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Novel free boundary magnetohydrodynamic equilibrium states with spontaneous
three-dimensional (3-D) deformations of the plasma—vacuum interface are computed.
The structures obtained look like saturated ideal external kink/peeling modes. Large
edge pressure gradients yield toroidal mode number n = 1 distortions when the
edge bootstrap current is large and higher n corrugations when this current is small.
Linear ideal MHD stability analyses confirm the nonlinear saturated ideal kink
equilibrium states produced and we can identify the Pfirsch—Schliiter current as the
main linear instability driving mechanism when the edge pressure gradient is large.
The dominant non-axisymmetric component of this Pfirsch—Schliiter current drives a
near resonant helical parallel current density ribbon that aligns with the near vanishing
magnetic shear region caused by the edge bootstrap current. This current ribbon is a
manifestation of the outer mode previously found on JET (Solano 2010). We claim
that the equilibrium corrugations describe structures that are commonly observed in
quiescent H-mode tokamak discharges.

1. Introduction

Tokamaks with H-mode operation (Wagner et al. 1982) have an important edge
pedestal pressure, and hence a sharp pressure gradient in the neighbourhood of the
plasma boundary. The energy content in the plasma is significantly higher than that of
standard L-mode discharges. The economic feasibility of tokamak systems as reactor
concepts is predicated on having (B) that is large, which is more viably achieved
under H-mode. Unfortunately, relaxation oscillations near the plasma boundary
labelled edge localised modes (ELM) develop (Zohm 1992). The large amounts
of energy expulsion associated with ELLMs is intolerable in a fusion reactor device.
However, a variant quiescent H-mode (QH) or a super H-mode suppress ELMs and
this constitutes a very relevant path towards a tokamak fusion energy producing
system (Solomon et al. 2014). Benign edge harmonic oscillations (EHO) develop
during QH-mode operation which can provide a useful mechanism for impurity
exhaust without the deleterious effects of ELMs (Burrell et al. 2005). The QH-mode
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lies at the kink/peeling edge of the peeling/ballooning stability boundaries predicted
with the ELITE/EPED codes (Snyder et al. 2009).

We have previously computed three-dimensional (3-D) internal helical core
structures with the VMEC and the ANIMEC codes that correspond to saturated
ideal kink modes that models snakes and long lived modes (Chapman et al. 2010)
under tokamak hybrid scenario conditions (Cooper et al. 2010; Cooper, Graves
& Sauter 2011). In this paper, we outline the method used to obtain 3-D free
boundary magnetohydrodynamic (MHD) equilibrium states in § 2. Then, we compute
axisymmetric tokamak a configuration variable (TCV) equilibria and evaluate the
linear ideal MHD properties in § 3. Next, we compute novel 3-D tokamak equilibria to
show the spontaneous development of saturated ideal external kink/peeling structures
in §4. The final step is to re-explore the driving terms of the 3-D ideal MHD energy
principle to determine the dominant kink/peeling and peeling/ballooning mechanisms
for the 3-D equilibrium states we have obtained in §5. In §6, we close with a
summary and conclusions.

2. The 3-D MHD equilibrium state

The computation of 3-D MHD equilibrium states is based on the VMEC code
(Hirshman, van Rij & Merkel 1986) which imposes nested magnetic flux surfaces.
The plasma energy is given by

BZ
W= /// & p(s) @.1)
2,LL() —1
where B is the magnetic field, p(s) is the plasma pressure which is a function of the
radial variable s (0 < s < 1) which is proportional to the enclosed toroidal magnetic

flux function @ and I' is the adiabatic index. The equilibrium state is obtained by
varying the energy functional W with respect to an artificial time to yield (Hirshman

& Whitson 1983)
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where the term Fy is given by
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and the term F, is
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(2.5)

The poloidal and toroidal angles are labelled u and v, respectively. The toroidal
magnetic field component in the contravariant representation is denoted with BY, R is
the distance from the major axis and Z is the height from the midplane. The Jacobian
of the transformation from Cartesian to (s, u, v) coordinates is represented by ,/g. If
we examine the MHD force balance relation given by

BZ
woF = —poVp+(V xB) x B=—-V <,uop+2> +(B-V)B, (2.6)

we find that the ,/gRVv x VZ, the \,/gRVR x Vv and the —,/gB x Vis/B* projections
of the MHD force puoF correspond to Fr, F; and F,, respectively. The F, force
projection corresponds to the condition that the current lines associated with the vector
J lie on flux surfaces in equilibrium (i.e. j - Vs = 0). Furthermore the evaluation of
the toroidal force balance, namely the ,/gVs x Vu projection of woF, also recovers
the condition F, =0 at the equilibrium state. In the axisymmetric limit, the magnetic
field can be expressed as

B=B,(¥)Vv+ Vv x Vy, 2.7)

where B, is the toroidal magnetic field in the covariant representation and v is the
poloidal flux function. Evaluating, for example, the vertical VR x Vv projection of
woF we obtain, after a few lines of vector algebra, the expression

d
VR X Vv F=—(Vox Vi - VR) | 1102 + |Vu[’B, (%)

dB,
dyr d

" + V- (Vu*Vy)| .
(2.8)

The term in the square brackets, when set to 0, constitutes the famous Grad—Shafranov
equation (Grad & Rubin 1958; Shafranov 1966).

An accelerated steepest descent energy minimisation scheme is applied to achieve a
minimum energy state that corresponds to a 3-D MHD equilibrium state. A Green’s
function technique is applied to evolve the plasma—vacuum interface to obtain free
boundary MHD equilibria where the vacuum magnetic fields are calculated using
Biot—Savart’s Law from all toroidal and poloidal field coils discretised into finite size
filaments.

3. Ideal MHD stability of axisymmetric TCV equilibria

We apply the VMEC code to compute free-boundary up-down symmetric TCV
equilibria in the axisymmetric limit (only toroidal mode number n = 0 components
are retained in the calculations). The number of radial grid points is varied from
117 to 289 and the poloidal mode spectrum encompasses 0 < m < 14. The 3-D ideal
MHD stability code TERPSICHORE (Anderson et al. 1990; Cooper 1992) solves
the equation §W, + W, — w*8W, = 0, where W, is the second variation of the
energy functional described in 2.1, §W, is the vacuum energy which we discretise
into a form similar to that of §W, (Cooper 1992) and —«w?8W; is the kinetic energy.
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FIGURE 1. The pressure profile p (upper solid red line), the toroidal current profiles
(j - Vv) for a high edge bootstrap current case Jgs/I, =0.566 (black dashed curve) and a
low edge bootstrap current case Jps/I, =0.307 (blue dashed curve) and the corresponding
g-profiles (lower solid curves) for a TCV configuration with (8) = 1.9% and toroidal
current I, =375 kA.

The internal plasma potential energy is written in the form (Dewar, Monticello & Sy
1984; Greene 1996; Cooper 1997)

1 .V
awpzz///d% [C2+Fp|V-§|2—D§I.VSIZS , (3.1

where the vector C = Q — (p'B/B* — oh)é - Vs for which Q@ =V x (§ x B) is the
perturbed magnetic field. The adiabatic index is I", & is the perturbed displacement
vector, the vector h is defined in §5 and D constitutes the driving term for pressure
gradient and parallel current MHD instabilities. A hybrid finite element discretisation
scheme with respect to the radial variable s and a Fourier decomposition in Boozer
poloidal and toroidal angular variables (Boozer 1980) reduces the problem to the
matrix eigenvalue equation &/X = A%X (where the eigenvalue 1 = w?; negative A
describes MHD instability). This equation is solved using an inverse vector iteration
procedure.

We concentrate our calculations on TCV configurations with (8) ~1.9 %, By ~2.25,
total toroidal current I, = 375 kA, fixed pressure profile and consider two different
toroidal current profiles; one with a relatively small edge bootstrap current component
corresponding to Jgs/I, =0.307 and one with a large edge bootstrap current component
corresponding to Jgg/I; =0.566. Here Jps identifies the total bootstrap current. These
profiles are displayed in figure 1 together with the corresponding g-profiles. The small
edge bootstrap current case has a core region with ¢ < 1; the large edge bootstrap
current case has g > 1 everywhere and a region of vanishing magnetic shear near the
edge of the plasma where Jpg has its peak value.

The VMEC equilibrium is transformed into Boozer coordinates (Boozer 1980) and
we expand the poloidal mode number spectrum in these coordinates to encompass 0 <
m < 36 to guarantee a satisfactory reconstruction of the axisymmetric equilibrium state.
To obtain converged solutions of the eigenvalue 4 with TERPSICHORE, we undertake
a study where we vary the number of radial mesh intervals from 116 to 288. The
results are presented in figure 2. The linear stability analysis reveals that the n =1
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FIGURE 2. Convergence with the number of radial intervals N, of the unstable eigenvalue
A computed with the TERPSICHORE code of axisymmetric VMEC equilibria with respect
to the n=1 and n=4 toroidal mode number when the bootstrap current to total current
ratio Jpg/I, =0.566 (a), with respect to the n =4 mode for Jps/I, =0.307 (b) and for the
most unstable core n =1 eigenmode and a secondary edge n=1 eigenmode for Jgs/I, =
0.307 showing that both these are actually linearly stable (c).

mode is unstable and that A for the n =4 mode is twice as big for the large edge
bootstrap current case Jgs/I, =0.566 (figure 2a). The convergence study for the n=1
mode for the small Jgg/I, =0.307 edge bootstrap current case demonstrates that there
is a dominant core n = 1 mode and a subdominant edge n = 1 mode, but both of
these have 4 = 0 with infinitesimal mesh size indicating that these structures are in
fact stable (figure 2c¢). Quadratic convergence is mostly observed for the behaviour
of A1 with mesh size. The exception to this rule corresponds to the n =4 mode for
the low Jps/I, = 0.307 edge bootstrap current case which is unstable and oscillates
slightly with a refined mesh (figure 2b). The five dominant » =1 Fourier components
of the radial displacement vector £ =& - Vs for the large edge bootstrap current case
(Jps/I;=0.566) and the five principal n =4 Fourier amplitudes of &* for the small edge
bootstrap current case (Jgs/I, =0.307) as a function of s are displayed in figure 3 and
show well resolved mode structures. In the linear phase, the m/n =4/1 structure is
dominant for Jgg/I, =0.566 and the m/n =13/4 term dominates for Jgg/I, = 0.307.

4. 3-D equilibrium numerical simulations: nonlinearly stable states

The MHD equilibria of configurations that model the TCV tokamak under free
boundary conditions are computed with the VMEC code that assumes that in 3-D,
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FIGURE 3. The profiles of the five principal perturbed radial displacement vector Fourier
components &' of the most unstable n = 1 eigenmode of the axisymmetric VMEC
equilibrium with Jgg/I; = 0.566 (a) and of the most unstable n = 4 eigenmode with
Jps/1, = 0.307 (b). Note that the mode profiles for n =4 are limited to the outer 30 %

of the plasma volume.

the magnetic flux surfaces are nested and only a single magnetic axis exists. We
expand the spectrum of toroidal mode numbers employed in the previous section
to encompass —6 < n < 6 Fourier components to describe the system. We then
explore the conditions under which 3-D deformations spontaneously develop that
break axisymmetry. At low (8) = 0.76 %, the n # 0 distortions are tiny, but as the
we increase (B) when the edge bootstrap current is large, spontaneous dominantly
n=1 3-D corrugations appear near the boundary region of the plasma. We interpret
these deformations as indicative of the development of an external kink/peeling mode
that saturates at finite amplitude. The distortions observed are symptomatic of the
edge harmonic oscillation (EHO) (Burrell et al. 2005) first reported on DIII-D, but
subsequently observed on many other machines (Suttrop et al. 2005; Hu et al. 2015),
and the outer mode (OM) measured on JET (Solano et al. 2010). The shape of the
last closed magnetic flux surface on TCV at four different cross-sections projected
onto a single toroidal plane for By =1, 1.49, 1.99 and 2.47 are presented in figure 4.
Distortions of the plasma edge surface become noticeable at By = 1.49 and very
pronounced at By =2.47.

The two TCV configurations discussed in the previous section are recalculated with
the expanded —6 < n < 6 toroidal mode spectrum to investigate deformations that
can be triggered in the boundary region of the plasma at (8) = 1.9% (By = 2.25).
The thermal pressure distribution at four equidistant toroidal angle planes spanning
half a toroidal transit are presented in figure S(a—d) for the low Jpg/I, = 0.307 edge
bootstrap current case that shows a dominant n =4 edge corrugation and for the large
Jps/I, = 0.566 edge bootstrap current case which displays dominant n =1 distortions
in figure 5(e-h).

A Fourier analysis of the spectrum of the magnetic field strength B at the last
closed magnetic flux surface is presented in figure 6, where we plot B,,(s=1) versus
the poloidal mode number m for toroidal mode numbers n =1, 2, 3, 4 and 5 to
identify the dominant components of this spectrum. The large Jps/I, = 0.566 edge
bootstrap current case is shown on the left-hand side of figure 6 from which we
extract that the m/n = 2/1 Fourier amplitude of B is dominant with subdominant
m/n=4/1, 1/1, 5/1 and 0/1 structures. The Fourier components of B with n = 2,
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FIGURE 4. The shape of the last closed TCV magnetic flux surface on four different cross-
sections spanning half a toroidal transit projected onto a single plane for (8) = 0.76 %
(a), (B)=1.14% (b), (B) =1.52% (c) and (B) =1.89% (d) for the configuration with
large edge (p’ < 0; Jps > 0). The corresponding values for By are 1, 1.49, 1.99 and 2.47,
respectively. The distortion of the plasma boundary driven by a saturated external kink
occurs between fy =1.49 and By =1.99. In this sequence I, =340 kA.

®),

FIGURE 5. The thermal pressure contours at toroidal angle cross-sections v = 0 (a,e),
v=n/3 (bf), v=2n/3 (c,g) and v=m (d,h) for the TCV case with small edge bootstrap
current Jgs/I, = 0.307 (a—d) and the pressure contours at the same cross-sections for the
TCV case with large edge bootstrap current Jgg/I, =0.566 (e—h) at (8) =1.9 %, By ~2.25
and 1, =375 kA. The edge region displays the characteristics of an kink/peeling/ballooning
mode with a dominant m/n = 6/4 and subdominant m/n =7/4,4/4 and 9/4 perturbed
structure for the low bootstrap current case and the characteristics of an OM with a
dominant m/n=2/1 and subdominant m/n=4/1,1/1,0/1 and 5/1 perturbed structures
for the high bootstrap current case.

3 and 4 are an order of magnitude smaller than the B, term. The closest resonance
surface corresponds to ¢ =3, but we find that the B, and B4, non-resonant sidebands
are much more important then the resonant B;; term in the nonlinear stage. There
is consistency with the experimental observations of ELM activity in TCV where
unstable n ~ 15 modes computed in the linear phase are suppressed in the nonlinear
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FIGURE 6. The dominant Fourier amplitudes of the magnetic field B components that
break axisymmetry (n # 0) at the last closed magnetic flux surface as a function of the
poloidal mode number m for toroidal mode numbers n =1, 2,3 and 4 in TCV for the
low edge bootstrap current case Jgs/I, = 0.566 (a) and the high edge bootstrap current
case Jps/I; =0.307 (D).

phase so that n >~ 1 structures become dominant (Wenninger et al. 2013) that are
further buttressed with linear to nonlinear simulations undertaken with the JOREK
code (Krebs et al. 2013; Liu et al. 2015). On the right-hand side of figure 6, we see
that for the smaller Jps/I;, = 0.307 edge bootstrap current case, the m/n = 6/4 Fourier
component of B is dominant at the plasma boundary, with subdominant m/n = 7/4,
5/4 and 9/4 structures also appearing. Again, these components are non-resonant at
the edge of the plasma and the m/n = 12/4 component of B which is closest to the
g =3 rational surface is negligible.

The OM in the JET tokamak is represented by a field-aligned helical current
ribbon located at the flat-top of the density pedestal. We examine the behaviour of
the equilibrium parallel current density for the large Jpg/I; = 0.566 example we have
and find that in the edge region of the plasma, a m/n = 3/1 Fourier component
of wqj;/B becomes large with a significant radial extent that constitutes a helical
ribbon similar to that reported on JET. This is shown in figure 7, where we plot
the m/n = 3/1 Fourier amplitude profile of wj,/B together with the pressure and
g-profiles as a function of /s in the outer 15% of the plasma radius. The radial
extent parallel current ribbon aligns with that corresponding to the region where
the magnetic shear vanishes. The parallel current density is driven through charge
conservation and MHD force balance by the pressure gradient and represents a
Pfirsch—Schliiter current associated with the 3-D distortion of the edge region of the
plasma.

In our opinion, the high Jgs/I, = 0.566 case we have presented constitutes an
example of a saturated ideal kink/peeling mode while that with the low Jgs/I, =0.307
case is indicative that the configuration is more likely susceptible to higher n
peeling/ballooning modes that cannot be fully resolved with the spectrum of Fourier
modes we have applied for the VMEC equilibrium computations we have undertaken.
Convergence of an equilibrium with a more extensive Fourier set and correspondingly
finer resolution becomes difficult to achieve with VMEC.

In figure 8, we present the contours of the dominant n = 1 Fourier terms (the
poloidal mode number is generally m = 2, but can vary in the figure) of B in the
domain of the total edge bootstrap current to the total current ratio Jgg/l, versus
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FIGURE 7. The ¢, pressure p and the m/n=3/1 Fourier component of the parallel current
density term pj, /B profiles at the outer edge of the plasma. The m/n=3/1 current ribbon
is localised just outside the g =3 surface in the region of vanishing magnetic shear. The
case in this figure corresponds to I, =375 kA, (B) =1.9%, Jps/I, =0.566 and pep'(s =
0.948) = —0.226.

005 01 015 02 025 03 035
-1,p (5=0.948)

FIGURE 8. Contours of the dominant n =1 Fourier amplitude of B,, at the last closed
magnetic flux surface as a function of the pressure gradient pop’ at the surface s =
0.948 and the ratio of the edge bootstrap current to the total current Jgs/I, for a TCV
configuration with (8) =1.9 % and toroidal current I, =375 kA.

the edge pressure gradient at the s = 0.948 radial location (which coincides with
the position of the peak of the edge bootstrap current profile). For this plot, we
employed for simplicity a reduced poloidal mode number spectrum 0 < m < 10. We
were unable to converge VMEC equilibria in the domain at the upper edge of the
graph for Jgg/I, > 0.8 and at the left-hand side edge of the graph. We surmise that the
MHD instability conditions are so adverse that nonlinearly saturated states become
unachievable beyond the limits where we have obtained spontaneous 3-D solutions
with VMEC. The domain with large p’ and low Jpg/I, is likely to be susceptible to
high n peeling/ballooning modes that we are not able to resolve with the spectrum
of modes applied in VMEC.
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5. Analysis of the linear 3-D ideal MHD analysis

The driving term of the potential energy principle displayed in (3.1) can be written
(Dewar et al. 1984; Greene 1996; Cooper 1997)

D=DB+D5+DJ, (51)

where Dp = 2p'(s)k - Vs represents the interaction of the pressure gradient with the
normal component of the magnetic field line curvature, Dg = S| Vs|?> describes the
interaction of the parallel current density with the local magnetic shear and D; =o>B?
is the parallel current density drive. Specifically, the magnetic field line curvature is
Kk = (b- V)b, where b = B/B is the unit vector along the magnetic field lines, while
the local magnetic shear is defined as S=—h-V x h with h=B x Vs/|Vs|*> (Greene
& Johnson 1968; Dewar et al. 1984; Hegna 2000). The parallel current density factor
is 0 =j-B/B? and £ is the perturbed displacement vector.

We do not carry out linear ideal MHD stability calculations for the eigenvalue and
eigenfunction, but instead apply the diagnostic routines of the TERPSICHORE code
(Anderson et al. 1990; Cooper 1992) to evaluate the instability drive terms (Cooper
1997) in Boozer magnetic coordinates (Boozer 1980), where we label the poloidal
angle 6 and the toroidal angle ¢. The rationale for this approach is based on the
fact that all low n structures have already been included in the VMEC equilibrium
calculation to achieve a minimum energy state within the bounds of the mode
spectrum 0 <m < 14; —6 <n < 6. It would only make sense to investigate linear ideal
MHD stability with respect to modes that have been excluded from this spectrum.
The interactions of ,/gDp =2./gp'(s)k - Vs, /gD, = /gj; and ,/gDs = ,/goS|Vs|®
from left to right for the large Jps/I, = 0.566, respectively, on an unwrapped toroidal
magnetic flux contour with s ~ 0.925 near the edge of the plasma in TCV appears
in figure 9(a—c). Here ,/g is the Jacobian of the transformation from the Boozer
coordinates to the Cartesian frame. We see that \/g;ﬁ is the largest destabilising term
with a clear n =1 structure localised at the outer midplane of the plasma (6 =0, 2m).
This is significantly counteracted by the interaction of j; with the local magnetic
shear which is mostly stabilising, particularly at the outer midplane. The interaction
of p’ with the normal curvature also displays a destabilising n = 1 structure, but
is almost an order of magnitude smaller than the @;ﬁ contribution. Hence, the
dominance of the n =1 mode that drives linear ideal instability is consistent with the
nonlinearly saturated kink/peeling structure obtained with the VMEC calculation. In
figure 9(d—f) we present the distributions of ,/gDp, /gD, and ,/gDs on the poloidally
and toroidally unwrapped magnetic surface at s =0.925 for the TCV equilibrium with
low Jps/I, = 0.307 edge bootstrap current from left to right, respectively. In this
case, the structures of the linear instability driving terms are all dominated by n =4
modes, consistent again with the nonlinearly saturated state calculated with the VMEC
equilibrium solver. The dominant instability drive is @ﬁ, but it is also counteracted
by the stabilising impact of ,/gDs = ,/go S| Vs|* specially at the outer midplane. The
interaction of p’ with the normal curvature for low Jgs/I, = 0.307 is approximately
twice as large as that for Jgg/l, = 0.566. This insinuates that peeling/ballooning
structures which are not fully resolved with the equilibrium mode spectrum we have
retained could have an important bearing for cases with large p’ and small Jps/I,,
corresponding to the domain at the bottom right edge of the scan presented in figure 8.
The OM/EHO emerge at the top edge in figure 8, which are very well resolved in
our VMEC computations.
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FIGURE 9. The interaction of the pressure gradient with the magnetic field line curvature
2./8p'(s)K - Vs (ad), the parallel current density drive ./go’B> = ,/gj; (b,e) and the
interaction of the parallel current density with the local magnetic shear ,/go$ [Vs|? (c)f)
in a TCV configuration with high edge bootstrap current Jgs/I, = 0.566 (a—c) in a TCV
configuration with low edge bootstrap current Jgs/I, = 0.307 (d—f) on a poloidally and
toroidally unwrapped flux surface at the position s =0.925, where 6 and ¢ are the Boozer
poloidal and toroidal angles, respectively. The pressure gradient at s = 0.925 for both
configurations is wop’ = —0.226, I, =375 kA and (8) =1.9 %.

6. Summary and conclusions

The main conclusion of the work we have presented relates to novel free boundary
tokamak equilibria with spontaneously developed unprompted 3-D distortions to
the plasma—vacuum interface when (f) exceeds a threshold value using the VMEC
code. We predict the corrugations to occur for (8) > 1.5% in the TCV tokamak.
The solutions with 3-D deformations resemble saturated ideal kink/peeling instability
structures. As a prelude to the unconventional 3-D MHD equilibrium solutions we
have obtained, ideal MHD stability calculations of axisymmetric TCV tokamak
equilibria reveal that n» = 1 internal modes are linearly unstable for large edge
bootstrap currents and that higher » mode structures are more unstable than for n=1.
For low edge bootstrap currents, the core and edge n =1 modes are stable. We find,
that n =4 external modes become unstable. However, we contend that the magnitudes
of linear ideal MHD growth rates are deceptive. Although the linear phase indicates
that large n toroidal mode numbers are important, the nonlinear phase exhibits a
dominance of n = 1 corrugations particularly when the edge Jps becomes large.
This is consistent with observations of ELM behaviour in the TCV tokamak, which
reports the dominance of n =1 toroidal structures (Wenninger et al. 2013), as well
as numerical simulations with the JOREK code that shows n =1 modes becoming
increasingly important from the linear to the early nonlinear phases (Krebs er al. 2013)
and then completely dominant in the saturated nonlinear phase (Liu et al. 2015). For
small edge Jps and large edge p’, larger n peeling/ballooning modes become relevant,
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but we are cannot fully resolve these with the spectrum of modes applied to converge
3-D equilibrium states with the VMEC code. We have concentrated our efforts in
the domain where Jps at the edge is large, which tends to coincide with the region
where low n =1 structures dominate (corresponding to the upper half of the graph
in figure 8). In our opinion, these structures constitute a very realistic model for the
OM observed on JET (Solano 2010) and the EHO detected on DIII-D and other
tokamaks (Burrell er al. 2005; Suttrop et al. 2005; Hu et al. 2015). A detailed
analysis of the equilibrium state for large edge Jpg indicates that a parallel helical
current density ribbon forms just outside the ¢ =3 rational surface with a radial extent
that aligns with the vanishing magnetic shear region associated with the flat spot in
the g-profile caused by the bootstrap current. Fourier analysis demonstrates that this
parallel current ribbon corresponds to a near resonant m/n = 3/1 helical structure.
The spectrum of the magnetic field strength B at the edge of plasma, however, has a
very weak resonant component, but significant m/n=2/1 and m/n=4/1 non-resonant
terms. The mechanism for the development of the current ribbon corresponds to the
non-axisymmetric component of the Pfirsch—Schliiter current that results from the
3-D deformation of the plasma boundary region. The linear stability analysis of the
3-D TCV tokamak equilibria confirms the dominance of n =1 structures for large
edge Jps and shows that n =4 corrugations are most relevant for low Jgg, possibly
insinuating susceptibility to peeling/ballooning modes in this case.

The nonlinearly saturated 3-D equilibrium states we have obtained constitute a
solid platform to investigate a wide range of tokamak physics phenomena associated
with quiescent H-mode tokamak plasmas with quasicoherent OM and EHO structures
(such as fast particle confinement or turbulence). The economic feasibility of tokamak
reactors will inevitably require H-mode plasmas. However, this mode is unsustainable
if ELM are triggered.
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