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ABSTRACT

Motivation: Genome-wide RNA interference (RNAi) experiments
are becoming a widely used approach for identifying intracellular
molecular pathways of specific functions. However, detecting all
relevant genes involved in a biological process is challenging,
because typically only few samples per gene knock-down are
available and readouts tend to be very noisy. We investigate the
reliability of top scoring hit lists obtained from RNAi screens, compare
the performance of different ranking methods, and propose a new
ranking method to improve the reproducibility of gene selection.
Results: The performance of different ranking methods is assessed
by the size of the stable sets they produce, i.e. the subsets of
genes which are estimated to be re-selected with high probability
in independent validation experiments. Using stability selection, we
also define a new ranking method, called stability ranking, to improve
the stability of any given base ranking method. Ranking methods
based on mean, median, t-test and rank-sum test, and their stability-
augmented counterparts are compared in simulation studies and on
three microscopy image RNAi datasets. We find that the rank-sum
test offers the most favorable trade-off between ranking stability and
accuracy and that stability ranking improves the reproducibility of all
and the accuracy of several ranking methods.
Availability: Stability ranking is freely available as the
R/Bioconductor package staRank at http://www.cbg.ethz.ch/
software/staRank.
Contact: niko.beerenwinkel@bsse.ethz.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide gene silencing experiments are important in many
fields of biology and medicine as they provide a first overview of
which genes might play a role for a specific experimental condition.
Many screens have been performed to study signaling in model
organisms like Drosophila melanogaster (Boutros et al., 2004; Saj
et al., 2010). In infection biology, viruses such as Influenza and
HIV (Cherry, 2009; Hao et al., 2008; Karlas et al., 2010; Zhou
et al., 2008) as well as bacteria, including Salmonella, Bartonella
and Shigella (Agaisse et al., 2005; Misselwitz et al., 2011; Philips
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et al., 2005; Rämet et al., 2002; Reiterer et al., 2011; Truttmann
et al., 2011), have been analyzed to identify the key host genes
involved in pathogen entry into the cell. In cancer research, RNA
interference (RNAi) screens have been used to study dysregulated
signaling pathways and to identify novel drug targets (Berns et al.,
2004; Ngo et al., 2006).

In such high-throughput experiments one faces the problem of
detecting the typically few relevant variables from a large, high-
dimensional, noisy dataset. We focus here on data from microscopy
image-based RNAi screens (Bickle, 2010), where genes are knocked
down individually by post-transciptional gene silencing. Small
interfering RNAs (siRNAs) of 22 base pairs are introduced into
a cell, where they induce cleavage and degradation of a target
messenger RNA, complementary to the siRNA and thus to the
eventual depletion of the respective protein (Fire et al., 1998;
Hannon, 2002; Mello and Conte, 2004).

A typical setup for such a microscopy image-based screen consists
of several 384-well plates, where each well contains cells with
exactly one gene knocked down. There are different strategies
for the knock-down, two of which will be covered by different
datasets we analyze in Section 4.2. The first is to take replicates
of the same biological experiment, meaning that for each gene, the
same siRNA knock-down is performed several times. The second
strategy uses biologically different experiments per gene. Here,
each well for the same gene contains a different type of siRNA
targeting the gene (Echeverri et al., 2006). A third approach is to
pool these different siRNAs in one well, each of them in lower
concentration (Kittler et al., 2007). This strategy adresses two main
problems of siRNAs. The first is inefficient knock-down of a gene,
for example due to inefficient siRNA binding. Secondly, an siRNA
can have so called off-target effects, arising from limited binding
specificity or other often unknown pharmacological effects (Qiu
et al., 2005).

After transfection with siRNAs, the cells are put in the
experimental condition to be studied and subsequently they are
imaged. The images are processed by an image segmentation and
analysis software and the final experimental readout consists of one
or more phenotypic measures retrieved from fluorescence signals of
stained proteins.

In most cases, the goal of a first genome-wide screen is to
prioritize genes to select a set of top scoring ‘hits’ for which a
secondary validation experiment is performed. For a 1D readout
the usual procedure is to rank the genes by their mean or median
readout across replicates. However, to account for the variation
among replicates genes can also be ranked according to a test
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statistic. For example, redundant siRNA activity analysis (RSA) is
a ranking method specifically designed for RNAi screens. It ranks
all individual siRNAs by readout and then assigns a p-value to each
gene based on the rank distribution of all siRNAs targeting it using
a hyper-geometric model (König et al., 2007).

After ranking, a threshold is chosen to distinguish between hit
and non-hit genes. This threshold can be a fold-change, deviation
from the mean, or simply the fraction of top k ranking genes. The
number of genes in the final subset will usually be restricted by the
capacity of the re-screen and typically contains at most on the order
of a few hundred genes. Selecting the optimal genes is a difficult
problem, because many data points lie very close to each other and,
at the same time, they are subject to considerable noise. Rather than
defining hits, we focus here on the gene ranking itself, because (i) we
did not find any evidence for two separate groups in the data (such as
a bimodal readout distribution), and (ii) in practice, the top k genes
will be selected based on available resources. Thus, we assume that
each gene has an individual effect and that readout values are drawn
from a continuous distribution.

A general problem with rankings is that reproducibility is strongly
affected by small perturbations of the data and that different ranking
criteria can lead to very different results (Fagin et al., 2003). Since
the screens are expensive and time consuming, in a whole-genome
setting, only a few samples per gene are available. The analysis is
further complicated by high levels of noise resulting, among other
factors, from the uncertainty in quantifying image-based readouts
and from the above mentioned off-target effects. Thus, the reliability
of such gene rankings is a major concern directly affecting the
chances of validating primary hits in follow-up experiments.

Gene rankings have been considered in the context of identifying
differentially expressed genes from microarray data. To quantify
the robustness of a ranking, resampling or subsampling methods
are often used (Efron, 1979). For example, to benchmark different
statistical tests for their reproducibility in detecting differentially
expressed genes, (Qiu et al., 2006) use a subsampling approach.
(Pavlidis, 2003) apply a jackknife procedure to investigate the
number of replicates per gene in a microarray experiment that are
needed to obtain stable results. The R package ‘Gene Selector’
(Boulesteix and Slawski, 2009) implements several ranking statistics
and provides a bootstrap procedure to estimate the robustness of the
ranking result.

Another way of generating more stable results is learning the
optimal ranking statistic for a given dataset based on resampling
(Elo et al., 2008; Mukherjee et al., 2005). The probabilities obtained
in this manner can also inform the variable selection procedure. For
example, (Mukherjee et al., 2003) have used bootstrapped p-values
from t-tests to select genes more robustly. Hall and Miller (2009)
discuss the consistency of boostrap estimators for rankings. They
also model the variability of rankings which they find to be lower at
the extremes (Hall and Miller, 2010). Stability selection is a more
general variable selection method based on subsampling to estimate
selection probabilities of variables (Meinshausen and Bühlmann,
2010). For this approach, an upper bound on the expected number
of false positives has been derived under certain assumptions.

Rank aggregation has also been proposed to improve ranking
stability. The ‘Gene Selector’ package provides aggregation of
rankings by, for example, rank averaging or rank product. (Pihur
et al., 2009) propose a genetic algorithm to find an aggregated
ranking that minimizes the distance to the individual rankings.

Their results are quite stable, but a drawback of this method is that it
is computationally very expensive and practical only for very small
lists of genes.

In the presence of multivariate data, the hit selection problem can
also be addressed by multivariate approaches like support vector
machines (Guyon et al., 2002) or other classification methods [see
(Lai et al., 2006) and (Stiglic and Kokol, 2010) for examples].
However, since we have 1D readouts we only consider univariate
methods for the rankings.

In this article, we compare different ranking methods to identify
those that produce the most stable gene lists. We analyze mean,
median, t-test and rank-sum test, and quantify their reproducibility.
The notion of stable sets, as defined in stability selection, is used to
assesses the stability of a ranking. However, a ranking should not
only be stable but also as accurate as possible. A constant ranking
obtained, for example, by sorting genes alphabetically would be
perfectly stable, but estimate biological effects very poorly. Finding
an optimal trade-off between accuracy and reproducibility is a major
goal when selecting hits in RNAi screening. We introduce stability
ranking to improve the stability of any given base ranking method,
while maintaining and sometimes improving its level of accuracy,
and compare it to rank averaging. The performance of rankings is
tested on simulated data and on real data from three image-based
RNAi screens.

2 STABILITY RANKING
Let G be a set of p genes. For each gene knock-down, an
experimental response is measured, called readout. We want to
prioritize the genes with significantly altered readouts. For each
gene g∈G, there are n measurements g1,...,gn, which could either
be replicates or correspond to individual siRNAs. Let rk(g) be the
true rank of a gene g, Sk ={g | rk(g)�k} the set of genes that are
ranked below a certain cutoff k, and Nk ={g | rk(g)>k} the set of
genes with ranks above the cutoff. Then the goal is to infer the set
of true top k genes, Sk , from few noisy observations. As discussed
above, we do not optimize the cutoff parameter k, but rather aim at
inferring Sk for all k ∈{1,...,p}.

We follow the stability selection approach (Meinshausen and
Bühlmann, 2010) and let I ∈2{1,...,n} be the random variable for
data samples of size n that are drawn with replacement from the set
of replicates. For a given ranking method and a fixed cutoff k, the
probability for a gene g∈G to be in the selected set Ŝk(I) is denoted
by �

g
k =P[g∈ Ŝk(I)] and estimated from a finite sample {i1,...,im}

as �̂
g
k =1/m

∑m
j=11{g∈Sk(ij)}, where 1 is the indicator function,

which equals 1 if the argument is true and 0 otherwise, and Sk(ij)
the set of selected genes based on subsample ij . We regard those
genes as stable that are selected with high probability. Formally, for
a threshold π ∈ (0,1), we define the stable gene set

Ŝstable
k ={

g∈G |�̂g
k �π

}
.

We fix π =0.9 throughout the article since the choice of this
parameter is not critical, as long as it is not set to very low values
(see Supplementary Fig. S3). We will use the size of stable sets as a
measure of ranking stability and we now introduce a novel ranking
method based on this notion.

Observe that stable sets are nested, Ŝstable
k ⊆ Ŝstable

k+1 , i.e. k-stable
genes remain k′-stable for all k′ �k. Stability ranking is defined by
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Fig. 1. Illustration of stability selection for a specific ranking cutoff k. The
cardinality of the stable set at this cutoff provides an estimate for the number
of top k genes, that are expected to be among the top k again, when repeating
the experiment under the same conditions

computing the stable sets for all k ∈{1,...,p} and then ranking the
genes by the order in which they enter the stable set:

rkstable(g)= ∣∣Ŝstable
k∗

∣∣, where k∗ =min
{
k |�̂g

k �π
}
.

The cardinality of the stable set provides an estimate of the number
of hits that can be expected to be validated with probability π when
considering the top k∗ genes in the ranking. By validation we mean
here that a gene is again among the top k∗ genes when repeating the
experiment under the same conditions. For noisy datasets, k∗ can
become much larger than the stable set size (Fig. 1).

Stability ranking is implemented in the R/Bioconductor package
staRank. We apply this procedure to several ranking statistics,
including mean and median as well as two statistical tests which
account for the variation per gene, namely the t-test as a parametric
and the rank-sum test as a non-parametric test. The tests are
performed as one sided, two-sample tests comparing the replicates
of one gene to the total dataset. For datasets generated by different
siRNAs per gene, we also apply RSA ranking (König et al., 2007).
We analyze the stability and accuracy of the original ranking
methods and investigate the improvement due to stability ranking
in a simulation study.

3 SIMULATION STUDY
In the absence of evidence for multiple modes in the readout
distributions of the RNAi screens we analyzed, in our simulations,
we draw knock-down effects for all genes from a unimodal
distribution and add individual random noise to it. We simulate
datasets from a variety of models. Each model generates datasets
of size p×n, where p is the number of genes and n the number of
replicates. For each gene, its true effect μ and its observed readouts
gi are drawn in a hierarchical fashion from normal distributions as
follows:

μ ∼ N(0,s2)

σ 2 ∼ �(α,β)

gi ∼ N(μ,σ 2), i=1,...,n.

Each model is characterized by the variance among gene effects, s2,
and the shape α and rate β of the gamma distribution from which
the gene-wise variances among replicates are drawn. The gamma
distribution has mean m=α/β and variance v=α/β2.

We estimated the parameters s, m and v from the effect and
replicate distributions observed in the Drosophila genome-wide

RNAi screen described below (Saj et al., 2010). We then varied the
parameters around these estimates, which resulted in 24 different
models (Supplementary Fig. S1 and Supplementary Tables S1 and
S2). Each model was used to generate datasets of cardinality n = 2,
3, 4 and 10.

To assess reproducibility and accuracy, 300 pairs of datasets
are drawn from each model. For each dataset, the different base
ranking methods, their stability ranking and their average ranking
are computed. Accuracy is assessed by comparing the top k genes
from an estimated ranking r̂k to the true hits Sk , whereas the
reproducibility of a ranking is defined as the overlap in top k gene
sets between the two rankings r̂k1 and r̂k2 estimated from paired
datasets (Mukherjee et al., 2005),

accuracy(k) = |Sk(r̂k)∩Sk |/k

reproducibility(k) = |Sk(r̂k1)∩Sk(r̂k2)|/k.

Both quality measures take values in [0,1], where 1 indicates
complete agreement among top k gene sets and hence perfect
accuracy or reproducibility. The final quantities we report are
averages across the pairs of datasets (reproducibility) or across all
datasets (accuracy), for the top k/p = 1% or 10% genes.

4 RESULTS AND DISCUSSION

4.1 Simulation results
Using the model described in the previous section, we ran
simulations for p=1000 genes and assessed accuracy and
reproducibility of the top 10 (1%) genes, because in practice,
usually only a small fraction of hits can be selected for follow-up
experiments. In Figure 2, reproducibility and accuracy are compared
between the original, average and stability rankings for all models.
Models with a filled shape showed a significant difference between
the two ranking methods (baseline versus stability ranking and
aggregated versus stability ranking) at the 0.1% level in a paired
t-test after Benjamini–Hochberg correction for multiple testing.

For mean and median ranking, we observe an increase in
reproducibility for a large group of models, when using stability
ranking (Fig. 2Aand B). Remarkably, stability ranking also increases
the accuracy of the ranking (Fig. 2F and G). Similarly, for the
rank-sum test, reproducibility is improved using stability ranking,
although the effect is not as strong, while maintaining the same level
of accuracy (Fig. 2C and H). The same behavior can be observed
for the RSA rankings (Fig. 2E and J). By contrast, the t-test shows
no difference between the two ranking versions, but accuracy is
overall very low (Fig. 2D and I). The poor performance might be
due to unreliable estimation of the variance from only two to five
observations. Thus, non-parametric ranking statistics are preferable
for this type of data. Direct comparison of the stability rankings
based on mean, median and rank-sum test reveals superior accuracy
and reproducibility of the rank-sum test (Supplementary Figs S3
and S4). In general, the performance increases with the width of
the effects distribution (see Supplementary Tables S1 and S2, and
Supplementary Figure S1 for top 10%). A direct comparison of
stability ranking and rank averaging shows similar performance
(Fig. 2K–T) with a slight advantage of stability ranking. For all of
the four competitive methods, the stability ranking was significantly
better in reproducibility for many more models than the average
ranking (43 versus 9 for mean, 36 versus 12 for median, 41 versus
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Fig. 2. Reproducibility (top row) and accuracy (second row) of the simulations. Shown are the results for the top 1% genes in base versus stability ranking
using median (A, F), mean (B, G), rank-sum test (C, H), t-test (D, I) and RSA (E, J). The third and forth row (K–T) show the same plots but for the
comparison of the aggregated versus the stability ranking. Each plot shows results for one ranking statistic and each symbol in the plots indicates one model.
The colors represent the parameters that were used for the mean effect distribution. The different shapes represent the different gamma distributions for the
gene variances and the symbol size indicates the number of replicates used. For models that have a filled shape, the two ranking methods (baseline versus
stability ranking) showed a significant difference at the 1% level in a paired t-test after Benjamini–Hochberg correction for multiple testing

7 for rank sum and 29 versus 17 for RSA). The accuracy was
similar for both aggregated methods, again with a slight advantage
for stability ranking (12 versus 0 for mean, 11 versus 0 for median
and 2 versus 0 for rank sum).

Figure 3 shows reproducibility and accuracy for one specific
model, defined by the parameters s=1.69, m=9, v=61.8 and n=
10. Interestingly, at the very top of the ranking the t-test outperforms
the other methods in terms of reproducibility, but at the same time
it has the lowest accuracy. The t-test base and stability rankings
are almost indistinguishable, whereas for the other methods there is
a large difference between the two. Especially for the top-ranked
genes, stability ranking improves reproducibility by >10%. For
median and mean, this also holds true in terms of accuracy up to
the top 25% of the ranking. The most accurate ranking is produced
by the rank-sum test, slightly outperforming its stability ranking
version. Similar effects can be observed for most of the models.

In summary, the rank-sum test offers a good trade-off between
accuracy and reproducibility of the ranking. Stability ranking, which
can be applied on top of any given ranking method, improves or
at least equalizes both accuracy and reproducibility of all ranking
methods investigated here. The improvement is the largest if the

base ranker does not account for gene-wise variation, such as mean
and median ranking, but even the reproducibility of the rank-sum
test ranking can be improved and, on average, it is larger then using
average ranking.

4.2 Application to RNAi datasets
We apply stability ranking to three RNAi screens, of which one
uses four replicates per siRNA, whereas the other two use three
to four siRNAs per gene. The first is a whole-genome screen of
D.melanogaster cells, which was performed to study signaling of
the Notch receptor (Saj et al., 2010). It consists of 4 identical
replicates on ∼12 000 genes each. For each knocked down gene,
Notch signaling activity was measured based on the ratio of signal to
background fluorescence measurements. We refer to it as the Notch
screen. The second dataset comprises a screen of ∼7000 human
druggable genes (Misselwitz et al., 2011). In this experiment, HeLa
cells were infected with Salmonella bacteria to study their entry
mechanism. For this the infection rate per knock-down is used. This
screen was performed using three different siRNAs targeting the
same gene. The third dataset is similar to the previous one but was
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BA

Fig. 3. Reproducibility (A) and accuracy (B) for the model (s=1.69,m=9,v=61.8,n=10). Dashed lines represent the base rankings, solid lines the stability
versions

A B C

Fig. 4. Growth of the stable set of genes as a function of the ranking cutoff k∗ for the Notch screen (A), the drugable Salmonella screen (B) and the
genome-wide Salmonella screen (C). For each of the different ranking statistics, stability selection was performed. The diagonal (gray line) indicates perfect
stability

performed on a genome-wide scale. Here we used all 14 837 genes
for which 4 siRNA values were available. We call these screens
the druggable (SalD) and the genome-wide (SalGW) Salmonella
screen, respectively. For a more detailed description of the datasets,
see Datasets section in the Supplementary Material.

For all datasets, median, mean, t-test and rank-sum test were used
to calculate base and stability rankings. Since they use different
siRNAs per gene, for the Salmonella screens, RSA ranking was
also performed. The rankings were directed toward down regulation
of the Notch receptor and decrease in infection, respectively. In
all screens, the rank-sum test produces the most stable rankings,
followed by RSA ranking (Fig. 4). The t-test has initially the lowest
stability. This changes throughout the ranking, but since the top
part is the most relevant one, this method appears impractical. As
expected, the stability of the Notch screen, which uses replicates,
is much higher than for the Salmonella screens, which use different
siRNAs per gene. Table 1 summarizes the stable set sizes for the top
1% and top 10% resulting from the rank-sum rankings for each of the
datasets (for the other methods see Supplementary Tables S3–S6).

To compare the reproducibility of rankings on the real data, we
employed a bootstrap analysis (Efron, 1979) and resampled the data
for each gene with replacement. For each bootstrap run, we used as
many values per gene as the original dataset had. Figure 5A shows
the bootstrapped reproducibility values of the Notch screen for the
top 20% of median, t-test and rank-sum test rankings. Overall the
reproducibility is very high for most rankings. In particular, the first

two ranks show perfect reproducibility for the stability median and
stability rank sum. Generally, the stability median rankings and both
rank-sum test versions are ∼10% more reproducible than the base
median rankings. Above the top 1% the original version is slightly
more reproducible. The t-test again fails to recover a stable ranking.

For all screens, subsets of genes had been selected, which were
followed up on with validation experiments. Selection of genes was
based on a combination of the outcome of the primary screen as
well as biological expert knowledge. For the rank-sum test, Table 1

Table 1. Screening and validation results for the top 1% and top 10% of the
rank-sum test ranking for each of the three RNAi screens

Gene set Total Stable Re-screened Validated, n (%)

Notch top 1% 129 70 67 37 (55.2)
Notch top 10% 1281 556 225 141 (62.7)
SalD top 1% 69 12 9 7 (77.8)
SalD top 10% 686 198 74 28 (37.8)
SalGW top 1% 148 6 5 2 (40)
SalGW top 10% 1478 111 51 6 (11.8)

Second column indicates the absolute number of genes, third column indicates how
many of these were stable. Fourth column indicates the part of the stable genes that
was used in the re-screening experiments and the last column shows how many of them
were validated. Notch indicates the Notch screen, SalD and SalGW refer to the drugable
and the genome-wide Salmonella screens.
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Table 2. Comparison of the base and stability version of the rank-sum test ranking

Gene set Total Overlap Rank sum Stability rank sum

Re-screened Validated, n (%) Re-screened Validated, n (%)

Notch top 1% 129 124 120 68 (56.7) 119 70 (58.8)
Notch top 10% 1281 1160 235 148 (63) 233 147 (63.1)
SalD top 1% 69 64 47 22 (46.8) 43 19 (44.2)
SalD top 10% 686 618 125 41 (32.8) 113 38 (33.6)
SalGW top 1% 148 118 67 7 (10.4) 60 7 (11.7)
SalGW top 10% 1478 1162 113 12 (10.6) 102 11 (10.8)

For each of the three RNAi screens, the top 1% genes and top 10% genes are shown. The second column indicates the total number of genes contained in the top 1% and top 10%
of the rankings. The third column shows how many genes both rankings had in common. For both versions then the number of re-screened and validated genes are shown. For
description of the row names see caption of Table 1.

BA

Fig. 5. Bootstrapped reproducibility for the Notch screen as a function of
the cutoff k. (A) Shows the top 20% genes and (B) a zoom into the top
50 genes. Dashed lines indicate the base rankings and solid lines the stability
versions

summarizes how many of the stable top 1% and top 10% genes
were selected for re-screening and how many of these were finally
validated (see Supplementary Tables S3–S6 for the other rankings).
However, assessing the significance of these results is difficult for
two reasons. Firstly, the sets of re-screened genes do not represent
i.i.d. random samples, because they are biased by the way they were
selected. Secondly, the re-screening experiments were not carried
out under the same experimental conditions and therefore may lead
to different conclusions. In case of the Notch screen, the primary
in vitro screen was validated in vivo. In case of Salmonella, screens
were validated using different or only partially overlapping siRNA
libraries as compared with the primary screens. For the Notch screen,
a total of 233 down regulating genes were re-screened, whereas for
Salmonella, 164-infection decreasing genes of the drugable and 119
infection-decreasing genes of the genome-wide screen were chosen
for validation.

Overall, most of the stable top 1% genes were re-screened. For the
Notch screen the stable top 10% genes contained almost all of the
re-screened genes, whereas for the other experiments this fraction
is reduced to ∼50%. Validation rates vary considerably but tend to
be the higher the more stable a screen is.

Comparing the top 1% and top 10% of the rank-sum test ranking
and its stability counterpart we find that for the base ranker always a
few more genes had been chosen for re-screening. Yet, in five out of
six cases validation rates were higher when using stability ranking
(Table 2). The rank-sum test and t-test rankings showed the highest

overlaps between base and stability ranking, but for the less similar
rankings, the stability rankings had also higher validation rates in
most of the cases (Supplementary Tables S7–S10).

5 CONCLUSION
We have applied the concept of stability selection to gene rankings to
generate more reproducible ordered hit lists for data generated from
phenotypic RNAi experiments. We have shown that the robustness
of different ranking methods can be very different and that the stable
set size can be used as a measure of reproducibility. Since image-
based RNAi screening data tend to be very noisy and sparse, the use
of stability ranking can improve stability, especially in the top part of
the rankings which is of main interest. In the present study, the rank-
sum test ranking and its stability ranking version have resulted in
the most reproducible hit lists. Stability ranking is very flexible and
can be applied to any gene ranking method. It does not only improve
ranking statistics that ignore the gene-wise variance, such as mean or
median, but it also improved the reproducibility of a statistic like the
rank-sum test. Thus, irrespective of the chosen ranking statistic, it
appears beneficial to complement the selection of top scoring genes
with stable genes to increase validation rates in secondary screens.
In principle, the stable sets could also hint at a reasonable cutoffs for
hit selection. Analyzing the growth curve of the stable sets for the
datasets used in the present study, no such cutoff was be found, but
this may be investigated further in future work on different datasets.
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