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ABSTRACT
We present an evaluation of the performance of an automated classification of the Hipparcos
periodic variable stars into 26 types. The sub-sample with the most reliable variability types
available in the literature is used to train supervised algorithms to characterize the type
dependencies on a number of attributes. The most useful attributes evaluated with the random
forest methodology include, in decreasing order of importance, the period, the amplitude,
the V − I colour index, the absolute magnitude, the residual around the folded light-curve
model, the magnitude distribution skewness and the amplitude of the second harmonic of the
Fourier series model relative to that of the fundamental frequency. Random forests and a multi-
stage scheme involving Bayesian network and Gaussian mixture methods lead to statistically
equivalent results. In standard 10-fold cross-validation (CV) experiments, the rate of correct
classification is between 90 and 100 per cent, depending on the variability type. The main
mis-classification cases, up to a rate of about 10 per cent, arise due to confusion between
SPB and ACV blue variables and between eclipsing binaries, ellipsoidal variables and other
variability types. Our training set and the predicted types for the other Hipparcos periodic
stars are available online.

Key words: methods: data analysis – methods: statistical – techniques: photometric – cata-
logues – stars: variables: general.

1 IN T RO D U C T I O N

The development of efficient automated classification schemes is
becoming of prime importance in astronomy. Large surveys are
monitoring millions, and soon billions, of targets. The resulting time
series cannot possibly be scrutinized by eye. The identification and
study of variable stars require the use of powerful statistical and
data mining tools. Automated supervised classification methods
provide object type predictions based on the values of a set of
attributes characterizing the objects. In the first stage, a collection
of prototype objects of known type and attribute values, referred
to as the training set, is used to build a model of the dependencies

�E-mail: pierre.dubath@unige.ch

of the types on the attribute values. In the second stage, this model
is used to predict the types of other objects of unknown types but
with available attribute values. As the naming schemes differ in
different publications, we make the following definitions to be used
throughout this paper: objects (i.e. stars) are classified into types
making use of a number of attributes.

Tree-based classification methods are simple to use and popular
in applications (see e.g. Hastie, Tibshirani & Friedman 2009). They
can deal with complex structures in the attribute space and have
low systematic classification errors if the trees are sufficiently deep.
However trees are noisy and the resulting type estimator has large
variance. With the random forest method (Breiman 2001) the vari-
ance is drastically reduced by averaging the results of many trees
built from randomly selected subsamples of the training set (boot-
strapping). In addition, this method uses the best one of a number of
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randomly selected attributes at each branching, which has the effect
of reducing the correlation between different trees and hence im-
proving the averaging. The random method has been used in many
scientific domains such as bioinformatics, biology, pharmacy and
Earth sciences, confirming that it performs excellently on a broad
range of classification problems. By construction it is relatively ro-
bust against overfitting; it is only weakly sensitive to choices of
tuning parameters; it can handle a large number of attributes; it
provides an unbiased estimate of the generalization error and the
importance of each attribute can be estimated.

A number of variable star classification studies exploit recent or
ongoing surveys, such as (1) ASAS (Pojmanski 2002, 2003; Eyer
& Blake 2002, 2005), (2) OGLE (Sarro et al. 2009), (3) MACHO
(Belokurov, Evans & Du 2003; Belokurov, Evans & Le Du 2004).
(4) CoRoT (Debosscher et al. 2009), (5) Kepler (Blomme et al.
2010). A number of ambitious survey projects are also in an ad-
vanced stage of preparation, in particular (1) Pan-STARRS,1 (2)
LSST2 and (3) Gaia.3 Although these projects have different pri-
mary goals, the expected time series of measurements will provide
data of unprecedented quality to study variable stars. These data
are critical to both better characterize populations of variable stars
in different environments and investigate in more depth typical or
peculiar individual cases. Progress in this field not only impacts our
understanding of variable star physics, but also leads to contribu-
tions to a wide range of astronomical topics, from stellar evolution
and population-synthesis modelling to distance scale related issues.

The Hipparcos mission stands out as a rather original and am-
bitious astrometry space programme. Because of the whole sky
repeated scanning, it provides accurate data for all the brightest
stars in our close neighbourhood. The Hipparcos periodic star cat-
alogueincludes most of the best studied stars and hence provides a
unique set that can be used as a ‘control sample’. Results obtained
for these stars can be validated using the wealth of available pub-
lished information. This is particularly useful for evaluating variable
star classification methods before applying them to other large sur-
veys. The variability types resulting from the classification can be
compared with types available from the literature. The Hipparcos
sample also includes almost all types of variable stars present in
the solar vicinity. It is certainly a solid basis for building a training
sample for supervised classification methods.

The comprehensive study of Hipparcos variable stars presented
in volume 11 of the Hipparcos periodic star catalogue4 (Eyer 1998)
does not comprise a systematic automated classification. The vari-
ability types provided in this catalogue are extracted from the lit-
erature with two exceptions. First, the eclipsing binaries and the
RV Tauri were identified and characterized on the basis of visual
inspections of the folded light curves. Secondly, a systematic classi-
fication of variables with B spectral type was achieved by Waelkens
et al. (1998) using a multivariate discriminant analysis. Later, Aerts,
Eyer & Kestens (1998) used a similar technique to isolate variables
with A2 to F8 spectral types. An attempt to obtain a systematic
classification is also presented by Willemsen & Eyer (2007).

The subject of this paper is the development of the first sys-
tematic, fully automated classification of the complete sample of
Hipparcos periodic variable stars. The performance of the random

1 http://pan-starrs.ifa.hawaii.edu/public
2 http://www.lsst.org/lsst
3 http://www.rssd.esa.int/Gaia
4 http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=
Overview

forest method is evaluated and the results are compared with those
obtained from the multistage classifier developed recently (Blomme
et al. 2011). In a companion paper (Rimoldini et al. in preparation),
this work is extended to include non-periodic variables, both to
study the classification of non-periodic stars and to evaluate the
confusion between periodic and non-periodic types. The main goal
is to fully validate our approach on a controlled sample of Hippar-
cos stars, before applying it in a more automated fashion on other
surveys in future studies. An important outcome of our work is a
homogeneous supervised classification training set, which can be
adapted to other missions, in particular, the upcoming Gaia mission.
Predicted types are also provided for almost all Hipparcos periodic
variables, including some that have no types or only uncertain ones
in the literature.

The procedure followed to build the training set from a sub-
sample of the best-known Hipparcos stars is described in Section 2.
The subject of Section 3 is the determination of the attribute values,
including the period search. Section 4 describes the applied random
forest methodology and shows the corresponding results. Section 5
presents an investigation of the influence of the period value errors
on the classification process. Results from random forest results and
a multi-stage classifier are compared in Section 6, while our best
final predicted types are listed in Section 7. Finally, our conclusions
are given in the last section (Section 8).

2 TRAI NI NG SET C OMPOSI TI ON

Data from a set of objects of known types are needed to train the su-
pervised classification algorithms. The quality of the classification
directly rests on the reliability of the types of the stars included in
this set, called the training set. For a given type, the selected objects
should only include true representatives of the group with typical
properties. In our case, we select a sub-set of our Hipparcos stars
with most reliable types available from the literature, taking advan-
tage of the fact that many of them are relatively bright, well-studied
objects. Ideally, the relative frequencies of the different types in
the training set should be representative of those in the population
to-be-classified.

A search for periods in the Hipparcos data alone is inconclu-
sive for 171 of the 2712 stars included in the Hipparcos periodic
star cataloguedue to the incomplete phase coverage of the light
curves. The period values published in the Hipparcos periodic star
cataloguecome from the literature for these stars. Most of them are
eclipsing binaries (152 EAs) with too few Hipparcos measurements
during the eclipses. These stars are excluded from the training set
as the scope of this paper is restricted to periodic stars with a light
curve from which it is possible, at least in principle, to infer a
period.

The variability types provided in the Hipparcos periodic star
cataloguewere mainly extracted from the literature (to the notable
exception of eclipsing binaries; see Section 3.2.2) available at the
time of publication (1997). These types are revised for our study
using more recent information. The main reference is the Interna-
tional Variable Star Index (Watson, Henden & Price 2010) catalogue
from the American Association of Variable Star Observers (AAVSO
catalogue hereafter). This index includes information from the Gen-
eral Catalogue of Variable Stars (GCVS) and the New Catalogue
of Suspected Variables (NSV) and it is kept up-to-date with the lit-
erature with two releases per month. The release adopted herein is
that from 2010 June 13. Information from private communications
is preferentially used for some specific variability types (see below)
as it is believed to be more reliable.

C© 2011 The Authors, MNRAS 414, 2602–2617
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2604 P. Dubath et al.

Table 1. Training set composition.

Type Num Main reference

Eclipsing binary EA 228 Hipparcos
EB 255 Hipparcos
EW 107 Hipparcos

Ellipsoidal ELL 27 Hipparcos
Long period variable LPV 285 Lebzelter (p. c.)
RV Tauri RV 5 AAVSO
W Virginis CWA 9 AAVSO

CWB 6 AAVSO
Delta Cepheid DCEP 189 AAVSO
(first overtone) DCEPS 31 AAVSO
(multi-mode) CEP(B) 11 AAVSO
RR Lyrae RRAB 72 AAVSO

RRC 20 AAVSO
Gamma Doradus GDOR 27 De Cat (p. c.)
Delta Scuti DSCT 43 AAVSO
(low amplitude) DSCTC 81 AAVSO
SX Phoenicis SXPHE 4 AAVSO
Beta Cephei BCEP 30 De Cat (p. c.)
Slowly Pulsating B star SPB 81 De Cat (p. c.)
B emission-line star BE 9 AAVSO
Gamma Cassiopeiae GCAS 4 AAVSO
Alpha Cygni ACYG 18 AAVSO
Alpha-2 Canum Venaticorum ACV 77 Romanyuk (p. c.)
SX Arietis SXARI 7 Romanyuk (p. c.)
BY Draconis BY 5 Eker et al. (2008)
RS Canum Venaticorum RS 30 Eker et al. (2008)

Total: 1661

AAVSO : Watson et al. (2010).

The type-assignment process for Hipparcos variables is as fol-
lows (see Table 1 for type acronym definitions).

(1) For eclipsing binaries and ellipsoidal variables, the Hipparcos
periodic star catalogueis taken as the reference as (1) the classifi-
cation done at the time included reliable visual checking of the
Hipparcos light curves and (2) these light curves are known to
have a good enough eclipse coverage to allow a successful period
determination (see above and Section 3.2.2).

(2) Lists of Hipparcos stars of the types GDOR, SPB and BCEP
are provided by P. De Cat and of LPV by T. Lebzelter; both maintain
up-to-date compilations of literature information for these types.

(3) The type determination for ACV and SXARI stars that have a
measured magnetic field is considered as particularly reliable. As a
consequence, for these types, only the Hipparcos stars included in
a list of magnetic stars provided by I.I. Romanyuk (private commu-
nication) are retained.

(4) Only the subset of Hipparcos RS and BY stars listed in the
third edition of the ‘catalogue of chromospherically active binary
stars’ (Eker et al. 2008) is included.

(5) All stars from the AAVSO catalogue with a type matching
any of the above mentioned types are excluded. For example, a star
identified as Mira, SR, LB or SARV in AAVSO catalogue that is not
in the Lebzelter list of LPV is discarded from the training set. The
AAVSO catalogue is then used to assign a type to the remaining stars
from the Hipparcos periodic star catalogue. This procedure leads to
a subset of 1963 stars.

(6) A visual inspection of the folded light curves of all 1963 stars
leads to the elimination of 64 stars due to either poor sampling or
excessive noise.

(7) Types with less than three representatives are discarded. This
concerns seven stars of six different types: FKCOM, HADS, INSA,
INSB, nra, CW-FU in Watson et al. (2010).

(8) Finally, 92 stars with uncertain type (denoted with a colon in
the original sources) are also excluded.

The above type-assignment process leads to a training set with
1800 stars of 26 different types. A further 32 stars are excluded due
to diverse difficulties in the light-curve processing (see Section 3)
and another 107 are discarded because of missing colour indices in
the Hipparcos periodic star catalogue. This leaves a training set of
1661 stars. Table 1 summaries the final composition of the training
set as a function of the variability type.

It is important to note that combined types, such as an intrinsic
variable included in an eclipsing binary, are excluded from our
training set as a result of the above-type assignment process.

3 C LASSIFICATION ATTRIBU TES

The classification experiments presented in this paper rely on a
number of attributes. To achieve the most accurate classification,
attributes should be chosen so as to characterize the stars as thor-
oughly as possible. Some attributes reflect stellar global properties,
such as the mean colour or the absolute brightness whereas others
describe features of the light curve. The shape of the folded light
curve is one of the key indicators of variability type.

The strategy used in this paper is to compute a large number of
attributes and to use some algorithms to estimate their merits. In
this section, we describe the principle of the attribute derivation.
The attribute ranking and selection is described in Section 4, which
is devoted to classification. The exact attribute definition is also
deferred to avoid describing some that may finally not be retained.

3.1 Statistical parameters

A number of statistical parameters are derived from the distribution
of photometric measurements. The list includes the distribution
moments (mean, standard deviation, skewness and kurtosis), the
range and percentiles. Weighted and un-weighted formulations are
used as well as robust estimators.

3.2 Period search

The period values provided in the Hipparcos periodic star catalogue
are particularly reliable as the corresponding folded light curves
were all visually checked prior to publication. Using directly these
values in our analysis would lead to optimum results. However,
current and upcoming surveys can include millions of variables
which cannot all be visually checked. One of the main goals of this
paper is to investigate what can be achieved through an automated
classification process, including the period search.5 An investigation
of the increase of the classification errors resulting from the use of
an incorrect period is presented in Section 5.

A number of well-known period search methods such as
Deeming (1975), Lomb–Scargle (Lomb 1976; Scargle 1982), har-
monic least-squares analysis of generalized Lomb–Scargle methods
(Zechmeister & Kürster 2009), String Length methods (Lafler &

5 The problem of spurious and aliased periods (or frequencies) typically
showing up at fractions and multiples of 1 day and 1 yr in ground-based
surveys does not affect the period search in Hipparcos data.
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Kinman 1965; Burke, Rolland & Boy 1970; Renson 1978; Dworet-
sky 1983) and Jurkevich–Stellingwerf (Jurkevich 1971; Stellingw-
erf 1978) are employed to search for periodicity in the light curves.
The resulting periods are compared with the Hipparcos periodic star
catalogue values to derive the fraction of correct results. Extensive
testing shows that a single method can lead to a recovery fraction
of around 80 per cent, while an ideal combination of all methods
could potentially raise that value to close to 100 per cent (Cuypers
in preparation). Unfortunately, no automated strategy is found to
predict which method leads to the correct period for a specific light
curve. The best overall recovery fraction is obtained with a combi-
nation of the classic Lomb–Scargle method (Lomb 1976; Scargle
1982) and of a generalized Lomb–Scargle variant (Zechmeister &
Kürster 2009). The former is used for all stars with a large magni-
tude distribution skewness while the latter is used for all remaining
stars.

The period search results obtained for eclipsing binaries and
for the other types of variables are different. They are presented
separately in the next two sections.

3.2.1 Non-eclipsing variable periods

Fig. 1 displays the results of the period search for all variables
excluding the eclipsing binaries and the ellipsoidals using the classic
or generalized Lomb–Scargle methods (see Section 3.2) depending
on the skewness value. Out of the 1044 non-eclipsing variables, a
good period estimate is derived for 951 stars, i.e. a correct period
recovery rate of 91 per cent. The period is considered as good
if the difference between the extracted period and the Hipparcos
catalogue value does not lead to a cumulative shift in phase of more
than 20 per cent over the full time-span of the light curve.

3.2.2 Eclipsing variable periods

The most common type of photometric variability is due simply to
binary stars eclipsing each other. This represents a real challenge
for classification because almost all kinds of stars can form a binary
system. For example, the colour index, usually a powerful indicator
of stellar type, is no longer a useful discriminant as it is a mean
from two stars that can have almost any kind of stellar colours. In
addition, one of the stars, or even both, can exhibit other types of
variability leading to a wide range of combined behaviours. Close
interaction can also trigger other types of variability such as the RS
Canum Venaticorum phenomenon.

There is an important complication in deriving the periods of
eclipsing binaries. The folded light curves (or the pulse profile) of
non-eclipsing periodic variable stars exhibit usually a single excur-
sion per cycle going through a unique minimum and maximum. As
two eclipses are often observed over one binary system revolution,
the resulting light curves exhibit two minima over one cycle. In
significant number of cases, the two minima have almost the same
depth and width. The light curves exhibit two almost identical ex-
cursions and, consequently, the period search usually returns half
of the true period. Fig. 2 shows examples of actual Hipparcos light
curves to illustrate the difficulty in extracting the correct period for
eclipsing binary systems.

In the preparation of the Hipparcos periodic star catalogue, the
light curves of all the 2712 periodic variables were visually in-
spected. Making sometimes use of additional information from the
literature, the eclipsing binaries were identified and when necessary
the period doubled. Introducing these period values into a general

Figure 1. Periods extracted using the Lomb–Scargle method for non-
eclipsing variables as a function of the Hipparcos periodic star catalogue
periods PH expressed in days on a decadic log scale. The upper plot shows
the Lomb–Scargle period (P), the middle one the relative difference, and the
lower one the relative difference multiplied by NCycle. NCycle is the light-
curve span divided by the period value, i.e. the number of cycles between
the beginning and the end of the light curve. The lower diagram shows the
cumulative shift, expressed in units of phase, after NCycle resulting from the
inaccuracy of the period value. The dashed diagonal lines in the upper plot
display the relationships P = PH, and P = 0.5 PH. The middle and lower
plots have much enlarged y-scales so that almost all outliers visibly scattered
in the upper plot fall outside of the displayed ranges.

classification algorithm is not appropriate. Because of the double-
excursion behaviour of their light curves they could be very easily
separated from the other variables. But this success would be an il-
lusion as it simply reflects the fact that these eclipsing binaries were
carefully identified and their period confirmed through a thorough
visual check in the first place.

Fig. 3 displays the results of the period search for the 617 eclipsing
binaries (EA, EB and EW) and ellipsoidal variables using the classic
or generalized Lomb–Scargle methods (see Section 3.2) depending
on the skewness value. Out of the 617 variables, approximately half
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Figure 2. The top and bottom panels show that the folded light curves of
the EB Hip 9443 and of the RRC Hip 6301 can be easily differentiated.
However, an automatic period search is most likely to result in half of the
correct period for Hip 9443 leading to the folded light curve displayed in the
middle panel. This curve is similar to that of the bottom panel illustrating
the difficulties of distinguishing these two stars in an automated process.

of the Hipparcos period is obtained for 508 stars, i.e. for 82 per
cent of the sample. For these 508 cases, the difference between the
double of the extracted period and the Hipparcos value does not
lead to a cumulative phase shift of more than 15 per cent over the
full time-span of the light curve. A period close to the Hipparcos
full period value is obtained only for 10 cases. Some period search
algorithms are better than Lomb–Scargle to find the correct period.
With Jurkevich–Stellingwerf, for example, the correct value and
half of it are obtained in similar numbers of cases (38 per cent). The
trouble is that when the true period is unknown, it is impossible to
know in which cases, the double or the full value of the extracted
period is the correct result. For this paper, we have found that the
best strategy is to use the Lomb–Scargle period to model the light
curves and to double the period values after classification for all
objects that have been identified as eclipsing binaries and ellipsoidal
variables. In this way, almost all these stars are modelled with half
of the correct periods, as shown in the middle panel of Fig. 2. The
use of half the true period in the case of eclipsing binaries does not
much confuse the classifier and leads to the best overall results.

Figure 3. Periods extracted using the Lomb–Scargle method for eclipsing
variables as a function of the Hipparcos periodic star catalogue periods PH

expressed in days on a decadic log scale. The upper plot shows the Lomb–
Scargle period (P), the middle one the relative difference and the lower one
the relative difference multiplied by NCycle. NCycle is the light-curve span
divided by the period value, i.e. the number of cycles between the beginning
and the end of the light curve. The lower diagram shows the cumulative
shift, expressed in unit of phase, after NCycle resulting from the inaccuracy
of the period value. The dashed diagonal lines in the upper plot display the
relationships P = PH and P = 0.5 PH. The middle and lower plots have
much enlarged y-scales so that almost all outliers visibly scattered in the
upper plot fall outside of the displayed ranges.

3.3 Light-curve modelling

The Hipparcos periodic star catalogue provides a unique period for
each source. Although a number of these sources are truly multi-
periodic, looking at the folded light curves displayed in the Hip-
parcos periodic star catalogue shows that in the vast majority of
cases the curves obtained with the single, dominant period look
good. Indications of additional significant periods, such as an ap-
parent superposition of two curves or a strong scatter excess with
respect to the nominal photometric uncertainties are only evident
in a few cases. In this paper, we show that a light-curve modelling
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carried out with the dominant period is sufficient to achieve a reli-
able classification.

The time-series model is given by

y = a0 +
Nh∑
k=1

bk cos(2πkνt) + ck sin(2πkνt), (1)

where Nh is the number of significant harmonics. Here, k = 1 is
the fundamental frequency ν (or first harmonic) and k = 2 is the
first overtone (or second harmonic). This model is linear in its
coefficients β = {a0, bk, ck}. An alternative notation involves the
amplitudes and phases of the oscillations and their overtones

y = a0 +
Nh∑
k=1

Ak sin(2πkνt + ϕk). (2)

The coefficient correspondence is

Ak =
√

b2
k + c2

k (3)

ϕk = arctan(bk, ck). (4)

The number of harmonics (Nh) to be used to best fit a given light
curve is unknown and must be determined through the modelling
process. A model with more parameters, i.e. a higher number of
harmonics, will always fit the data at least as well as the model
with fewer harmonics. The question is whether the model with
additional harmonics gives a significantly better fit to the data. A
forward selection regression process is followed, starting with only
the fundamental coefficients, i.e. with Nh = 1 and adding one more
harmonic at a time. The different models are nested, i.e. a simpler
model can be obtained by zeroing one or more coefficients of a more
complex model. Different models are compared pairwise using an
F-test. For example, in order to compare model 1 and model 2,
having different harmonic numbers (Nh2 > Nh1), the following F
statistic is computed

f = RSS1 − RSS2

RSS2

nobs − P2

P2 − P1
, (5)

where RSS are the residual sum of squares, nobs is the number of
data points (i.e. of observations), P is the number of free parameters
(P = 2Nh + 1), where subscripts 1 and 2 refer to models 1 and 2,
respectively. Under the null hypothesis model 2 does not provide a
significantly better fit than model 1 and f follows an F-distribution,
with (P2 − P1)/(nobs − P2) degrees of freedom. The null hypothesis
is rejected if the f calculated from the data is greater than the critical
value of the F-distribution for some specified false-rejection proba-
bility. A succession of models with a number of harmonics ranging
from 1 to Nmax are computed and compared in turn. The Nh-th har-
monic is only retained if the corresponding model is significantly
better than the model with the lower harmonic number. The thresh-
old to keep a given model is α/Nmax (Bonferroni correction) where
α, set to 5 per cent in this study, is the overall type-I error rate (i.e.
accepting unduly one of the harmonics). There may be gaps in the
harmonic sequence when some lower harmonics are rejected while
higher ones are retained (e.g. a model with Nh+2 may be better
than the model with Nh while model with Nh+1 was rejected).

The sampling of the Hipparcos time series is irregular with occa-
sional large time gaps. In some cases, models with high harmonic
number which fit the data very well exhibit large, unphysical excur-
sions within the gaps. In order to prevent such cases, a stop criterion
based on the width of the maximum phase gap of the time series is
introduced. The addition of new harmonics is stopped when

Nh ≥ C

2Pgap
, (6)

i.e. Nmax, the maximum number of harmonics, is taken as the first
harmonic number Nh in the increasing sequence that satisfies the
above inequality. Pgap is the width of the maximum phase gap
(between 0 and 1), and C is a constant whose appropriate value
is derived empirically from extensive testing. A optimum of 1.4
determined through visual inspections is obtained, but changing this
value in a wide range, i.e. from 1.2 to 1.6, only leads to modifications
in a handful of the Hipparcos light-curve models.

Extensive visual inspection of the resulting models shows that
this approach is robust and that it provides good models for almost
all cases. The only notable exception is for some of the eclipsing
binaries of type EA and EB, with sharp eclipses, where the number
of harmonics is not sufficiently high to fully model the eclipses.
In some cases, the number of points in the eclipse is too few to
provide sufficient weight in the fitting process. There may also be
phase gaps larger than the eclipse duration. In this second case,
application of the phase gap criterium stops the iterative process
and the optimum harmonic number cannot be reached. However,
this is deemed less harmful than the large model artefacts that can
occur within the gaps if the stop criterion is not applied.

4 R A N D O M FO R E S T

Random forest (Breiman 2001) is a tree-based classification
method. Extensive documentation and Fortran programs by
Breiman and Cutler are available at http://www.stat.berkeley.
edu/∼breiman/RandomForests/. Both the R RANDOMFOREST package
(Liaw & Wiener 2002) and the weka (Hall et al. 2009) implemen-
tations are used in this work.

4.1 Algorithm

The random forest algorithm aggregates the results of a number
(ntree) of classification trees. Each tree is built as follows.

(1) A bootstrap star sample is obtained by drawing a sample with
replacements from the training set. The bootstrap sample has the
same size as the original set, but some stars are represented multiple
times, while others are left out. The omitted stars, called Out-Of-Bag
(OOB), can be used to estimate the prediction error (see below).

(2) The tree is grown by recursively partitioning the bootstrap
sample into subgroups with more and more homogeneous type
content. At each node, mtry divisions into two groups are consid-
ered, each using one attribute from a randomly selected set of mtry

attributes. The best split is selected and the process is repeated for
the child nodes with a new set of mtry attributes at each node.

(3) A so-called maximum tree is constructed, i.e. a tree with
terminal nodes containing only a single type of stars (or a single
star in extreme cases).

Typically, large numbers (500–10 000) of trees are built. Each
tree provides a predicted type for a star. The most probable type is
simply the most frequent type in the sample of predictions of the
different trees.

An estimate of the error rate can be obtained from the training
set. Any training set star is OOB in some fraction (about one-third)
of the trees. The most frequent type obtained from all the trees
where a star is OOB provides a predicted type for each star. Note
that the sample of trees in which a given star is OOB is different
for each star. The error rate and confusion matrix can be built by
comparing the predicted with the actual types. This is similar to a
CV performance estimate, but at a much lower computational cost.

C© 2011 The Authors, MNRAS 414, 2602–2617
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



2608 P. Dubath et al.

It is known that random forest is insensitive to the precise value
of mtry. In this paper, mtry is taken by default as the recommended
value, i.e. the square root of the number of considered attributes,
unless specified explicitly.

4.2 Attribute importance

Random forest can produce an attribute importance score based on
the following idea. The classification accuracy computed by pass-
ing the OOB sample down a specific tree is recorded. The values
of a given attribute are permuted in the OOB sample, i.e. the value
for a star is randomly taken out of the sample of all other star val-
ues. The classification accuracy is computed again with the OOB
sample with permuted values for one attribute. If this attribute is
important, the permutation should noticeably degrade the classifi-
cation accuracy. Conversely, it should not change significantly the
predictions if this attribute is ineffective in the classification process
in the first place. The attribute importance is given by the difference
in classification error averaged over all trees and normalized by the
standard deviation (of these differences). These importance values
are extensively used in our attribute selection scheme.

4.3 Attribute correlation and selection

Many of the derived star attributes are highly correlated. As ex-
plained in Section 3, there may be several alternative ways to char-
acterize a given physical property. For example, there are different
ways to measure the amplitude of a light curve, and different colour
indices are all, to the first order, a measure of the star effective tem-
perature. The idea is now to investigate which of these alternatives
leads to the best results in classification.

The attribute importance estimates provided by random forest
can be used to rank attributes. The limitation is that it is not sen-
sitive to correlations. Two highly correlated attributes will score
equally highly in this process. Experience shows that random for-
est classification results are not much affected by the use of some
almost redundant, highly correlated attributes, but it is interesting
to investigate what is the minimum set of attributes to be used for
an optimum classification of our stars.

The recursive procedure to build a list of the most important, not
too correlated attributes is as follows.

(1) A ranked list of attributes, from the most to the least impor-
tant, is built using a 2000-tree random forest with the full attribute
set.

(2) The most important attribute is selected and all other at-
tributes with a Spearman correlation coefficient above 80 per cent
with this one are discarded.

(3) A new ranked attribute list is built re-running a random forest
with the selected and the remaining attributes.

(4) The second most important attribute is selected and all other
attributes highly correlated with any of the first two are discarded.

(5) This process is iterated until a full ranked list of not-too-
correlated attributes is obtained.

This procedure is somewhat unstable if the number of attributes
is too large. The most important attributes are always highly ranked,
but the order of the moderately important ones may change drasti-
cally from one run to the next. Clearly, the importance measurement
of a given attribute depends to some level on the background of the
other attributes. This is even amplified if the attributes are correlated.
If the attribute under evaluation is highly correlated with other ones,
replacing that attribute with random noise does not affect much the

Figure 4. The ranked list of the 14 most important, not-too-correlated at-
tributes (defined in Section 4.5). The Spearman correlation coefficient of
any of the above attribute pairs is smaller than 80 per cent. The attribute im-
portance is measured with the random forest OOB mean decrease accuracy.

results as the other attributes have similar classification power. An
effective way around this difficulty is to remove a large fraction
of the least important attributes before starting the above recursive
procedure.

Some astronomical insight is also injected into this selection pro-
cess. When two, or several, attributes have similar importance, the
one with a simpler and/or more widely used definition is preferred.
Fig. 4 displays the results of the above attribute ranking procedure
for the 14 most important attributes. A detailed attribute description
is provided in Section 4.5.

4.4 Towards a minimum attribute list

The procedure described in the last section is used to derive a ranked
list of not-too-correlated attributes. The importance value decreases
in the list but it never reaches zero. A key question is where to cut
the list. Are all attributes really useful? Or, are the low-importance
attribute contributions already included in those of more important
attributes? This second possibility is more likely as many of the
low-importance attributes are correlated at some level with some of
the more important attributes in the list.

In order to reduce the number of attributes, a variant of the method
proposed by Svetnik et al. (2004) is adopted. Only the list of not-too-
correlated attributes, derived as described in the previous section, is
used through the following algorithm.

(1) The data are partitioned for a 10-fold CV.
(2) On each CV training set, a ranked list of attributes is estab-

lished using the random forest importance measures as described in
the previous section.

(3) On each CV training set, a model is trained on all attributes
and used to predict types for the CV test set. The CV error rate
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is recorded and the process is repeated after removing the least
important attribute. Iterating by removing one attribute at a time
and stopping when only two attributes are left, a vector of CV error
rates is obtained for an attribute number ranging from two to the
total.

(4) At the end of the 10-fold process, a mean error vector is
computed by taking the mean of the 10 values obtained for each
attribute sub-set.

(5) Steps 1 to 4 are repeated 20 times. The mean value and the
standard deviation of the 20 CV mean errors are computed for
each attribute number, combining the results of the classification
experiments achieved with a specific attribute number.

Fig. 5 shows the error rates as a function of the number of at-
tributes resulting from the above procedure. The optimum number
of attributes can then be inferred from this figure. As the attribute
number increases, Fig. 5 shows that the error rates first decrease
and then level-off at some value. A CV error rate under 18 per
cent is obtained with the first seven most important attributes, and
a minimum of 16.4 per cent is reached with seven more attributes.
The large number of additional attributes tested in this study are not
mentioned as they do not lead to any further improvement of the
classification results.

It is interesting to note that Fig. 5 is much more contrasted than
Fig. 4. While the latter indicates a steady, almost linear decrease
in attribute importance, the drop in error classification, and hence
in attribute merit, seen in Fig. 5 is much more abrupt. This is
probably due to the fact that the importance displayed in Fig. 4

Figure 5. Evolution of the CV error rate as more and more attributes are
added into the classification process. The seven most important attributes al-
ready drive the error rate under 18 per cent, while a minimum of 16.4 per cent
is reached with an additional seven attributes. As explained in the main text,
some randomness is included in our classification process. As a consequence,
the attribute order can vary slightly in the different CV experiments. The at-
tribute name provided at a given line in this figure is the name of the attribute
appearing most frequently at that position in the different experiments.

is measured against the background of the other 13 attributes. As
there is some remaining correlation between attributes, some of the
other attributes can compensate for the loss of the specific, evaluated
attribute, whose values have been permuted (see Sections 4.2 and
4.3).

4.5 The most important attributes

The 14 most important attributes listed in Figs 4 and 5 are defined
below.

(1) Log(Period) : decadic log of the period extracted with the
Lomb–Scargle method (see Section 3.2).

(2) Log(Amplitude) : decadic log of the amplitude of the light-
curve model.

(3) V − I : the mean V − I colour.
(4) MHipparcos : a Hipparcos absolute magnitude derived from the

parallaxes neglecting interstellar absorption. Because of measure-
ment uncertainties, some stars have negative parallax values. Each
of these values is replaced by a positive value taken randomly from a
Gaussian distribution with zero mean and a standard deviation equal
to the measurement uncertainty. In many cases, the derived absolute
magnitudes represent lower limits as the parallax measurements are
not significant.

(5) Scatter: res/raw : Median absolute of the residuals (obtained
by subtracting model values from the raw light curve) divided by the
Median Absolute Deviation (MAD) of the raw light-curve values
around the median.

(6) Skewness : unbiased weighted skewness of the magnitude
distribution.

(7) Log(1 + A2 / A1) : decadic log of the amplitude ratio be-
tween the second harmonic and the fundamental (plus one, to avoid
negative values).

(8) P2p scatter: 2P/raw : sum of the squares of the magnitude
differences between pairs of successive data points in the light curve
folded around twice the period divided by the same quantity derived
from the raw light curve.

(9) P2p scatter : median of the absolute values of the differences
between successive magnitudes in the raw light curve normalized
by the MAD around the median.

(10) Percentile90: 2P/P : the 90th percentile of the absolute
residual values around the 2P model divided by the same quantity
for the residuals around the P model. The 2P model is a model
recomputed using twice the period value.

(11) Residual scatter : mean of the squared residuals around the
model.

(12) Phase2 : phase of the second harmonic after setting the
phase of the fundamental to zero by an appropriate transformation
Phase2 = arctan(sin(ϕ2 − 2ϕ1), cos(ϕ2 − 2ϕ1)) (Debosscher et al.
2007).

(13) P2p scatter: P/raw : median of the absolute values of
the differences between successive magnitudes in the folded light
curve normalized by the MAD around the median of the raw light
curve.

(14) P2p slope : sum of the square of the slopes of lines joining
the data points before and after a number of selected outliers towards
faint magnitude (e.g., data points during eclipses). This is set to zero
if there are no such outliers in the light curve.

P2p slope=
{∑

i

[(
di − di−1

ti − ti−1

)2

+
(

di+1 − di

ti+1 − ti

)2
]}0.1

for di >3,
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with di = (yi − P25)/δi, δi = (σ 2
i + δ2)1/2 and δ = P25 − P5, where

yi and σ i are the observed magnitude and its error, respectively, at
time ti, and Pn is the nth percentile of the magnitude distribution.

4.6 Attribute display

Figs 6 and 7 display the distributions of the eight most important
attributes for each of the variability types.

4.7 Classification error analysis

Fig. 8 displays the confusion matrix resulting from a 10 000-tree
random forest classification of our training-set stars. The 14 at-
tributes described in Section 4.5 are used and the number mtry (see
Section 4.1) of attributes tried at each node is three. The matrix

rows indicate the reference types resulting from the literature survey
presented in Section 2, while the columns represent the classifier
predicted types. The classification process fails to separate some
of the types, namely (1) DSCT from SXPHE, (2) BE from GCAS
and (3) BY from RS. These types are pairwise merged in Fig. 8 to
improve the matrix readability. In principle, the SXPHE could be
separated if a metallicity estimator was used in the classification
and BY and RS could be distinguished if better absolute magnitudes
were available. The case of the BE and GCAS is discussed below.

The overall classification error rate derived from the OOB sam-
ples is 15.7 per cent. It is slightly lower than the 16.4 per cent
presented in Fig. 5 because of the above-mentioned merging of
six types. However, this overall rate does not bear much meaning
as confusions within groups of similar stars are less problematic
than others. The most important confusion cases are detailed in the

Figure 6. Distributions of the four most important attributes obtained for the training-set members.
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Figure 7. Distributions of the attributes ranking 5 to 8 in random forest importance obtained for the training-set members.

following sections. It is important to remember that random forest
involves randomness in the sample bootstrapping and node attribute
selection (see Section 4.1). As a consequence, the confusion matri-
ces obtained in successive identical runs differ slightly at the level
of a few cases.

4.7.1 Eclipsing binaries and ellipsoidal variables

As already alluded to in Section 3.2.2, eclipsing binaries are ex-
pected to be a difficult case. It is therefore not surprising to see from
Fig. 8 that they are involved in the most important confusion cases.
The classification disperses 17 EB into other types of non-eclipsing
variables. There are 14 ELL variables mis-classified as EB while
13 of them are scatter into six other types. In addition, 19 and six

cases of diverse other non-eclipsing and non-ellipsoidal variables
are unduly classify as EB and EW, respectively.

Could this confusion be diminished if the full training set is first
separated into eclipsing and non-eclipsing variables? To investigate
this issue the attribute ranking and selection procedure are repeated
considering two type groups, EA, EB, EW and ELL on the one
side, and all other types on the other. The resulting attribute ranking
is quite different but the classification results do not improve. It
is possible to lower the number of variables falsely classified as
eclipsing binaries to about 20 cases, but then, the number of mis-
classified eclipsing binaries increases to about 50, so that the total
is slightly worse than the result of a direct classification into all
types.

The trouble is that the light curves of some EB, EW and ELL
are quite symmetrical and resemble those of other variability types.
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Figure 8. Confusion matrix obtained for our training set with a 10 000-tree random forest classification using a group of 14 attributes. The rows indicate the
reference types resulting from the literature survey (see Section 2), while the columns represent the classifier predicted types. Type labels are as described in
Table 1.

In addition, stellar properties such as colour and absolute magni-
tude can take almost any possible value as they are the combination
of the properties of the two stars of the binary system. As a con-
sequence, it is likely that these confusion cases represent a true
physical difficulty that cannot be fully solved by any classification
method.

4.7.2 Cepheid- and Cepheid-like variables

As can be clearly seen in Fig. 8, all types of Cepheid-like vari-
ables are confused with the Delta Cepheid type. More precisely the
following cases can be listed.

(1) The CW (CWA and CWB) variables are Population II Cepheid
stars of lower absolute magnitude (and smaller mass). The Hippar-
cos parallax measurements are not significant for these relatively
bright and remote stars. As a consequence, the derived absolute
magnitudes are dominated by noise and this explains the confusion
as these stars are otherwise similar to DCEP. The CW and DCEP

variables could be separated using a metallicity indicator or more
reliable luminosity estimates.

(2) The DCEPS stars are Cepheids with smaller amplitude and
period values, which probably pulsate in the first overtone. There
is, however, an overlap with the DCEP stars in the log(Period)–
log(Amplitude) diagram and this probably explains the confusion
cases. Out of the sample of 31 DCEPS stars, 17 are correctly clas-
sified while 11 fall wrongly in the DCEP category.

(3) The CEP(B) stars are Cepheids which exhibit two or more
pulsation modes. They could almost certainly be better singled
out by searching for additional significant periods and using them
in the characterization and classification processes. This concerns,
however, a small number of stars [only four out of 10 CEP(B) stars
are wrongly classified as DCEP] and it is outside of the scope of
this paper, which is restricted to single-period analyses.

In addition, there seems to exist a not well-understood confusion
between RV and DCEP although small number statistics here is a
limitation.
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4.7.3 Blue variables

The third case of confusion concerns the blue variables. First BE
and GCAS have been put together in Fig. 8. These types can only be
separated on the basis of long-term behaviour. GCAS show eruptive,
non-periodic events (Samus et al. 2009)6 and our sample includes
only those stars where the observed signal is periodic. The short-
term periodic behaviour of some BE + GCAS is also similar to
the one observed in the SPB stars (e.g. Diago et al. 2009). As a
consequence, it is not surprising to observe a confusion between
SPB and BE + GCAS.

The confusion between BE + GCAS and ACV cannot be so easily
understood. It most probably comes from a true confusion between
ACV and SPB, seen at the 10 per cent level in Fig. 8, which also
concerns the few SXARI which are physically relatively close in
attribute space to the ACV .

4.8 Random forest and linear discriminant analysis

The linear discriminant analysis (LDA) (Mardia, Kent & Bibby
1979; Hastie, Tibshirani & Friedman 2009) approach is applied to
derive an optimum set of independent linear discriminants (LDs).
The goal is to run a random forest classification using these LDs as
an alternative set of attributes.

In the attribute multi-dimensional space, objects of a particular
type can be visualized as a ‘cloud’ of data points. The complete
training set is then viewed as a set of generally overlapping clouds
that are to be separated by the process of classification. The idea
of LDA is to derive linear transformations of the attributes which
maximize the ratio of the cloud centre variance divided by the
variance of the data points within the clouds. In other words, the
transformation seeks to rotate the axes so that when the objects are
projected on the new axes, the differences between the different
clouds (i.e. types) are maximized.

The LDA-based classification scheme goes through the following
steps.

(1) For each attribute, the distribution of values is standardized
by subtracting the mean and dividing by the standard deviation.

(2) An LDA is carried out. The resulting LDs are ranked as a
function of the singular values, i.e. the most important LD is the
one with the largest ratio of the variance of the group centres over
the within-group variance.

(3) The attributes are ranked according to their maximum con-
tribution to any of the most important LDs.

(4) Different attribute selection schemes are used, iterating and
removing one, or a few of the least important attributes and of the
highly correlated ones in each of the successive steps. Although, this
process is completely independent from the one used previously for
random forest, the final list of selected attributes is very similar,
with period, amplitude and colour attributes always standing out as
the best three.

(5) The resulting list of attributes is used in a final LDA. The LDs
are computed for all stars and used for a random forest classification.

(6) The classification errors are estimated using the OOB sample
and a 10-fold CV method.

Although many attempts have been performed varying the at-
tribute selection scheme, the resulting classification errors are al-
ways significantly worse (by at least 3 per cent) than those obtained

6 http://www.sai.msu.su/gcvs/gcvs/iii/vartype.txt

Table 2. Confusion induced by incorrect periods for non-eclipsing vari-
ables.

Total Misclassified stars Error rate

Stars with correct period 951 102 10.7 per cent
Stars with incorrect period 93 20 21.5 per cent
All stars 1044 122 11.7 per cent

when applying random forest to the original attributes. The derived
LDs are less correlated than the original attributes (even when re-
laxing the selection criteria and accepting more highly correlated
attributes), but surprisingly, it did not lead to better results in our
case. Thus, LDA is not used to produce any of the results presented
in this paper.

5 D E G R A DAT I O N S D U E TO ER RO R S
I N THE PERI OD D ETERMI NATI ON

As shown in Fig. 1, in some cases, the period values resulting
from the search done in this work are completely different from the
Hipparcos periodic star catalogue values. Although, the latter val-
ues are probably more reliable as they were visually checked, our
classification is based on our own values as the idea is to eval-
uate the performance of an automated classification process (see
Section 3.2). It is, however, interesting to investigate the classifi-
cation degradation induced by wrong period values. The stars with
incorrect periods can be traced to evaluate how well they are classi-
fied. The level of confusion observed for these stars can be compared
with that seen for stars with correct periods.

We exclude from this comparison the eclipsing binaries and the
ellipsoidal variables as it is known (see Section 3.2.2) that the period
found is systematically half of that of the true period for these stars.
Since the eclipsing binary periods span a wide range of values, the
confusion due to an incorrect period is likely to be less severe than
that observed for other stars.

The comparison presented in Section 3.2.1 shows that out of the
total of 1044 non-eclipsing variables, an incorrect period is found
for 93 stars. Table 2 displays the classification errors obtained in the
different cases. The eclipsing binaries are excluded, but the cases
where a non-eclipsing is classified as an eclipsing (or an ellipsoidal)
variable are accounted for in the numbers of misclassified stars.

Although statistical uncertainties due to the small numbers is a
limitation, this table shows that 73 out of the total of 93 stars with an
incorrect period are successfully classified into their proper types.
This is surprising as the period always stands as the most impor-
tant attribute. Somehow, other attributes, such as the amplitude, the
colour, or the pseudo-absolute magnitude, compensate and safe-
guard against an incorrect classification in an important number of
cases.

6 C OMPARI SON W I TH A MULTI -STAG E
CLASSIFIER

For comparison with the results shown in Section 4, a methodology
based on a divide-and-conquer approach is applied whereby the
overall classification problem with 26 variability types included
in Table 1 is sequenced into several stages. The variability zoo
in that table is grouped into categories and subcategories, and the
classification of a star proceeds by assigning a probability vector
for each category and subcategory until one of the variability types
defined in Table 1 is reached (the leaves of the tree defined in Fig. 9).
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Figure 9. Sequential scheme for the separation of all variability types with
dichotomic classifiers.

This multi-stage scheme is defined in more detail in Blomme et al.
(2011). Here a different grouping of variability types based on an
automatic definition of categories is tested.

The algorithm used to define the multi-stage scheme shown in
Fig. 9 is based on the confusion matrix obtained by using a mono-
lithic, single-stage classifier. From this, the similarity between types
is determined according to the metrics

Similarity(Ti ,Tj ) =
⎧⎨
⎩

1, i = j

Xij +Xji

Xij +Xji+Xii+Xjj
, i �= j

(7)

where Ti represents type i and Xij represents the element in the ith
row and jth column of the confusion matrix.

The idea behind this metric is that types that are easy to separate
should be in the topmost levels of the scheme since they do not
affect other types too much, and the most problematic types are
positioned at the bottom of the sequence. The algorithm starts from
the complete set of types and, in each step, the two most similar
types are merged into a new type, and the similarities are calculated
again over the new set of types. Thus, the final multi-stage tree is
composed of a series of dichotomic classifiers.

The advantage of the divide-and-conquer approach is that the
optimal set of attributes used for classification and the optimal
classification algorithm can be selected in each node of the tree.
In our case, the best algorithm in each node is selected from a
set composed of Bayesian Networks (Pearl 1988) and Gaussian
Mixtures (Debosscher et al. 2007). These two methods are chosen
because both Bayesian Networks and Gaussian Mixtures allow for a
simple procedure in order to account for missing attributes. In both
cases this is accomplished via marginalization of the posterior-type
probabilities given the attributes. In the case of the Gaussian Mixture
classifier this can be achieved analytically as

p(T |xavail) =
∫

p(T |xavail, xmissing) p(xmissing) dxmissing, (8)

where xavail and xmissing are the subsets of available and missing
attributes, respectively, which make up the complete attribute vec-
tor x, and the probability density functions are always normal.
p(T |xavail, xmissing) is an outcome of the training-set classification,
and the distribution of the missing attribute p(xmissing) can be es-
tablished from the sub-sample of other stars for which xmissing is
available or from astrophysical knowledge of the distribution.

In each node, the classifier that shows the smallest misclassi-
fication rate is chosen. The misclassification rate is obtained by
averaging the misclassification rates obtained in 10 experiments
of 10-fold CV [the so-called multiple runs k-fold CV (Bouckaert
2003); see below for details]. This type of experiment allows for the
comparison between two classifiers by statistically testing the null
hypothesis that the two classifiers perform equally well. Here for
simplicity Bayesian Networks is selected in those nodes where the
null hypothesis could not be rejected (i.e. where there was not suf-
ficient evidence that one of the classifiers outperformed the other).

As stated above, one of the advantages of the multi-stage classifi-
cation is that it allows for context-dependent feature selection. That
is, the optimal attribute set for classification can be selected in each
node of the tree. This is particularly useful for variability classifi-
cation where the variables that discriminate between types depend
on the types themselves. The procedure adopted here for variable
selection starts with an empty set of attributes in each node. Then,
the attribute that conveys the largest mutual information with the
type is added. Attributes are added to the set following this greedy
strategy until the addition of a new attribute produces an increase
in the mutual information of less than 0.1. This threshold is found
to avoid in most of the cases the inclusion of attributes which are
deemed irrelevant on the basis of expert astronomical knowledge.
These irrelevant attributes are sometimes picked by the algorithm
due to spurious correlations caused by the small training set sample
sizes.

The comparison between the classification strategy described in
Section 4 and the multi-stage classifier is done following the same
procedure (Bouckaert 2003) used to select the best classifier in the
nodes of the multi-stage tree. 10 experiments of 10-fold CV are
carried out. For each 10-fold CV experiment, the misclassification
rate of the two alternative classifiers is subtracted. Let aij denote the
misclassification rate of one of the classifiers in the ith run and jth
fold, and bij that of the alternative. Then, the difference xij = aij − bij

is calculated and the values of xij within the same run are sorted in
increasing order. Finally, the values of xij in each fold are averaged
over 10 different runs. Thus, this ends up with 10 sorted average
misclassification rates and the corresponding variance estimates,
one for each fold. Then, the Z-statistic is computed as follows:

Z = m√
σ̂ 2

√
df + 1

, (9)

where m is the mean of the 100 misclassification rates, σ̂ 2 is the
variance averaged over the 10 fold-wise variance estimates and df
is the number of degrees of freedom. In our case, the calibration by
Bouckaert (2003) (i.e. df = 10) is used.

It can be shown that the Z-statistic follows a t distribution for two
classifiers that perform equally well (the null hypothesis). In our
case, a value of Z = 0.516 is obtained. It corresponds to a p-value
of 0.31 which is clearly above any reasonable confidence threshold.
Therefore, there is no evidence to reject the null hypothesis that the
two classification strategies (the random forest and the multi-stage
tree) perform equally well.

7 AUTOMATED CLASSI FI CATI ON

A complete set of attributes is available for 2543 stars out of the
total of 2712 Hipparcos periodic variables. A sub-set of 1661 of
these stars, selected following the procedure described in Section 2,
forms the training set used in previous sections. There are 882 stars
left, for which either only an uncertain type is available from the
literature (832), or no type at all can be found (50). These stars
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Table 3. A sample of the Hipparcos training set star list with literature types and attribute values. The full table is available in the online version of the article
(see Supporting Information).
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270 EA −0.1576 −0.71 0.16 0.77 0.68 2.00 0.17 1.09 1.31 1.01 0.55 1.09 −1.51 4.15
316 DSCTC −0.7693 −1.19 0.42 0.99 1.73 0.01 0.00 0.49 0.99 0.96 0.04 0.69 1.57 2.37
344 LPV 2.5100 0.71 3.91 4.35 7.38 −0.20 0.00 1.62 0.06 0.60 6.25 0.99 1.57 2.59
623 GDOR −0.0375 −1.38 0.44 3.40 1.12 −0.36 0.00 1.40 0.94 1.01 0.08 1.42 1.57 0.00
703 LPV 2.5591 0.34 1.53 1.00 5.19 0.47 0.04 0.71 0.15 1.15 1.75 1.02 −0.55 2.78
746 DSCTC −0.9955 −1.49 0.40 1.24 3.05 0.32 0.00 0.21 1.59 0.95 0.00 0.32 1.57 3.46

Table 4. Results obtained for the Hipparcos stars excluded from the training set. This table shows the Hipparcos numbers, the literature types, the predicted
types and the attribute values for a subset of the sample. The full table is available in the online version of the article (see Supporting Information).
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262 EA: EA 0.3518 −0.04 0.49 2.31 0.69 5.03 0.23 1.06 0.82 1.86 2.79 1.73 −1.56 3.75
516 LPV: LPV 2.1605 0.14 2.43 −3.25 2.68 −0.39 0.10 0.86 0.07 0.82 3.38 1.24 2.97 0.00
664 RS+BY: RS+BY 1.6836 −0.76 1.33 −1.12 4.96 0.26 0.00 0.34 0.16 0.72 0.02 1.03 1.57 1.93
723 LPV: RS+BY 2.5575 −1.31 0.89 6.19 1.26 0.02 0.00 0.90 1.10 0.95 0.05 1.05 1.57 1.71
864 LPV: RS+BY 1.5759 −0.71 1.72 −1.17 2.75 −0.34 0.08 0.77 0.29 0.61 0.12 1.10 1.54 0.00
871 EB: EA 1.2616 −0.05 0.73 0.32 1.61 2.70 0.20 0.27 0.85 1.23 0.29 0.83 −1.81 2.73
988 LPV: LPV 1.6542 −0.52 2.67 −4.32 2.43 −0.70 0.00 0.67 0.31 1.02 0.10 0.91 −1.37 0.00

1110 LPV: LPV 1.1795 −0.56 2.06 0.28 3.18 −0.41 0.00 0.68 0.25 1.01 0.37 1.23 1.57 0.00
1263 EB: EA 0.9776 −0.62 0.46 2.26 0.91 3.19 0.21 0.94 1.50 0.91 0.32 0.79 −1.60 3.41
1378 ACV: SPB −0.0238 −1.22 −0.06 −2.30 1.30 0.25 0.00 0.71 1.14 1.01 0.04 0.75 1.57 1.88

are classified applying the best model obtained through the random
forest processing of the training set.

Table 3 shows the literature types and the attribute values for
the training-set sample, while Table 4 shows the literature types
(when available), the predicted types and the attribute values for
the 882 uncertain-type star sample. The predicted types are also
compared to the literature types using a confusion-matrix type of
display in Figs 10 and 11. Quite expectedly, the confusion is larger
in these matrices, but the main confusion cases are the same as
those observed with the training set (see Fig. 8 and the discussion
of Section 4.7). Note that only the sub-set of stars with available
uncertain types from the literature is incorporated in these figures.

8 C O N C L U S I O N S

The results presented in this paper show that it is possible to classify
remarkably well the Hipparcos periodic variable stars into types that

reflect their stellar physical properties. As detailed in Section 4.7,
the main confusion cases are quite well understood. They originate
from any of: (1) problems in extracting the correct period in the
case of eclipsing binaries and ELL variables, (2) real similarities
between different types of Cepheid stars, (3) a known, true diffi-
culty for disentangling different types of blue variables, in particular
the SPB and ACV stars. In any case, as seen in Fig. 8 the classifica-
tion errors related to these confusion cases are generally below the
10 per cent level. This figure also shows that they are only a handful
of additional confusion cases.

Similarly good results are obtained with the random forest
methodology as with the multi-stage approach. Important advan-
tages of random forest include a very useful attribute ranking
method and a simple set-up and tuning. Is it also surprisingly ro-
bust to the presence of irrelevant or highly correlated attributes. The
multi-stage approach allows a controlled selection of a particular
classification algorithm and of a different attribute set at each node.
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Figure 10. Confusion matrix obtained for a subset of Hipparcos stars with uncertain types from the literature. These types are shown in rows while columns
indicate the types predicted by the random forest model derived from the training set analysis. Type labels are described in Table 1.

Figure 11. Same as Fig. 10 but for stars with types that do not directly match any of the types from training set stars.

Such choices can be useful in specific cases, but they also require
more extensive and time-consuming optimization work.

Experience with various classification methods, random forest,
multi-stage and other alternative methods, suggests that significant
improvements are unlikely to come from better classification al-
gorithms. Important progress rather can be expected through the
introduction of new attributes which better reflect features of the
physical processes responsible for the variability. They may even
be specifically designed to disentangle some known cases of con-

fusion. This is possible, for example, when additional independent
data such as colour light curves or radial-velocity time series are
available.

In addition to presenting the first systematic automated classifi-
cation of the Hipparcos periodic variable stars, this paper describes
the construction of a homogeneous training set of periodic stars. In
a companion paper (Rimoldini et al. in preparation), this training set
is completed with non-periodic variable stars. The complete training
set can then be adapted to other surveys as a starting point for further

C© 2011 The Authors, MNRAS 414, 2602–2617
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classification studies. Some challenging topics, such as variability
detection, period search reliability and possible confusion between
periodic and non-periodic types are deferred to subsequent investi-
gations.
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et al. (2011). In their study, a number of classification methods are
tested on a training set built from Hipparcos and OGLE data. They
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