
Dynamics of productivity and technical
efficiency in Russian agriculture

Raushan Bokusheva†,*, Heinrich Hockmann§ and Subal
C. Kumbhakar**
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Abstract

This paper analyses regional productivity and technical efficiency development in
Russian agriculture. We formulate a regional stochastic frontier model by assuming
that producers maximise return to the outlay. We control for regional heterogeneity
and endogeneity/simultaneity in input decisions, technical efficiency and technical
change by employing a two-step estimation procedure. In the first step, we use the
system Generalized Method of Moments approach (system GMM), which gives
consistent estimates of the production technology parameters. In the second step,
we apply the standard stochastic frontier approach to estimate technical efficiency
and its determinants.
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1. Introduction

Considerable growth has taken place in Russian agriculture over the last
decade.1 According to the Russian National Statistics Agency agricultural
output was increasing, on average, by 4.23 per cent annually during the
period from 1999 to 2009 (Rosstat I, 2010). This development might have
resulted from contributions of several different factors. The literature refers
to an improved macroeconomic stability, an increase in agricultural invest-
ment induced by more favourable terms of trade (TOT) for agricultural pro-
ducts in recent years, as well as extremely favourable weather conditions
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1 An exception was the year 2010, when agricultural output declined due to extremely unfavour-

able weather conditions. This caused excessive fires in many Russian agricultural regions.
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from 1999 to 2009 (Brooks and Gardner, 2004; Liefert, Liefert and Shane,
2009). Finally, the transition process has been accompanied by restructuring
and learning processes at the micro level, which might also have positively
contributed to these recent trends.

While several studies have been conducted to analyse changes in Russian
agriculture during the first decade of the economic transition, recent develop-
ments in Russian agriculture remain insufficiently studied. Previous studies on
Russian agricultural productivity focused on developments at the oblast level
and investigated whether agriculture has moved towards sustainable develop-
ment (Sotnikov, 1998; Voigt and Uvarovsky, 2001; Osborne and Trueblood,
2006; Voigt, 2006; Voigt and Hockmann, 2008). However, the previous
literature provides inconsistent evidence regarding the evolution of Russian
agricultural efficiency and productivity during the transition. The inconsisten-
cies may stem from differences among individual data sets, primarily refer-
ence periods, as well as among data sources and aggregation levels. At the
same time, a rather unstable economic environment in the earlier years of
transition may have rendered some dynamics difficult to capture using data
for rather short time spans.

Most of these earlier studies employed stochastic frontier analysis (SFA)
based on the maximum likelihood (ML) method, but these studies did not
control for regional heterogeneity and simultaneity/endogeneity problems.
However, recent empirical findings by Bokusheva and Hockmann (2006)
suggest the presence of both serious differences in production technologies
across Russian regions as well as a possible simultaneity in input decisions,
technical change development and technical efficiency. Considering these
empirical findings, the estimates of the production technology, technical
efficiency and productivity might have been biased in the previous studies.

The objective of this paper is to investigate the development of agricultural
productivity in Russia by employing a reasonably long data set and a more
appropriate modelling approach. We conduct our analysis on the basis of
regional data over the period from 1995 to 2008. The paper applies the
return-to-the-outlay model, which presents a more adequate modelling
approach in the presence of an endogenous choice of netputs (Kumbhakar,
2011). The model is estimated in two steps. In the first step, we use the
system Generalized Method of Moments approach (system GMM) (Blundell
and Bond, 1998). The application of system GMM allows us to handle more
appropriately regional heterogeneity and potential simultaneity of netput
decisions, technical change and technical efficiency. The superiority of this
approach is shown by comparing the results obtained with the system
GMM estimator and those obtained using the standard stochastic frontier
approach. In the second step, we apply the ML-based stochastic frontier
model to estimate technical efficiency and its determinants. We distinguish
between three potential sources of technical inefficiency; namely, the
region’s economic and social development, the adjustment costs and the
input quality. In addition, we consider how technical efficiency evolved in
the course of the transition process. Since we allow regional specifics to
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explain heteroskedasticity in both error terms, i.e. in technical inefficiency and
the stochastic noise component, we derive a new formula for computing the
marginal effects of variables explaining heteroscedasticity. This formula pre-
sents an extension of the approach developed by Wang (2002).

The remainder of this paper is organised as follows. Section 2 describes the
development of agricultural production in Russia at the national level and
provides a brief review of the literature on the development of technical
change and technical efficiency at the regional level. Based on this infor-
mation, we develop several hypotheses for testing. The estimation method-
ology is presented in Section 3. Section 4 describes the data employed in
the empirical analysis. Research findings are discussed in Section 5, while
conclusions are drawn in the last section.

2. Determinants of agricultural development in Russia

2.1. Evolution of Russian agriculture during the transition

This section provides some general information on the developments in
Russian agriculture since the beginning of economic reforms. Figure 1
shows the evolution of agricultural gross output and land and labour produc-
tivities. As can be seen, agricultural output declined dramatically in the early
years of the transition. In 1998, the level of agricultural output was less than
60 per cent of its value in 1990. After 1998, however, total output started to
increase, although annual growth was below the rate of the reduction in the
previous years.

Fig. 1. Output, partial productivities and terms of trade in Russian agriculture (1990 ¼ 1).

Source: Authors’ representation based on Rosstat II (1995–2009).
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Both land and labour productivities follow the output trend, as they declined
until 1998 and started to increase thereafter (Figure 1). However, while the
rate of contraction for output and land and labour productivities was almost
the same in the first period, both partial productivities have increased much
faster than agricultural output in recent years. This fact suggests that farms
have been releasing land and labour more easily in the later years of the tran-
sition. This empirical evidence highlights some important aspects of agricul-
tural adjustments during the transition process. According to Koester (2005), a
farm’s persistence in keeping surplus labour can be regarded as an effect of
embedded institutions from the Soviet era, when collective farms took over
many of the social functions in rural areas. In addition, uncertain land regu-
lations, as well as a belief in the comparative advantages of large-scale
farming in Russia, seriously affected the evolvement of a dynamic land
market, thereby hindering the disposal of excess land in the earlier years of
the transition. In recent years, however, these two peculiarities of the tran-
sition process in Russian agriculture have been overwhelmed to some
extent. This trend has been apparently associated with the emergence of
new types of agricultural enterprises – large vertically integrated holdings
(Hockmann, Bokusheva and Bezlepkina, 2009). These agroholdings have
brought superior entrepreneurial and managerial skills and advanced technol-
ogies to Russian agriculture and thus have induced a more efficient resource
allocation (Rylko et al., 2008).

Figure 1 suggests that the decline of output and productivity was
accompanied by deteriorating TOT; i.e. the relationship between agricultural
producers’ output and input prices. Obviously, an over-proportional increase
in input prices compared with producers’ output prices induced a substantial
reduction in farm output.2 However, TOT cannot be regarded as the only
source of output and productivity changes. Indeed, despite a further decline
in the output–input price relationship after 2001, output has been steadily
increasing. This indicates that relative prices can explain the evolution of pro-
ductivity in Russian agriculture only to a certain extent. Thus, one can argue
that other factors, like macroeconomic conditions, the development of input
markets and changes in the institutional environment, as well as access to
modern technologies, may have contributed significantly to the recent devel-
opments in Russian agriculture.

Figure 2 shows that Russian farms seriously reduced the use of all factors of
production during the transition. However, the reduction in factor use was
uneven across different input categories, which suggests a significant effect
of immense changes in relative prices on factor use by Russian farms.

Regarding variable inputs, the only data available from official statistics
pertained to fertiliser. Consistent with the TOT development, the use of this
input declined dramatically in the early years of the transition. However,

2 A thorough examination of the effect of deteriorating terms of trade on the agricultural output

development in Russia during the transition period can be find in Liefert (2001) and Liefert

and Swinnen (2002).
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fertiliser use reached a turning point in the mid-1990s and started to increase
steadily, despite the still deteriorating TOT.3

A large decline was also observed for animal input, which was dictated by
comparative disadvantages in livestock production in Russian agriculture after
market liberalisation (Liefert, 2002). Since 2006, however, the number of
animals has begun to increase again. This development most probably was
influenced by the governmental programme introduced in 2006 to support
domestic livestock and poultry production. Although less dramatic, fixed
assets in agriculture have shown a similar pattern, i.e. their use decreased
until 2005 and then started to increase rapidly in recent years.

As shown in Figure 2, the decline in the man–land ratio (MLR) has not
been as straightforward as that seen for other inputs: it increased in 1992,
then declined until 1997 and grew again in 1998. In the six subsequent
years, it decreased steadily before starting to rise again in 2005. Increases
in labour intensity in 1992 and again in 1998 were apparently related to the
price liberalisation reform of 1992 and the Russian financial crisis of 1998,
which suggests that Russian agriculture provided a buffer for labour released
from other sectors of the economy in these periods. The most recent increase
in MLR most probably was connected with the rise in animal input per
hectare. In general, the reduction in MLR can be considered as marginal com-
pared with other inputs. This result is particularly surprising, considering the

Fig. 2. Factor use in Russian agriculture (1990 ¼ 1).

Source: Authors’ representation based on Rosstat II (1995–2009).

Note: All indicators are defined in relation to land input.

3 While fertiliser use per hectare of arable land started to rise in the mid-1990s, the total fertiliser

use continued to decline until 2001 (Rosstat III, 2003).
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tremendous decline in animal input per hectare. The reduction in animal input
per hectare should have caused a stronger release of labour input per hectare.
This empirical evidence suggests that Russian farms are still strongly involved
in provision of social amenities and services in rural areas.

The developments discussed above point to some peculiarities in the evol-
ution of agricultural production and productivity in Russia. In particular,
empirical evidence indicates that factor use and production patterns are gov-
erned not only by economic incentives, but also by inherited institutions. This
is especially true for the use of labour. Although Russian agriculture is highly
industrialised, this tendency most probably will continue, considering the size
and shape of the area under cultivation. In addition, the role of animal pro-
duction has declined dramatically, i.e. the data indicate an increased special-
isation towards crop production. Finally, the year 1998 was obviously pivotal
for Russian agriculture in terms of production and productivity growth.

2.2. Literature review: productivity and technical efficiency

evolution at the regional level

Many studies have been conducted to analyse the development of Russian
agricultural production over the last two decades. Given the size of the
country, the diversity of its natural conditions and the significance of agricul-
ture in various regions, most of these studies have taken a regional perspec-
tive. In general, they focused primarily on two leading indicators: (i) the
impact of technical change (i.e. shifts of the production frontier as an indicator
of sustainable growth); and (ii) changes in technical efficiency, which are
regarded as adjustments towards the frontier.

Using regional data on agricultural output and inputs for 75 Russian regions
from 1990 to 1995, Sotnikov (1998) found a positive effect of reforms on
regional technical efficiency. Nevertheless, according to Sotnikov, progress
in reducing technical inefficiency was inhomogeneous across the regions. In
addition, although the author detected a substantial change in the importance
of different inputs, he could not find any significant effect of technical change.

Sedik, Trueblood and Arnade (1999) also studied technical efficiency at the
regional level. However, in contrast to Sotnikov’s approach, these authors
considered only the output from crop production. Their results indicate that
technical efficiency declined from 1991 to 1995. At the same time, diver-
gences in technical efficiency scores across regions were less pronounced
than in the analysis by Sotnikov (1998).

Osborne and Trueblood (2006) also found a trend towards decreasing econ-
omic efficiency of crop production in Russian corporate farms for the period
from 1993 to 1998. The same tendency was revealed by Voigt and Uvarovsky
(2001) for technical efficiency and technical change in Russian regions. In
addition, both studies pointed to a growing divergence in productivity devel-
opment among individual regions. Nevertheless, using an extended data set
for the period from 1993 to 2001, Voigt (2006) was unable to find any signifi-
cant changes in the technical efficiency of agricultural production in Russian
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regions. He also pointed to a growing divergence in the development of tech-
nical efficiency across the regions. Lastly, according to this study, technical
change had a positive turn in 1998 for the first time since the beginning of
the transition process.

While studying the effect of budget constraints at the regional level, Arnade
and Gopinath (2000) found that only six oblasts were overall efficient,
whereas the rest of the oblasts experienced profit losses up to 36 per cent
due to different sources of inefficiency. Similar to the findings of Sotnikov
(1998), Voigt and Uvarovsky (2001) and Osborne and Trueblood (2006),
this study reported a high variation in regional efficiency scores.

Summing up, although most of these studies found large differences in tech-
nical efficiency scores across regions, only limited concordance was found
regarding its evolvement during the transition. The effect of technical
change was either insignificant or negative for the period until 1998, although
some of the more recent studies found positive technical change after 1998.

2.3. Hypotheses

Using farm level data, a recent study by Bokusheva and Hockmann (2006)
found considerable differences not only in regional production technologies,
but also in the pattern of technical efficiency development in individual
regions. They argue that technical efficiency in Russia might have been
affected by the speed of technical change. Their analysis demonstrates that
the regions with constant technology (i.e. no technical change) showed a ten-
dency towards increasing technical efficiency, whereas this trend was reversed
in those regions with substantial technical progress. The authors argue that
firms under constant technology learn from past experience and are therefore
on a path towards the best production practice (catching up). However, if
technical change shifts the production possibility set outwards, the distance
to the best domestic practice increases for enterprises that fail to adopt the
innovative production technology. The latter causes a decline in the average
technical efficiency.

The findings by Bokusheva and Hockmann (2006) are relevant in two
respects: first, they suggest a high heterogeneity across Russian regions;
second, they indicate a simultaneity problem related to high interdependency
in terms of factor use decisions, technical change and technical efficiency.
Both problems can result in biased estimates of the production technology
parameters. However, these problems have not been yet addressed in any
analysis on Russian agricultural productivity.

Given that 1998 was a turning point with respect to many performance indi-
cators, we assume this year to be pivotal as well for the trend in productivity
development. Indeed, radical change in policies were implemented to increase
macroeconomic stability and to avoid governmental solvency problems.
One aspect of these adjustments by the state was a retreat from controlling
the economy. In turn, market mechanisms became more effective, which
facilitated sustainable economic growth (Voigt and Hockmann, 2008).
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In addition, the devaluation of the Russian Rouble enhanced the competitive-
ness of domestic production, thereby fostering investment activity. In fact, the
years following 1998 have seen an enormous investment in Russian food pro-
cessing and agriculture, primarily by agroholdings (Hockmann, Bokusheva
and Bezlepkina, 2009). Accompanied by political and economic reforms,
these processes supposedly have improved productivity and efficiency.
Thus, we hypothesise that total factor productivity will show a U-shaped or
J-shaped development, with an upward slope after 1998. At the same time,
we hypothesise that technological upgrading, if occurring at different rates
across regions, might cause a lag in the development of technical efficiency.
Therefore, our hypothesis is that technical efficiency did not show improve-
ment immediately after 1998, but did so later.

As discussed in Section 2, Russian agriculture still provides social functions
in rural areas. Since the involvement in social services might divert farm
resources from agricultural activities, regions with a higher MLR are likely
to exhibit lower technical efficiency.

In addition, we argue that technical efficiency can be explained by additional
factors. In particular, three main sources of inefficiency can be distinguished.
The first source concerns the level of economic and social development of a
region. Overall regional development can be expected to exert a positive
impact on technical efficiency in agriculture. Favourable economic conditions,
including a stable and well-functioning economic environment and a solid
supply and demand, can be expected to find their expression in the form of
regional growth, which is usually accompanied by a higher per capita
income. Since these economic conditions affect all sectors, they offer good pro-
spects for agricultural development. This suggests a positive relationship
between regional per capita income and technical efficiency in agriculture.

A similar impact can be expected from social development. The social
infrastructure supports people and communities in their basic needs and there-
fore assists them in the fulfilment of their economic function. Consequently,
we hypothesise that a better-developed social infrastructure will improve tech-
nical efficiency. In the present study, we use the number of kindergarten spots
per 100 children of kindergarten age as a proxy for the development of social
infrastructure in a region.

The second source of inefficiency relates to the adjustment processes
arising from the transition process. Even though policy makers were reluctant
to introduce market-oriented reforms in the agricultural sector, the economic
environment changed dramatically, as indicated by the development of the
agricultural TOT (Figure 1). These changes imposed considerable adjustment
costs associated with reorganisation of production and learning processes.
Adjustment costs might have had a negative influence on technical efficiency,
because farm resources have not been allocated solely to production, but had
to be provided for initiating and implementing necessary restructuring pro-
cesses. This type of an effect would be expected for regions with a higher
initial level of specialisation in animal production. Indeed, Figure 2 shows
that transition fostered a specialisation in crop production. Accordingly,

618 R. Bokusheva et al.



regions with higher specialisation in livestock production would have higher
adjustment costs (due to reallocation of resources) and would thus be less
efficient.

The third source results from the limited availability of statistical infor-
mation on factor quality. This primarily concerns the measurement of
capital. Official statistics in Russia provide two indicators that are likely to
complement the assessment of capital quality: the share of outdated capital
in total capital input and the investment volume. We use the first indicator
to derive a more adequate measure of the capital input.4 We use the second
indicator to test whether regions with higher investment rates have lower
inefficiencies.

These three sources of technical inefficiency (i.e. a region’s economic and
social development, adjustment costs and input quality) are not transition-
specific. Nevertheless, given the radical changes experienced by Russian
farms, they might have been more distinctive and hence might have a stronger
effect on technical efficiency than in well-established market economies.

3. Model and estimation methodology

In the panel data framework, agricultural production technology is typically
specified as:

ln yit = f (xit;a) + hi + vit − uit, (1)

where yit is the output by producer (region) i in the period t, xit is a vector
of inputs, a is a vector of technology parameters to be estimated, hi is a
vector of unobserved producer-specific effects, uit is the technical inefficiency
component assumed to be i.i.d. with uit � N+(0,su

2), vit is a stochastic noise
component assumed to be i.i.d., with vit � N(0, sv

2) and f (xit;a) represents
the production frontier.

The production function defined by equation (1) is usually estimated by the
ML method, which uses the above distributional assumptions on uit and vit.
The use of the ML method presupposes that unobserved heterogeneity can
be adequately captured by fixed/random effects. Additionally, in this type
of formulation, inputs are almost always assumed to be exogenous, especially
when no behavioural assumptions are made. This means that input variables
are not correlated with either inefficiency or the noise components.
However, if these assumptions are violated, the use of the ML method can
result in inconsistent and biased estimates of the production technology and
technical inefficiency.

In this study, we assume that input and output variables are endogenous.
Following Kumbhakar (2011), we specify the technology as
Aitf (xit, yit) = 1,where ln Ait = hi + vit − uit and assume that producers
maximise returns to the outlay by choosing optimal input and output quantities

4 More details on that can be found in Section 4.
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(xit and yit). Under this behavioural assumption, the production technology can
be expressed as5:

ln
x1it

yit

( )
= −g(ln x̂it;a) − hi − vit + uit, (2)

where the dependent variable is partial productivity (in log) of input x1, j is the
production input subscript (j [ J), x̂ jit is the vector of J 2 1 other inputs

normalised by the input x1 (i.e. x̂ jit = x2it/x1it, j = 2, ..., J). The functional

form of g(.) can be easily derived from the functional form of f(.). For
example, if f(.) is translog, g(.) will also be translog [see equations (11) and
(12) in Kumbhakar (2011)].

To test our research hypotheses (specified in Section 2.3), we employ a
more general formulation to account for determinants of inefficiency and
heteroskedasticity in the noise term (Kumbhakar and Lovell, 2000; Wang,
2002), viz.:

vit � N(0,s2
v,it
) with sv,it = exp

∑J

j=1

d′wit

( )
and (3a)

uit � N+(0,s2
u,it
) with su,it = exp

∑K

k=1

g′zit

( )
, (3b)

where the w and z variables are regional specifics that explain heteroskedas-
ticity (production risk) and inefficiency, respectively.

Kumbhakar (2011) argued that the regressors in equation (2) can be treated
as exogenous (i.e. uncorrelated with the error components). If this is the case,
then the model specified in equations (2) and (3) can be estimated using the
standard SF model. However, the exogeneity condition in Kumbhakar
(2011) is based on the assumption that either there are no allocative errors
or allocative errors are independent of the error components in equation (2).
If this assumption does not hold, then the input ratios in equation (2) will
be correlated with the error components, which will render the SF model
inconsistent. That is, the single-step ML method cannot be used for consistent
estimation of the technology parameters. In this case, one has to use a two-step
approach. In the first step, one can use a GMM estimator to obtain consistent
estimates of the parameters associated with the frontier model. In the second
step, the ML method can be used to estimate technical efficiency. The advan-
tage of using the GMM estimator is that it allows possible correlation between
regressors and the error components (inefficiency and noise), as well as

5 The first-order conditions of this problem show that f(.) is homogeneous of degree zero in xit and

yit [see equation (6) in Kumbhakar (2011)] and therefore Ait f (xit , yit ) = 1 can be rewritten as in

equation (2). It is worth noting that equation (2) can also be derived assuming constant returns

to scale. Our estimate of returns to scale based on system GMM using equation (1) is not much

different from unity. This suggests that the estimating equation (2) can also be derived without

any explicit behavioural assumption.
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heteroskedasticity and autocorrelation of unknown forms. In addition, esti-
mating the model in first differences allows for consistent estimates of the
frontier in the presence of heterogeneity in the intercept.

In the present paper, similar to Guan et al. (2009)6 we adopt a two-step
approach. Since the first-differenced GMM estimator produces biased
estimates in the presence of ‘weak instruments’ (Mairesse and Hall, 1996;
Blundell and Bond, 1998), we use the system GMM estimator in the first
step. Blundell and Bond (1998) have shown that the system GMM estimator
is more powerful when only weak correlation exists between the current and
lagged values of model variables.7

To apply the system GMM, we rewrite the expression in equation (2) in the
following way:

ln
x1it

yit

( )
= E(uit) − g(ln x̂it;a) + uit, (4a)

where

uit = −hi − vit + (uit − E(uit)). (4b)

This reformulation makes E(uit) = 0, when hi is a zero mean random
variable (which is the standard for the random effects in panel data models).
If region-specific effects are assumed to be fixed, they are included in the
regressors [i.e. the hi values are treated as parameters and are included in the
;a);a) function] and uit = −vit + (uit − E(uit)) is a zero mean random vari-
able. Finally, if E(uit) is a constant, it will be subsumed by the intercept term
in g(lnx̂it;a). Thus, the formulation in equation (4a) is no different from a
standard regression model in which a system GMM can be applied.

However, because of the heteroskedasticity assumption in equation (3b),

E(uit) depends on the z variables, i.e. E(uit) =
�����
2/p

√
su(zit), which is not a

constant. Hence, the intercept term E(uit) − a0 becomes a function of the zit

variables and is region-specific and time-varying. Consequently, the
production technology in equation (4a) has to be rewritten as:

ln
x1it

yit

( )
=

��
2

p

√
su(zit) − g(ln x̂it;a) + uit. (5a)

Thus, the z variables are used as regressors in the model, along with the input
variables in the first step. If these z variables are part of the production tech-
nology (to capture regional heterogeneity), then the relationship in equation

6 While Guan et al. (2009) uses GMM in the first stage of the two-step estimation procedure to

avoid endogeneity problem, we use a system GMM which uses both level and differenced

instruments.

7 Accordingly, the application of the system GMM is highly relevant in the context of highly per-

sistent data (Blundell and Bond, 1998). This applies quite often to quasi-fixed production factors

such as capital and labour. In agriculture, this is valid also for the land input. The system GMM

also has been shown to be more powerful than the standard first-differenced GMM estimator

when estimating a production function for a moderately short panel of data.
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(5a) can be implicitly expressed as ln(x1it/yit) = m(ln x̂it, zit;a) + uit, where

the m(.) function includes both the x and z variables. In our empirical speci-
fication, we follow this general formulation and specify m(ln x̂it, zit;a) as a

translog function, viz.:

ln
x1it

yit

( )
= a0 + att + att

1

2
t2 +

∑J

j=2

aj ln x̂ jit +
∑J

j=2

a jt ln x̂ jitt

+ 1

2

∑J

k=2

∑J

j=2

a jk ln x̂ jit ln x̂kit +
∑L

l=1

bl ln zlit +
∑L

l=1

blt ln zlitt

+ 1

2

∑M

m=1

∑L

l=1

blm ln zlit ln zmit +
1

2

∑J

j=2

∑L

l=1

f jl ln x̂ jit ln zlit + uit.

(5b)
Note that we also added t (a time trend variable) to the above specification.
Finally, l is the subscript for the z variables (l [ L).

In contrast to the standard GMM in differences, the system GMM estimates
the model both in differences and also in levels. The GMM approach estimates
the model parameters directly from the moment conditions. In particular, the
system GMM estimator is based on the following conditions:

E(ln x̂ ji,t−p Duit) = 0 for p ≥ 2, (6a)
E(D ln x̂ ji,t−s uit) = 0 for s = 1, (6b)

where x̂ ji,t−p are the normalised input variables lagged two periods and more,

uit is the composed error term and Duit = uit − ui,t−1. We also added the
moment conditions for the exogenous variables (zlit). Accordingly, two
types of instruments are employed: the level instruments for the differenced
equations and the lagged differences for the equations in levels (Arellano
and Bover, 1995).

The moment conditions in equation (6a) allow the use of the x̂ and z vari-
ables lagged at least two periods as the instruments for the model estimation in
first differences, i.e. it is assumed that no correlation exists between input vari-
ables lagged adequately and the error term in first differences (which elimin-
ates the random region-specific effects). The conditions in equation (6b)
describe additional moment conditions required for the system GMM esti-
mation (Arellano and Bover, 1995). They allow the use of suitably lagged
first differences of the exogenous variables as instruments for the equations
in levels.8 Hence, the estimation of the model in differences eliminates region-
specific effects and the use of the lagged level instruments in the differenced
equations controls for simultaneity problem, whereas the use of additional

8 The moment conditions in equations (6a) and (6b) will hold irrespective of whether region-

specific effects are fixed or random.
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instruments (i.e. lagged differences in the level equations) accounts for weak
instrument problems.

The estimation of the production technology by system GMM provides
consistent estimates of the technology parameters a and a residuals vector
uit. In the second step, we use a standard ML-based SFA model to estimate tech-
nical efficiency and its determinants. In this step, we extend the work of Wang
(2002) and calculate marginal effects of inefficiency determinants on the
expected technical inefficiency by considering heteroskedasticity not only in
the inefficiency term, but also in the stochastic noise component. The calcu-
lation of marginal effects follows the derivations presented in Appendix A.

4. Data

In our analysis, we use the data from the Russian National Statistical Agency
(Rosstat) for 59 of the 79 Russian regions, covering the period from 1991 to
2008. Although information is obtainable for almost all regions, our sampling
intentionally excluded the regions of the Far East and Northern districts that
have extremely unfavourable climatic conditions for agricultural production.
Consideration of these regions in the analysis might have caused serious
noise in the data, and consequently biased the estimates of the production
technology.

Output is defined as regional agricultural gross production. The vector of
inputs comprises land, labour, capital and variable inputs. Land is measured
by the sown area. Labour is defined as the number of agricultural workers.
Variable input costs are measured as the difference between agricultural
gross production and gross domestic product. The fixed assets are revaluated
several times during the 1990s in Russian agriculture. Nevertheless, the offi-
cial statistics do not provide relevant indices for single revaluations, which
complicate derivation of a reliable measure of capital. In our study, we
obtain the value of capital from official statistics on the extent of capital depre-
ciation in single years, which considers the movement of capital in successive
years. Accordingly, we obtain the net value of capital (i.e. without deprecia-
tion) for a base year and derive its net values for other years, while considering
the extent of capital depreciation in every single year compared with the base
year level of depreciation. This allowed us to trace the capital value changes in
net capital in the base year prices.

Output and variable inputs were deflated by corresponding price indices
(i.e. index of agricultural producer prices and agricultural input price index)
to the price level in 2000 – the base year in our analysis.9 In addition, all vari-
ables were normalised by their geometrical means. The dependent variable
was defined as the ratio of variable inputs to the production output. The
other three inputs were normalised by variable inputs.10

9 Summary statistics for the variables used in the model can be found in Table B1 (Appendix B in

supplementary data available at ERAE online).

10 In addition, we employ a dummy variable representing main agricultural regions (MAIN).
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The variables used in z correspond to the hypotheses mentioned in Section
2.3. In particular, these vectors include regional per capita real income growth
rate (INC), investment to capital rate (ICR), TOT, share of livestock pro-
duction in the regional agricultural gross output (LCR), MLR and the
number of kindergarten spots per 100 children of kindergarten age (CCC).
The w vector includes the variables that might explain heteroskedasticity in
the error (noise), i.e. production risk, and consists of ICR, TOT, LCR, MLR
and CCC.

5. Estimation results

5.1. Parameter estimates

Table 1 presents estimates of the production technology parameters obtained
by three approaches employed on equation (4a): the homoskedastic and het-
eroskedastic SFA models, based on the ML method (columns ‘homoskedastic
ML SF’ ‘heteroskedastic ML SF’, respectively) and the system GMM-based
approach. Note that the first two approaches do not correct for potential
endogeneity, while the third one does.

To highlight possible impact of the endogeneity problem (i.e. the corre-
lation between the input variables and the composed error term), we first
compare the frontier estimates of the ML-based SFA models and the GMM
approach. The parameter estimates differ considerably between these two
approaches. These differences are reflected in the estimates of technical
change as well as input elasticities.11 Both ML-based SFA models show a
remarkable increase in technical change over time. This is likely to be an
upward bias. According to the system GMM estimates, technical change
decreased in the 1990s and showed much more moderate growth rates in
the last decade.

In the ML estimates, materials account for about 36 per cent of the value of
output. Given that the share of this factor in gross production is about 43 per
cent, its estimate appears to be downward biased. In contrast, the GMM-based
approach produces an estimate that is rather close to the share of materials in
the gross production. The downward bias of the ML estimates for materials is
compensated by an upward bias in the elasticity of labour. In addition, con-
trary to system GMM, the ML estimates are not theoretically consistent.
Although monotonicity of the sample means holds for all inputs, the necessary
condition for quasi-concavity is not satisfied for two inputs: labour and capital.
Summing up, the endogeneity appears to be a problem for the ML-based esti-
mations of the SFA model, whereas the system GMM produces consistent and
more reliable results (without any distributional assumptions on the error
components).

11 The system GMM model was found to be highly significant according to the Wald test with

Chi2 (n ¼ 45) ¼ 3.46e + 04. In addition, the Sargan test could not reject validity of the instruments

[x2 (n ¼ 2475) ¼ 1342]. Finally, the Arellano–Bond test rejected second-order autocorrelation

(Pr . z ¼ 0.521 for z ¼ 0.64).
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Table 1. Production technology parameter estimatesa

Estimate

Variable Homoskedastic ML SF Heteroskedastic ML SF System GMMb

Inputs

Time 20.030*** 20.026*** 20.012**

Time* 20.003*** 20.003** 20.005***

Time*INC 20.108*** 20.094*** 20.064*

Time*CCC 0.021 0.035* 0.021

Time*TOT 0.002 0.000 0.039***

Time*LCR 20.009 20.011 20.016*

Labour 20.297*** 20.257*** 20.207***

Labour*Time 20.027*** 20.034*** 20.015

Labour*INC 0.647*** 0.742** 0.100

Labour*CCC 20.133 20.250 0.668**

Labour*TOT 20.128** 20.178** 20.002

Labour*LCR 20.063 20.150 20.076

Land 20.076*** 20.094*** 20.109*

Land*Time 0.005 0.006 0.015*

Land*INC 20.009 20.059 0.404

Land*CCC 20.083 20.081 20.201

Land*TOT 0.134*** 0.131*** 0.320

Land*LCR 0.034 0.069 0.152

Capital 20.250*** 20.286*** 20.214***

Capital*Time 0.009 0.007 0.007

Capital*INC 0.479** 0.579** 20.243

Capital*CCC 20.048 20.007 20.741*

Capital*TOT 0.247*** 0.255*** 20.261

Capital*LCR 0.078 0.163* 0.033

Labour2 20.624*** 20.666*** 20.162

Land2 0.041 0.018 20.051

Capital2 20.347*** 20.235 20.010

Labour*Land 20.219*** 20.170** 20.083

Labour*Capital 0.435*** 0.426*** 0.140

Land*Capital 0.223*** 0.154** 0.189

Regional characteristics

INC 20.242*** 0.003 20.316***

CCC 20.277*** 20.168** 20.033

TOT 0.068*** 0.145*** 0.204 ***

LCR 0.172*** 0.197*** 0.040

MAIN 20.016 20.033* 0.085**

INC2 0.397 0.090 0.179

CCC2 20.153 20.562 1.134*

TOT2 0.182*** 0.107 0.296

LCR2 0.012 0.078 0.040

INC*CCC 0.994*** 0.740* 0.405

INC*TOT 20.050 20.198 20.116

(continued )
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The production technology estimated by the system GMM approach has the
following structure. The most important production factor is variable inputs.
Land inputs contribute to the agricultural gross product by roughly 11 per
cent. This appears to be quite plausible, considering that land is not a very
scarce factor in Russian agriculture. Consistent with large-scale farming and
a high demand for capital input, the elasticity of this input is reasonably
high (0.21). However, the average labour productivity of 0.20 seems to be
rather high. A high level of labour elasticity might be related to high intensity
and productivity of labour input in livestock and poultry production, which
have been expanding due to extensive governmental interventions in recent
years. The impact of technical change varied over the period of our study. It
was declining until 1998 and has shown improvement since 1999. In addition,
technical change is found to be land saving.12 Considering the high level of
capital depreciation and moderate investment rates in recent years, capital
endowment was obviously not sufficient for cultivation of large parcels of
land, which forced farms to take some parcels out of cultivation.

Figure 3 summarises the overall impact of the regional characteristics repre-
senting regional economic and institutional environment on agricultural
output.13 First, our results suggest an improvement in the production con-
ditions, on average. Although not very pronounced, there is an indication
that, in the period before the 1998 crisis, agricultural production suffered
from a deterioration of general production conditions. After 1998, the regional
environment improved, which had a positive impact on agricultural
production. Second, we found a growing dispersion of the impact of regional
production conditions. This result suggests that, compared with the early years

Table 1. (continued)

Estimate

Variable Homoskedastic ML SF Heteroskedastic ML SF System GMMb

INC*LCR 20.080 20.097 0.249

CCC*TOT 0.143 0.109 20.577

CCC*LCR 0.546*** 0.579*** 0.828**

TOT*LCR 0.268*** 0.261*** 0.195

Note: *, **, *** denote statistical significance at the 10 per cent, 5 per cent and 1 per cent level, respectively.
aThe respective technical efficiency estimates can be found in Table A2 in the Appendix A (in supplementary data
available at ERAE online).
bThe list of the GMM level instruments contains all the x̂ and z variables and their cross-products lagged at least 2 and
maximum 12 periods. The list of the differenced instruments refers to the same variables with the lag length of 1.

12 The coefficient estimate for the cross-product of land and time variable is positive. Based on our

formulation of production technology in equation (5) and (5a), this indicates that due to technical

change the amount of land needed to produce an additional unit of output reduces.

13 The values were computed using the parameter estimates form the last block of Table 1; i.e. by

using the estimates of bl and blm from equation 4(a). Since all regional characteristics were

normalised, the computed values correspond to the relative impact of the institutional and

economic environment in the regions.
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of the transition, when the production possibilities were primarily influenced
by the general macroeconomic development, the effect of regional
development has been more pronounced in recent years.

5.2. Efficiency considerations

Figure 4 depicts the technical efficiency distribution across oblasts and over
time. First of all, the technical efficiency of regional agricultural production
is quite high. Most of the regions were operating at more than 90 per cent effi-
ciency. This level is higher than was found in other studies on the development
of regional productivity and efficiency (e.g. Voigt, 2006; Voigt and Hock-
mann, 2008).14 Moreover, the high efficiency levels distinguish our results
from the analyses conducted at the farm level (e.g. Bokusheva and Hockmann,
2006). Most of these studies found a relatively large variation in efficiency
among farms. However, the latter does not contradict our results. Instead, it
suggests that efficiency differences may be higher within the regions rather
than across the regions. This result has an important policy implication:
since efficiency differences are not pronounced at the regional level, federal
policies aimed at increasing technical efficiency may not be a first best
choice. It is rather the responsibility of the regional governments for

Fig. 3. Estimates of regional effects.

Note: Each dot represents one observation. The trend represents the mean in each year.

14 One reason for these diverse levels can be attributed to various estimation methods. Usually, the

parameters are estimated by a conventional stochastic frontier model. As discussed earlier,

because of the simultaneity problem, the parameter estimates, and therefore the implied effi-

ciencies, may be biased.
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developing programmes aimed at reducing production losses incurred due to
inefficient use of resources at the micro level.

Figure 4 provides additional information about a general (average) trend in
efficiency development. Average efficiency levels across regions declined
until 2000 and then started to improve steadily thereafter. This result is in
line with findings by Osborne and Trueblood (2006) and Voigt and Uvarovsky
(2001), who found a decreasing pattern of technical efficiency in Russian
agriculture in the 1990s. In addition, our estimates confirm the general
expectations. Early years of transition were accompanied by huge uncertain-
ties and frictions caused by institutional and economic reforms. Consequently,
agricultural production was hampered and remained far below maximum
potential (frontier). However, the situation has improved in recent years,
which have been characterised by sustainable economic growth, macroeco-
nomic stability and a more favourable institutional environment. Of course,
it would be misleading to conclude that the reform process is now completed.
Instead, policy makers should use this positive development as an argument to
deepen the transition process by further reforming the institutional and
organisational environments of agriculture.

Even though the data did not allow direct identification of the parameters
affecting efficiency development, the estimation results provide indirect infor-
mation about the sources of efficiency differences and changes. Efficiency
scores were calculated using the Jondrow et al. (1982) estimator. Since

Fig. 4. Development of technical efficiency (by region and annual average).

Note: Each dot represents one observation. The trend represents the mean efficiency in

each year.
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expected inefficiency depends on the variances of uit and vit, factors determin-
ing both variances also affect the expected technical efficiency.15 That is, we
can compute the marginal effect of the z and w variables via the variances of u
and v (if they affect both variances). In this sense, this result is different from
that presented by Wang (2002).16 Table 2 presents the impact of the variables
in z and w17 on the expected inefficiency. The results confirm that heteroske-
dasticity is an important phenomenon. At the same time, whereas all variables
considered in the variance of vit had a significant effect, only two variables,
INC and TOT, were found to have significant impact on the variance of uit.
In the following discussion, we consider only the significant effects.

Our estimates of the second step support the hypotheses introduced in
Section 2.3. Technical efficiency increases with higher regional per capita
income (INC), better TOT, a higher degree of social responsiveness
(CCC) and a higher quality of the capital stock (INC). Moreover, a higher
specialisation in animal production (LCR) and a higher MLR have negative
impacts on technical efficiency. Since most of the discussed determinants
are related to adjustment costs and an inappropriate measurement of the
inputs, they are not transition specific. However, Table 2 also displays the
effect of the MLR, which is related to the transition process. A negative
impact of MLR on technical efficiency supports the hypothesis about farm
involvement in the provision of social services and amenities in rural
areas. Finally, the trend for average technical efficiency presented in
Figure 4 suggests an increase in technical efficiency in the course of the
transition.18

5.3. TFP considerations

Since our purpose is to discuss both TFP developments as well as TFP
differences among the regions, we follow the procedure developed by
Caves, Christensen and Diewert (1982). These authors derived a multilateral
consistent Thörnquist-Theil index that exactly represented the changes in a
translog function over time and over regions. Thus, our TFP indicator captures
the differences in production technology resulting from the regional fixed
effects, the changes of the frontier (technical change) and changes in technical
efficiency.

Figure 5 shows a J-shaped TFP development. The early years of the tran-
sition were characterised by deterioration in production capacities. This devel-
opment persisted until the Russian financial crisis in 1998. Since 1998, TFP

15 Estimates of technical efficiency determinants can be found in Table B2 (Appendix B in sup-

plementary data available at ERAE online).

16 Essentially, this is an extension of Wang (2002), who discusses a model with heteroskedasticity

only in u. Details are given in the Appendix A.

17 The set of z and w variables is almost identical.

18 As several z variables exhibited a substantial level of correlation with time variable, we do not

include time as an additional variable to consider the effect of transition on technical efficiency.

However, since the z variables such as INC, TOT and ICR incorporate effects of the transition pro-

cess, their impact on technical efficiency can be regarded as an effect of the transition.
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has however increased steadily.19 One main reason behind the decline is the
pronounced macroeconomic instabilities in the early years of the transition.
Extremely high inflation seriously reduced producers’ incentives to exploit
their production possibilities. Other developments, such as a slow transition
from central planning to a market economy, aggravated this effect.
However, several factors also helped to improve the institutional and econ-
omic environment. Gradual progress in restructuring and in the learning
process, an increased competitiveness of domestic production due to a
drastic devaluation of the Russian Rouble in 1998, as well as ongoing
reforms definitely induced a reversal of these deterioration processes.

We do not find evidence for s-convergence.20 On the contrary, Figure 5
demonstrates that the spread of TFP among the regions increased over the
period under investigation. Moreover, the variance in TFP followed the devel-
opment observed for technical efficiency and the regional characteristics: it
decreased until 2000 and then started to increase. Altogether, the growing dis-
persion of TFP levels implies that the developments in Russian agriculture
cannot be readily explained by the forces provided by neoclassical growth
theory (such as diminishing marginal returns and technical change as a
public good), but are strongly affected by determinants presented in ‘new
growth theory’ (Romer, 1986; Lucas, 1988). These newer models highlight
the externalities between knowledge and technologies (i.e. innovations).
Spill-over effects and complementarities mean that the accumulation of

Table 2. Heteroskedasticity and mean expected inefficiency

Heteroskedasticity in v Heteroskedasticity in u

Total

effect on

E[u|1]a

Hypotheses

(Section 2.3)Variable

Parameter

estimate

Average

on effect

E[u|1]

Parameter

estimate

Average

on effect

E[u|1]

INC 24.844** ,0 ,0 ,0

TOT 20.608*** ,0 22.545** ,0 ,0 ,0

LCR 0.251* .0 22.255 .0 .0

CCC 20.520* ,0 1.995 ,0 ,0

MLR 0.162* .0 21.409 .0 .0

ICR 20.042** ,0 20.017 ,0 ,0

Cons 23.577*** 26.887***

Mean of ∂E[u|1]/∂sv ¼ 0.008 Mean of ∂E[u|1]/∂su ¼ 0.738

aNote: Consideration of significant parameters only.

19 This result confirm results by Voigt (2006) and Voigt and Hockmann (2008) who found a slight

indication for an improvement in the TFP development from 1999 to 2001 and 1999 to 2003,

respectively.

20 The s-convergence refers to a situation in which single indicators for a group of countries move

to a joint level (Barro and Sala-i-Martin, 1992).
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knowledge might be characterised by increasing returns. Furthermore,
advancement of knowledge creates new complementarities between human
capital and technology. Typically, the discussed mechanics induce a dis-
persion of TFP levels. Moreover, the transition process can be expected to
enhance these divergent developments.

However, both convergence and divergence processes might be present
simultaneously and hence might affect the relative position of the regions.
Figure 6 indicates that this conjecture cannot be denied. The developments
in most regions are characterised by b-convergence.21 Convergence processes
are quite pronounced on average and amount to about 10 per cent per year.22

However, some regions, especially those with a high initial TFP level, experi-
enced negative TFP development in the period under investigation. Basically,
these regions, like all others, showed a negative TFP trend until 1998.
However, in contrast to the other regions, they were unable to use the
window of opportunity offered by the Russian crisis to move towards a
sustainable growth path. These falling-back processes can be seen as the
major reason why we were unable to observe s-convergence.

Similar to the findings on technical efficiency, the results regarding the
development of TFP suggest that policies at the federal level can be regarded
only as a necessary condition for the inducing growth processes. The
exploitation of growth potentials however mainly depends on how regional
governments augment the incentives provided by the federal policies.

Fig. 5. TFP development (by region and annual average).

Note: Each dot represents one observation. The trend represents the mean in each year.

21 This kind of convergence refers to a situation where the correlation between growth rates and

initial levels is negative (Barro and Sala-i-Martin, 1992). They also show that b-convergence is

necessary, but not sufficient for s-convergence.

22 Sala-i-Martin (1996) surveys the literature on b-convergence and concludes that economies

close the gap between present levels of income and balanced growth levels, on average, by 2

per cent per year.
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6. Conclusion and discussion

This study used regional data on agricultural output and inputs to analyse the
evolution of agricultural productivity in Russian regions during the period
from 1995 to 2008. The estimation methods used in the paper take into
account endogeneity of the input and output variables. The analysis applies
a two-step procedure. In the first step, we use the system generalised
method of moment (system GMM) approach, which gives consistent esti-
mates of production technology parameters in the presence of endogeneity
of inputs and heteroskedastic and autocorrelated errors, without making any
distributional assumptions regarding the error components. In the second
step, we estimate the standard stochastic frontier model to determine technical
efficiency and its determinants. We then compare the results obtained by the
system GMM approach with those of conventional ML estimates.

Our analysis shows that the endogeneity problem appears to be consider-
able in the ML estimations. We found that the system GMM gives more
reliable results. This concerns the theoretical consistency of the parameter
estimates, as well as the reliability of the production elasticities and the
effect of technological change.

According to the system GMM estimates, the impact of technical change
varied considerably over the study period. In particular, it was negative in
the early years of the transition, but became positive after the Russian financial
crisis in 1998. A similar trend has been found regarding technical efficiency
estimates from the corresponding SF model. In particular, technical efficiency
was declining at the beginning of the reforms, but has been increasing since
2001. A short time gap in the development of technical efficiency compared

Fig. 6. Regional TFP changes and b-convergence.

Note: The parameter estimates are highly significant with t-values of about 4.3 and 28.56

for the absolute term and the slope, respectively.
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with technical change suggests that the adoption of new production technol-
ogies occurs at a different rate across Russian regions. Furthermore, we
found a J-shaped TFP development, which is in line with theoretical expec-
tations. These results suggest that economic and institutional reforms initiated
during the transition have not only fostered overall economic growth, but have
also been transmitted to the agricultural sector where they have stimulated the
exploitation and development of production possibilities. In this context, the
financial crisis of 1998 can be regarded as a turning point for the development
of agricultural productivity in Russia.

In addition, our empirical results suggest that macroeconomic and insti-
tutional reforms implemented at the federal level can be considered as a
necessary, but not as a sufficient, condition for agricultural development. In
the early years of the transition, the effect of federal economic and insti-
tutional policies was a major driving force behind the changes in agricultural
productivity, while regional policies had only a limited impact on agricultural
production. However, in the period following 1998, we found quite a diver-
gent impact of regional characteristics on production possibilities in agricul-
ture and rather divergent developments in regional total factor productivity.
This finding points to serious changes in each individual region’s economic
and institutional environment during the transition and a high relevance of
regional policies to agricultural growth.

Finally, the second-step estimations support our hypotheses about the effect
of selected regional characteristics on technical efficiency. In particular, we
found that general socio-economic development of the regions, the improve-
ment of TOT and higher investment rates had positive influences on technical
efficiency. However, a higher specialisation on livestock production and a
stronger involvement of farms in the fulfilment of social functions in rural
areas had a negative impact on technical efficiency.

Supplementary data

Supplementary data are available at ERAE online.
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Appendix A: Calculation of marginal effects

Technical inefficiency is calculated using the estimator by Jondrow et al.
(1982):

E[uit|1it] =
sitlit

1 + l2
it

w(zit)
1 −F(zit)

− zit

[ ]

with, sit =
������������
s2

u,it + s2
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√
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,

(A1)

where

s2
u,it = exp(g′zit),

s2
v,it = exp(d′zit)and

zit =
1itlit

sit

and 1it = vit − uit.
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Given these relationships, the variables controlling for heteroskedasticity do
not directly influence the expected efficiency, however, they affect it
through their effect on the variances. We will demonstrate this for a variable
hit which is the element of both zit and wit. The impact of h on E[uit|1it] is
given by:

∂E[uit|1it]
∂hit

= ∂E[uit|1it]
∂su

∂su

∂hit

+ ∂E[uit|1it]
∂sv

∂sv

∂hit

. (A2)

The effect is not unambiguous, as demonstrated in the following. First, we
rewrite equation (A1) as (subscripts omitted):

E[uit|1it] =
sitlit

1 + l2
it

,

E[u|1] = f(q)[k(z) − z] with q = sl

1 + l2
. 0 and

k(z) = w(z)
1 −F(zit)

. 0.

The partial differential, with regard to su, is given by:

∂E[u|1]
∂su

= k(z) ∂f(q)
∂q

∂q

∂su

+ f(q) ∂k(z)
∂z

− 1

( )
∂z

∂su

,

with k(z) ∂f(q)
∂qu

= k(z) . 0 and
∂q

∂su

= s3
v

(s2
u + s2

v)3/2
. 0

f(q) ∂k(z)
∂z

− 1

( )
= f(q) −1 + k(z)E[u|1]

f(q)

( )
, 0 and

∂z

∂su

= 1
s2

v

(s2
u + s2

v)3/2
,

the sign of which depends on the sign of 1.
Similarly:

∂E[u|1]
∂sv

= k(z) ∂f(q)
∂q

∂q

∂sv

+ f(q) ∂k(z)
∂z

∂z

∂sv

with
∂q

∂sv

= s3
v

(s2
u + s2

v)3/2
. 0 and

∂z

∂su

= −1
su(2 + l2)
(s2

u + s2
v)3/2

,

the sign of which corresponds to the reverse of the sign of 1.
The above derivatives show that the signs of ∂E[u|1]/∂su and ∂E[u|1]/∂sv

depend on, among other things, the sign of the composed error term
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1 = v − u. Furthermore, these marginal effects are observation specific. The
mean impact of an explanatory variable (explaining heteroskedasticity) on
the mean inefficiency can be obtained by using the arithmetic means of
∂E[u|1]/∂sv and ∂E[u|1]/∂su as weights for sv/∂hit and su/∂hit in
equation (A2).
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