recording, or recording them
repeatedly, e.g., individuals which were light-
tagged several minutes earlier, would improve the
overall naturalness of the database, at the cost of a
vastly increased sampling effort.
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TABLE 1. — Echolocation call parameters of 26 swiss bat species. Mean, standard deviation (StdDev) and coefficient of variation (CV)
are given for call duration (DUR), lowest call frequency (LFR), frequency of peak energy (PFR) and highest frequency (HFR). Values
given in italics do not properly indicate species’ parameter, as the measurement window of 26 ms was truncating total call lengths.
Range, mean and variances averaged over all species of the genus Myotis and over all other species are indicated below. Results of
t-tests and variance ratio tests are given at the bottom (see text for further details).

DUR [ms] LFR [kHz] PFR [kHz] HFR [kHz]
Species N Mean StdDev CV Mean StdDev CV Mean StdDev CV Mean StdDev CV

Myotis bechsteinii 65 4,3 0,8 18% 26,5 2,9 11% 48,4 6,6 14% 103,5 12,7 12%
Myotis blythii 100 3,3 0,7 20% 24,5 4,4 18% 53,2 10,9 20% 106,2 14,1 13%
Myotis brandtii 100 4,6 1,1 24% 27,5 3,1 11% 45,7 4,9 11% 103,6 12,8 12%
Myotis capaccinii 100 5,2 1,1 21% 32,0 2,6 8% 45,1 4,3 10% 86,8 8,4 10%
Myotis daubentonii 100 3,9 0,9 22% 27,3 3,0 11% 42,7 3,5 8% 81,2 8,0 10%
Myotis emarginatus 100 3,6 0,7 19% 36,3 2,8 8% 54,5 7,4 14% 113,1 12,5 11%
Myotis myotis 100 6,0 1,7 29% 22,2 2,6 12% 37,1 4,0 11% 86,0 11,3 13%
Myotis mystacinus 100 3,6 0,5 15% 27,9 3,5 12% 46,8 5,6 12% 99,7 12,6 13%
Myotis nattereri 100 4,1 1,1 27% 14,0 4,0 29% 40,4 8,8 22% 108,6 18,6 17%

Barbastella barbastellus 100 4,3 1,0 24% 25,7 2,2 8% 36,0 4,8 13% 48,3 3,9 8%
Plecotus auritus 100 2,9 0,6 19% 22,7 1,7 7% 37,7 5,1 13% 55,7 5,6 10%
Plecotus austriacus 100 5,8 1,4 25% 18,0 2,3 13% 27,6 2,5 9% 45,3 3,3 7%
Hypsugo savii 72 7,3 1,0 13% 28,8 0,8 3% 34,9 2,0 6% 48,3 7,2 15%
Pipistrellus kuhlii 100 6,3 0,9 13% 33,6 1,3 4% 39,5 1,8 4% 63,6 12,8 20%
Pipistrellus nathusii 100 6,9 1,4 20% 36,1 1,1 3% 41,3 2,2 5% 61,5 13,9 23%
Pipistrellus pipistrellus 100 6,3 0,9 15% 42,6 1,4 3% 47,4 2,0 4% 73,8 15,9 21%
Pipistrellus pygmaeus 100 6,0 0,9 14% 51,5 1,8 4% 56,2 2,4 4% 84,1 16,5 20%
Miniopterus schreibersii 100 6,2 0,8 13% 47,4 1,2 3% 53,9 3,8 7% 87,3 11,0 13%
Eptesicus serotinus 100 10,9 2,4 22% 22,4 1,2 5% 26,8 1,8 7% 47,2 7,4 16%
Eptesicus nilssonii 100 10,7 1,6 15% 24,6 1,1 4% 29,8 1,6 5% 48,2 8,8 18%
Vespertilio murinus 100 15,0 3,8 25% 20,2 1,4 7% 24,6 2,2 9% 35,8 10,5 29%
Nyctalus leisleri 19 9,3 3,9 42% 22,1 2,1 10% 27,4 5,1 18% 49,4 14,9 30%
Nyctalus noctula 100 14,4 3,4 23% 17,7 2,8 16% 22,1 3,1 14% 33,8 11,6 34%
Tadarida teniotis 42 16,8 2,4 14% 8,0 0,7 8% 11,4 0,8 7% 15,3 2,5 16%
Rhinolophus hipposideros 100 21,6 4,4 20% 89,8 10,9 12% 107,5 3,7 3% 110,6 1,7 2%
Rhinolophus ferrumequinum 100 22,7 4,9 21% 69,1 8,1 12% 79,7 4,7 6% 84,1 0,9 1%

Range 2,6 22,3 17,4 32,0Species of the Mean 4,3 22% 26,5 13% 46,0 13% 98,8 12%genus Myotis Variance 0,7 38,4 31,5 127,6

Range 19,8 81,8 96,1 95,3
Species of other genera Mean 10,2 20% 34,1 7% 41,4 8% 58,4 17%

Variance 35,2 430,8 538,8 550,8

t-test
t 3,821 0,798 1,401 2,872 0,771 3,055 5,886 1,141
p 0,001 0,433 0,174 0,008 0,448 0,005 0,000 0,265

Variance ratio test (two-sided, df1=16, df2=8)
F 49,606 11,206 17,085 4,316
p << 0,001 < 0,001 < 0,001 0,021
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Temporal patterns of sound emissions, some-
times combined with spectral fluctuations, can be
characteristic for some species and experienced
observers are helped by this information. The
information about the interval between signals
was available to us, but of arguable quality. Single
calls were automatically cut out from echoloca-
tion sequences based on a relatively simple inten-
sity integration in the temporal signal. Weaker
signals between louder ones could be missed,
noise could be extracted as signal (later visually
rejected) or calls of other bats would fall between
the ones of the bat in focus (when recorded in

front of a roost). Correspondingly, preliminary
tests with a DFA including the interval did result
in a decrease of recognition rate. We therefore
did not include this information in our final
analysis presented here. In a revised calculation
the inclusion of the interval could be reconsid-
ered in cases where the interval fulfills some plau-
sibility testing, e.g., falling in a bandwidth which
seems realistic for the species considered. Still,
the value of this measure in automatically recog-
nizing bats out of species assemblages hunting
concurrently seems doubtful if it does not even
become detrimental.
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TABLE 3. — Results of the species classifications with the synergetic pattern recognition algorithm using 20 calls per each of the
26 species for learning. First four numeric columns give from left to right: the average recognition results for randomly selected trai-
ning calls; recognition with a subselection from the random selection for training; recognition after rejecting signals with low match
to any class and/or close match to several species, this again for the random sets and the subselection. Fifth to eighth numeric
columns contain from left to right; the improvement effect of the subselection on raw and filtered classifications respectively, and the
effect of filtering on the random set and subselection respectively.

classification effect of
raw after filtering selection on filter on

Species random sub- random sub- raw filtered random sub-classifi- classifi-selection selection selection selection cation cation selection selection

Myotis bechsteinii 54% 62% 73% 82% 8% 9% 19% 20%
Myotis blythii 63% 67% 82% 79% 4% –3% 20% 12%
Myotis brandtii 39% 60% 50% 70% 21% 19% 11% 10%
Myotis capaccinii 54% 60% 75% 67% 6% –8% 21% 7%
Myotis daubentonii 40% 43% 60% 75% 3% 15% 20% 32%
Myotis emarginatus 47% 45% 58% 66% –2% 8% 11% 21%
Myotis myotis 49% 47% 71% 63% –2% –8% 22% 16%
Myotis mystacinus 52% 58% 73% 78% 6% 6% 20% 20%
Myotis nattereri 60% 55% 87% 86% –5% –2% 28% 31%
Barbastella barbastellus 66% 70% 86% 84% 4% –2% 20% 14%
Plecotus auritus 76% 78% 94% 89% 2% –5% 18% 11%
Plecotus austriacus 68% 68% 89% 86% 0% –3% 21% 18%
Hypsugo savii 89% 95% 95% 97% 6% 1% 6% 2%
Pipistrellus kuhlii 78% 85% 93% 91% 7% –2% 15% 6%
Pipistrellus nathusii 70% 68% 81% 84% –1% 3% 11% 15%
Pipistrellus pipistrellus 88% 90% 97% 98% 2% 2% 9% 8%
Pipistrellus pygmaeus 86% 88% 93% 94% 2% 1% 7% 6%
Miniopterus schreibersii 79% 85% 90% 92% 6% 2% 11% 7%
Eptesicus serotinus 61% 68% 75% 87% 7% 13% 13% 19%
Eptesicus nilssonii 81% 87% 88% 91% 5% 2% 7% 4%
Vespertilio murinus 64% 75% 79% 96% 11% 16% 15% 21%
Nyctalus leisleri 97% 98% 98% 100% 1% 2% 1% 2%
Nyctalus noctula 62% 65% 69% 72% 3% 2% 7% 7%
Tadarida teniotis 97% 100% 100% 100% 3% 0% 3% 0%
Rhinolophus hipposideros 94% 93% 97% 98% –1% 1% 3% 5%
Rhinolophus ferrumequinum 94% 95% 99% 100% 1% 1% 5% 5%
Total average 70% 73% 83% 86% 4% 3% 13% 12%
Myotis average 51% 55% 70% 74% 4% 4% 19% 19%
non-Myotis average 80% 83% 90% 92% 3% 2% 10% 9%



SIGNAL VARIANCES

The variance in our data is a sample variance and
we assume, that it is a good representation of the
population variance, as we have recorded the
same species’ calls repeatedly on different occa-
sions. However most of the recordings happened
after handrelease, which leaves some insecurity
regarding the population variance. This should
be addressed in a follow-up project.
We quantified variation in the genus Myotis
against that in other species. Variances of call
parameters are not equal in all species. Species in
the genus Myotis exhibit higher intra- and lower
inter-species variance compared to the rest of the
investigated species. This is most important for
recognition tasks. Low-variance groups, which
strongly differ from other groups, will be easily
distinguished.
Several factors influence the observed variances.
Our data set includes recordings of several indi-
viduals, which certainly differ in their call charac-
teristics due to e.g., sex, age or size (Jones &
Kokurewicz 1994). Furthermore, a single indi-
vidual has a variety of vocalizations it can emit,
ranging from echolocation to social calls (Fenton
1985). The latter are not considered here, but
echolocation signals are adjusted to the particular
situation: the detection of a hard target on a
longer range is optimally achieved with signals
differing from those required for accurate loca-
tion of a close object. Similarly, signals vary
somewhat predictably, depending on a variety of
factors as the location, specific surrounding and
even conspecifics (e.g., Habersetzer 1981; Barclay
et al. 1999). This variation does on one hand blur
the picture; on the other hand, it offers new
opportunities for the identification of behaviour
or surrounding (see below).
Myotis sp. show a narrower spectrum of foraging
approaches, mostly hunting at short ranges for
air- or substrate-borne targets (Arlettaz 1996).
The other groups additionally include species for-
aging on long ranges (e.g., Nyctalus noctula
Zbinden 1989) or species homing in on flutter-
ing targets (Rhinolophidae, Jones & Rayner
1989). Signal theory demands different types of
vocalizations for such tasks (Simmons & Stein

1980), explaining one source for larger inter-
species variance.

SPECIES RECOGNITION

Traditionally, identification of animal species is
achieved by the taxation of morphometric char-
acteristics like size, colour etc. Animal behaviour,
especially communication, as a most often
species specific characteristic with heavy selective
value offers an alternative access to identification
(Alcock 1979). Nocturnal terrestrial animals
use either smell, bioluminiscence or sound to
communicate. In diurnal taxation, acoustics are
widely used in a variety of e.g., arthropod groups,
amphibians and birds. Comparably, echolocating
bats are conspicuous for conspecifics and other
observers. However, their orientation signals
have adapted to auto-communicate about the
surrounding and therefore, in theory, only par-
tially qualify for identification purposes.
Nevertheless, bats occupy a variety of ecological
niches and have evolved specific features in mor-
phology, physiology and behaviour (Neuweiler
1984), which endorse the use of echolocation
signals as species specific markers. We hypothe-
size, that acoustic species identification should
be feasible.

DATA REDUCTION

Since the first publications on the use of echolo-
cation calls for the identification of species
(Ahlén 1981) the bioacoustic and electronic
equipment available to bat workers has tremen-
dously evolved. Different methods of data
filtering, reduction and visualization (e.g., het-
erodyning detectors, count-down circuits and
period-meters, respectively) can be applied in the
field. Each has its eligibility in different situations
(Parsons et al. 2000). The use of combined meth-
ods in a self-contained apparatus becomes more
and more widespread and the risk of oversimplis-
tically applying them is rising and controversially
discussed (Barclay 1999; O’Farrell et al. 1999a,
1999b). The influence and experience of the
observer will always be a dominant factor in such
inventories, unless automated systems classify
with decision trees (Herr et al. 1997) or artificial
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neural networks (Stocker 1998) on the basis of
automated measurements.

PARAMETRIC APPROACHES

Parametric measurements taken e.g., from oscil-
loscopes, powerspectra or spectrograms allow for
later analysis with a variety of approaches ranging
from discriminant function analysis or DFA
(Zingg 1990; Vaughan et al. 1997; Jones et al.
2000; Russo & Jones 2002) to decision trees
(Herr et al. 1997) and artificial neural networks
or ANN (Stocker 1998; Parsons 2001). For
measurements taken from data-reduced samples
high recognition rates above 90% were reported
for some species, others failed completely to be
separated (Herr et al. 1997). Rather low recogni-
tion rates for the same data sample were achieved
with ANN (Stocker 1998). Consistently, classifi-
cations (DFA or ANN) calculated on measure-
ments read from high-quality recordings (not
time expanded etc.) perform better: in a twelve-
species sample Parsons and Jones (2000) classi-
fied 79% correctly with DFA and 87% with
ANN. Several other studies proved the ability of
DFA to discriminate bat species: Zingg (1990)
achieved 86% correct classification in 11 species,
Vaughan et al. (1997) reached 89% with 6
species, and Russo and Jones recently (2002) suc-
ceeded at separating eighteen vespertilionid
species with 81.8% correct classification (range
38%-98%). Obrist et al. (2004) classified 60% of
all signals correctly. For a data sample comprising
26 species, we now correctly classified 75% of all
calls tested. Thus, DFA to date seems a consistent
and therefore promising approach to automated,
off-line species identification.
But, unless automated and reliable extraction of
call measurement can be performed, DFA is a
time consuming task, which hampers its use in
large monitoring programs.

SYNERGETIC “REAL-TIME” CLASSIFICATION

Only recently data processing of complete digital
signals came in reach of real-time computing in
the field. Complete signals invariably contain
more information than any data reduced sample,
translating into a higher potential for species

identification. Learning from the experience of
signals with comparable parameters but differing
structure of the frequency sweep over time lead
us to the conviction, that pattern recognition
approaches should open a new facet to spectro-
gram classification. Synergetic pattern recogni-
tion has the big advantage of being able to
process large data sets (in contrast to ANN) at a
very rapid rate. The algorithm we use typically
classifies several signals per second. Previous spec-
trogram calculation decreases this rate margin-
ally. Even if the system lags behind real-time by
the duration of the sample size and the time of
analysis, depending on processor speed it reaches
a duty-cycle of 10-20% in the field. The results
presented here obviously were elaborated off-line.
The classification results we achieved with this
algorithm underline the results of the DFA: with
preliminarily optimized sets of training patterns
we achieved 86% correct classifications (74%
Myotis, 92% non-Myotis), comparable but
roughly 12 points better than the DFA (75%
overall reclassification success, 59% Myotis, 84%
non-Myotis). Obviously parametric variances dif-
fering in Myotis and non-Myotis species equally
affect both methods (Figure 5). The pattern
recognition results differ in three Myotis species
with the results previously published by Obrist et
al. (2004). The later were obtained with limited
data samples on these species and the resulting
small variance has increased their recognition
success. Nyctalus noctula scored worse in our data
set for a similar reason: in the new data set more
frequency modulated signals were included. In all
cases, our new results are more trustworthy. For
most species DFA underlines this with scores
similar to the pattern recognition approach. The
reason for the clear deviation of many Myotis
species and Nyctalus leisleri remains unclear.

AUTOMATED SPECIES IDENTIFICATION WITHIN

REACH?
So far, we have no control over the actual num-
ber of individual bats contained in the training
base, only the number of randomly chosen sig-
nals. We will have to further investigate the com-
position of correctly and incorrectly classified
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signals. Do only single calls or full sequences (i.e.
individual bats!) get misclassified?
Independent of this, quality, speed and auto-
nomous operation seem to predestine our pattern
recognition approach for automated monitoring
of species specific bat activity. With computer
speed increasing, the duty-cycle will increase, and
we still see room for improvement in the recogni-
tion rate.
Random choice of training calls mixes broad- and
narrow-band, long and short calls in a single
species’ prototype, hampering sharp classifica-
tion. To decrease variance within groups in the
future, we will differentiate each species’ signals
in three classes: those emitted close to clutter or
during capture, those emitted in open space and
a third intermediate group. Figure 3 shows com-
parable examples for species like Pipistrellus sp.,
Eptesicus sp. and others. Thus, by selecting many

but similar calls with low variance per species, we
hope to increase recognition success and at the
same time get information about the behavioural
situation of the bats present.
Repeated random selection of training signals
from these species’ sub-groups will allow us to
evaluate those signals, that best represent the
total and give further improved classification
scores. Alternatively we evaluate methods to
select calls systematically instead of randomly,
iteratively replacing training calls,  which
degrade overall recognition success. Ultimately
we may even be able to tackle individual recog-
nition in species, which exhibit individual spec-
trogram characteristics as the ones given in
Figure 6. Individual recognition is possible in
some species (Obrist 1995) and may be of use
for the estimation of population sizes (Burnett
2001).
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THE PROBLEM WITH PROBABILITIES

Evidence of the presence of a species which has
been unambiguously identified e.g., taxonomi-
cally or by its courtship song, is either existing
or it is lacking. But albeit morphometric iden-
tification generally is assumed to be robust,
examples of the contrary exist. Only recently
have Pipistrellus pygmaeus (Barratt et al. 1997)
and Plecotus alpinus (Kiefer & Veith 2001)
been separated from their sister species by evi-
dence of genetic tests. The pipistrelles echolo-
cation calls where known to differ in frequency
by up to 10 kHz (Zingg 1990), but morpho-
metric differentiation is still tricky. The ex-
pected accuracy of the identification of a
species of 100% is therefore not guaranteed in
every case. Later revisions of the species may
change detections to probabilities. This can

seriously blur maps of species distribution or
habitat use, as these maps rely on clear evidence
of occurrence.
Furthermore, in some bat species echolocation
calls are very diagnostic (e.g., Rhinolophidae). In
others, e.g., Myotis sp., this is not the case.
Different species exhibit different probabilities of
detection (intensity of their calls) and of identifi-
cation by acoustic means, independent of meth-
ods applied. Combined, this results in a species
specific probability of evidence. If we want to
apply monitoring methods with statistics or pat-
tern recognition algorithms, we will have to deal
with “probabilities of evidence of a species”
occurrence, e.g., by adapting calculatory methods
for generating e.g., distribution maps (Jaberg &
Guisan 2001). Still, if we are faced with the alter-
native of not being able to detect a species at all
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(e.g., by catching with nets), probabilistic
approaches should be preferred.
Differential vocalization intensity, and consecu-
tively chance of detection, can hardly be counter-
balanced technically. But, by improving the training
base through optimal call selection, we strive to
increase at least probabilities of correct identifica-
tion with our pattern recognition approach.
As a next step in the systems evaluation process
we will crossvalidate the pattern recognition
approach against standard methods like netting
or acoustic surveys with heterodyning detectors
(Kuenzi & Morrison 1998; O’Farrell & Gannon
1999), before we make the tool available to fel-
low bat researchers.
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