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ABSTRACT
We investigate non-local Lagrangian bias contributions involving gradients of the linear density
field, for which we have predictions from the excursion set peak formalism. We begin by writing
down a bias expansion which includes all the bias terms, including the non-local ones. Having
checked that the model furnishes a reasonable fit to the halo mass function, we develop a
one-point cross-correlation technique to measure bias factors associated with χ2-distributed
quantities. We validate the method with numerical realizations of peaks of Gaussian random
fields before we apply it to N-body simulations. We focus on the lowest (quadratic) order non-
local contributions −2χ10(k1 · k2) and χ01[3(k1 · k2)2 − k2

1k
2
2], where k1, k2 are wave modes.

We can reproduce our measurement of χ10 if we allow for an offset between the Lagrangian
halo centre-of-mass and the peak position. The sign and magnitude of χ10 is consistent with
Lagrangian haloes sitting near linear density maxima. The resulting contribution to the halo
bias can safely be ignored for M = 1013 M� h−1, but could become relevant at larger halo
masses. For the second non-local bias χ01 however, we measure a much larger magnitude
than predicted by our model. We speculate that some of this discrepancy might originate from
non-local Lagrangian contributions induced by non-spherical collapse.
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1 IN T RO D U C T I O N

Understanding the clustering of dark matter haloes has been a topic
of active research for many years. A number of analytic approaches
have been developed to tackle this issue such as the peak model
(Bardeen et al. 1986, hereafter BBKS), the excursion set framework
(Bond et al. 1991) or perturbation theory (see e.g. Bernardeau et al.
2002, for a review). Heuristic arguments like the peak-background
split (Kaiser 1984) and approximations like local bias (Fry & Gaz-
tanaga 1993) have been very helpful for modelling the clustering of
dark matter haloes. Nevertheless, improvements in computational
power and numerical algorithms as well as the advent of large-scale
galaxy surveys have considerably increased the need for an accu-
rate description of halo clustering. Until recently, however, it was
unclear how the peak approach, which is thus far the only frame-
work in which biased tracers form a discrete point set, relates to the
more widespread excursion set theory, local bias approximation or
peak-background split argument.

Working out this connection has been the subject of several
recent papers. Desjacques (2013), building on earlier work by
Desjacques et al. (2010), showed that correlation functions of dis-
crete density peaks can be computed using an effective (i.e. which
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does not involve measurable counts-in-cells quantities) generalized
bias expansion in which all the bias parameters, including those
of the non-local terms,1 can be computed from a peak-background
split. In parallel, Paranjape & Sheth (2012) demonstrated how the
peak formalism, which deals with statistics of density maxima at a
fixed smoothing scale, can be combined with excursion set theory,
whose basic building block is the density contrast at various filter-
ing scales. Similar ideas can already be found in the early work
of Bond (1989). Paranjape, Sheth & Desjacques (2013a, hereafter
PSD) subsequently computed the mass function and linear bias of
haloes within this excursion set peak (ESP) approach and showed
that it agrees very well with simulation data.

The focus of this work is on the second-order non-local bias terms
predicted by the ESP approach. These generate corrections to the
Fourier peak bias of the form −2χ10(k1 · k2) and χ01[3(k1 · k2)2 −
k2

1k
2
2] (Desjacques 2013). What makes them quite interesting is the

fact that there are related to χ2 rather than normally distributed
variables. Here, we will show how one can measure their amplitude
in the bias of dark matter haloes without computing any correlation
function. Of course, this technique can also be applied to measure

1 To facilitate the comparison with other studies, we will call non-local
terms all contributions to Lagrangian clustering that are not of the form
δn(x), where δ(x) is the linear mass density field.
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non-local Lagrangian bias contributions induced by e.g. the tidal
shear, but this will be the subject of future work.

This paper is organized as follows. In the first part, we will advo-
cate a slight modification of the original ESP formulation of PSD in
order to easily write down the corresponding effective bias expan-
sion (Section 2). Next, we will explain how the cross-correlation
technique proposed by Musso, Paranjape & Sheth (2012), which
has already been successfully applied to the bias factors associated
with the density field (PSD; Paranjape et al. 2013b), can be extended
to measure the second-order non-local bias factors χ10 and χ01 that
weight the two quadratic, non-local bias contributions (Section 3).
Finally, we will validate our method with peaks of Gaussian ran-
dom fields before measuring χ10 and χ01 for dark matter haloes
(Section 4). We conclude in Section 5.

2 EX C U R S I O N SE T P E A K S

In this section, we apply the excursion set approach to the peak
model in the case of a moving barrier to get a prediction of the
halo mass function which we compare to simulations. We then get
expressions for bias parameters, generalizing results in Desjacques
(2013) and Desjacques, Gong & Riotto (2013). We also point out a
few changes to PSD. We show that, as far as the mass function is
concerned, these modifications do not make much difference (only
few per cent, in agreement with what PSD found), but they affect
first- and second-order bias parameters, as new terms arise.

2.1 Notation

We will adopt the following notation for the variance of the
smoothed density field (linearly extrapolated to present day) and
its derivatives:

σ 2
jα = 1

2π2

∫ ∞

0
dk P (k)k2(j+1)W 2

α (kRα), (1)

where P(k) is the power spectrum of the mass density field, Wα(kRα)
and the subscript α = G or T will denote Gaussian or tophat filter-
ing, respectively. Moreover, Rα is the Lagrangian smoothing scale
(which may depend on the choice of kernel). Denoting δT and δG

the linear density field smoothed with a tophat and Gaussian filter,
respectively, we introduce the variables

ν(x) = 1

σ0T
δT(x)

u(x) = − 1

σ2G
∇2δG(x)

μ(x) = − dδT

dRT
(x). (2)

Note that, while ν and u have unit variance, μ is not normalized.
We will use the notation 〈μ2〉 = �2

0 in what follows.
Cross-correlations among these three variables are useful and

will be denoted as

〈νu〉 = γ1 = σ 2
1X

σ0T σ2G
(3)

〈νμ〉 = γνμ = 1

σ0T

∫ ∞

0

dk

2π2
P (k)k2WT(kRT)

dWT(kRT)

dRT
(4)

〈uμ〉 = γuμ = 1

σ2G

∫ ∞

0

dk

2π2
P (k)k4WG(kRG)

dWT(kRT)

dRT
. (5)

The first-order, mixed spectral moment σ 1X is

σ 2
1X = 1

2π2

∫
dkP (k)k4WT(kRT)WG(kRG), (6)

i.e. one filter is tophat and the other Gaussian.

2.2 First-crossing and moving barrier

2.2.1 Summary of previous results

Let us first summarize the basic ideas behind the ESP approach
introduced by Paranjape & Sheth (2012) and further developed in
PSD and Desjacques et al. (2013).

The excursion set approach states that a region of mass M has
virialized when the overdensity δ(R), where R ∼ M1/3 is the filtering
scale associated with the perturbation, reaches the spherical collapse
threshold δc provided that, for any R′ > R, the inequality δ(R) <

δc holds. This last condition formally implies an infinite set of
constraints (one at each smoothing scale). However, as was shown
in Musso & Sheth (2012), the requirement δ(R + �R) < δc with
�R 
 1 furnishes a very good approximation. This follows from
the fact that the trajectory described by δ(R) as a function of R is
highly correlated for large radii. As a result, if δ crosses δc at R,
then it is almost certainly below the threshold at any larger radius.

This first-crossing condition can be combined with the peak con-
straint, so that peaks on a given smoothing scale are counted only if
the inequality above is satisfied. In this case, the effective peak bias
expansion introduced in Desjacques (2013) is modified through the
presence of a new variable μ (equation 2) which, as was shown
in Desjacques et al. (2013), reflects the dependence of bias to the
first-crossing condition.

2.2.2 Modifications to PSD

We made a couple of modifications to the approach of PSD, which
we will now describe in more detail.

First, PSD used the fact that μ ≡ u when Gaussian filtering is
also applied to the density field, so that the first-crossing condition
can be accounted for with the variable u only. When δ is smoothed
with a tophat filter however, one should in principle deal explicitly
with μ and, therefore, consider the trivariate normal distribution
N (ν, u, μ). We will proceed this way.

Secondly, Sheth, Mo & Tormen (2001) argued that, owing to the
triaxiality of collapse, the critical density for collapse is not constant
and equal to δc = 1.68, but rather distributed around a mean value
which increases with decreasing halo mass. Analyses of N-body
simulations have confirmed this prediction and showed the scatter
around the mean barrier is always significant (Dalal et al. 2008;
Robertson et al. 2009; Elia, Ludlow & Porciani 2012). Since the
stochasticity induced by triaxial collapse is somewhat cumbersome
to implement in analytic models of halo collapse (see e.g. Hahn
& Paranjape 2014, for a tentative implementation with the peak
constraint), we will consider a simple approximation calibrated
with numerical simulations (note that it differs from the diffusing
barrier approach of Maggiore & Riotto 2010). Namely the square-
root stochastic barrier

B = δc + βσ0, (7)

wherein the stochastic variable β closely follows a log-normal dis-
tribution, furnishes a good description of the critical collapse thresh-
old as a function of halo mass (Robertson et al. 2009). In PSD, this
result was interpreted as follows: each halo ‘sees’ a moving barrier
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B = δc + βσ0 with a value of β drawn from a log-normal distribu-
tion. Therefore, the first-crossing condition becomes

B < δ < B + (
B ′ + μ

)
�R, (8)

where the prime designates a derivative w.r.t. the filtering scale.
Here, however, we will assume that each halo ‘sees’ a constant
(flat) barrier, whose height varies from halo to halo. Therefore, we
will implement the first-crossing condition simply as

B < δ < B + μ �R. (9)

Consequently, the variable μ will satisfy the constraint μ > 0 rather
than μ > −B′.

With the aforementioned modifications, the ESP multiplicity
function reads

fESP(νc) =
(

V

V∗

)
1

γνμνc

∫ ∞

0
dβ p(β)

×
∫ ∞

0
dμμ

∫ ∞

0
du f (u, α = 1)N (νc + β, u, μ),

(10)

where V is the Lagrangian volume associated with the tophat
smoothing filter, V∗ is the characteristic volume of peaks, p(β)
is a log-normal distribution for which we take 〈β〉 = 0.5 and
Var(β) = 0.25 as in PSD and f(u, α) is the slightly modified form
(see Desjacques et al. 2010) of the original curvature function of
Bardeen et al. (1986); see Appendix A. We can now apply Bayes’
theorem and write N (ν, u, μ) = N (ν, u)N (μ|ν, u). The integral
over μ,∫ ∞

0
dμ μN (μ|ν, u), (11)

is the same as in Musso & Sheth (2012) and, therefore, is equal to

μ̄

[
1 + erf(μ̄/

√
2�)

2
+ �√

2πμ̄
e−μ̄2/2�2

]
, (12)

where

μ̄ = u

(
γuμ − γ1γνμ

1 − γ 2
1

)
+ (ν + β)

(
γνμ − γ1γuμ

1 − γ 2
1

)
(13)

�2 = �2
0 − γ 2

νμ − 2γ1γνμγuμ + γ 2
uμ

1 − γ 2
1

. (14)

Substituting this expression into equation (10) and performing nu-
merically the integrals over u and β, we obtain an analytic predic-
tion for the halo mass function without any free parameter. Our ESP
mass function differs at most by 2–3 per cent over the mass range
1011–1015 M� h−1 from that obtained with the prescription of PSD.
Likewise, the linear and quadratic local bias parameters are barely
affected by our modifications.

2.3 Comparison with numerical simulations

To test the validity of our approach, we compare the ESP mass
function with that of haloes extracted from N-body simulations. For
this purpose, we ran a series of N-body simulations evolving 10243

particles in periodic cubic boxes of size 1500 and 250 h−1 Mpc. The
particle mass thus is 2.37 × 1011 and 1.10 × 109 M� h−1, respec-
tively. The transfer function was computed with CAMB (Lewis,
Challinor & Lasenby 2000) assuming parameter values consistent
with those inferred by WMAP7 (Komatsu et al. 2011): a flat �CDM

cosmology with h = 0.704, 
m = 0.272, 
b = 0.0455, ns = 0.967
and a normalization amplitude σ 8 = 0.81. Initial conditions were
laid down at redshift z = 99 with an initial particle displacement
computed at second order in Lagrangian perturbation theory with
2LPTic (Crocce, Pueblas & Scoccimarro 2006). The simulations
were run using the N-body code GADGET-2 (Springel 2005) while
the haloes were identified with the spherical overdensity halo finder
AHF (Knollmann & Knebe 2009) assuming an overdensity thresh-
old �c = 200 constant throughout redshift.

In Fig. 1, we compare the simulated halo mass function to the ESP
prediction at redshift z = 0 and 1. The latter can be straightforwardly
obtained from the multiplicity function fESP(νc) as

dn̄h

d lnM
= ρ̄

M
νcfESP(νc, Rs)

d log νc

d log M

= −3RT

(
γνμνc

σ0T

)
V −1fESP(νc), (15)

where we used the fact that γνμ = σ ′
0T to obtain the second equality.

The ESP prediction agrees with the simulations at the 10 per cent
level or better from 1014 M� h−1 down to a halo mass 1011 M� h−1,
where the correspondence between virialized haloes and initial den-
sity peaks should be rather vague. The abundance of very rare clus-
ters with M > 1014 M� h−1 is difficult to predict because of expo-
nential sensitivity to δc. In this respect, it might be more appropriate
to work with a critical linear density δc ≈ 1.60 if haloes are defined
with a fixed non-linear threshold �c = 200 relative to the mean
density (see, e.g. Barkana 2004; Valageas 2009, for a discussion).

2.4 Bias parameters

The bias factors of ESP can be computed using the same formulas as
in Desjacques (2013). With the additional variable μ, the ‘localized’
number density (in the terminology of Matsubara 2012) can be
written as (Desjacques et al. 2013)

nESP(w) = −
(

μ

γνμνc

)
θH (μ) npk( y), (16)

where npk is the localized number density of BBKS peaks and
w = (ν, ηi, ζij , μ) ≡ ( y, μ) is an 11-dimensional vector containing
all the independent variables of the problem. Therefore,

σ i
0T σ

j
2Gbijk = 1

n̄ESP

∫
d11w nESP(w)Hijk(ν, u, μ)P1(w)

σ 2k
1Gχk0 = (−1)k

n̄ESP

∫
d11w nESP(w)L(1/2)

k

(
3η2

2

)
P1(w)

σ 2k
2Gχ0k = (−1)k

n̄ESP

∫
d11w nESP(w)L(3/2)

k

(
5ζ 2

2

)
P1(w). (17)

Here, P1(w) is the one-point probability density

P1(w)d11w = N (ν, u, μ) dν du dμ × χ2
3 (3η2) d(3η2)

×χ2
5 (5ζ 2) d(5ζ 2) × P (angles), (18)

where Hijk(ν, u, μ) are trivariate Hermite polynomials and χ2
k (x) is

a χ2-distribution with k degrees of freedom (d.o.f.). The probability
density P (angles; which was missing2 in Desjacques 2013) repre-
sents the probability distribution of the five remaining d.o.f. Since
they are all angular variables, they do not generate bias factors

2 We thank Marcello Musso for pointing this out to us.
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Figure 1. Halo mass function measured from N-body simulation at redshift z = 0 (left-hand panel) and z = 1 (right-hand panel) with different box sizes as
indicated in the figures. The error bars are Poisson. The data are compared to the theoretical prediction (equation 15) based on the ESP formalism and the
fitting formula of Tinker et al. (2008). We also show the fractional deviation of the Tinker et al. (2008) and the measured halo mass function relative to our
theoretical prediction.

because the peak (and halo) overabundance can only depend on
scalar quantities (e.g. Catelan, Matarrese & Porciani 1998; Mc-
Donald & Roy 2009).

The behaviour of the bias factors bij0 and χ kl as a function of halo
mass is similar to that seen in fig. 1 of Desjacques (2013). The bias
factors bijk with k ≥ 1 weight the contributions of μk terms to the
clustering of ESP that are proportional to derivatives of the tophat
filter w.r.t. the filtering scale RT. Similar contributions appear in the
clustering of thresholded regions (Matsubara 2012; Ferraro et al.
2013) since their definition also involve a first-crossing condition.

The effective bias expansion takes the form (Desjacques 2013;
Desjacques et al. 2013)

δpk(x) = σ0T b100ν(x) + σ2Gb010u(x) + b001μ(x)

+ 1

2
σ 2

0T b200ν
2(x) + σ0T σ2Gb110ν(x)u(x)

+ 1

2
σ 2

2Gb020u
2(x) + 1

2
b002μ

2(x)

+ σ 2
1Gχ10η

2(x) + σ 2
2Gχ01ζ

2(x)

+ σ0T b101ν(x)μ(x) + σ2Gb011u(x)μ(x) + · · · . (19)

Here, the rule of thumb is that one should ignore all the terms involv-
ing zero-lag moments in the computation of 〈δpk(x1), . . . , δpk(xN )〉
in order to correctly predict the N-point correlation function, as
demonstrated explicitly in Desjacques (2013). The appearance of
rotationally invariant quantities is, again, only dictated by the scalar
nature of the peak overabundance. The variables of interest here
are

η2(x) = 1

σ 2
1G

(∇δ)2(x)

ζ 2(x) = 3

2σ 2
2G

tr

[(
∂i∂j δ − 1

3
δij∇2δ

)2
]
(x), (20)

so that 3η2(x) and 5ζ 2(x) are χ2-distributed with 3 and 5 d.o.f.,
respectively.

3 BI ASES FRO M C RO SS-CORRELATI ON:
E X T E N S I O N TO χ2 VA R I A B L E S

In this section, we will demonstrate that the bias factors χ ij can be
measured with a one-point statistics. We will test our method on
density peaks of a Gaussian random field before applying it to dark
matter haloes.

3.1 Bias factors bijk: Hermite polynomials

Musso et al. (2012) showed that the bias factors of discrete tracers
(relative to the mass density δ) can be computed from one-point
measurements rather than computationally more expensive n-point
correlations. Their idea was implemented by PSD and Paranjape
et al. (2013b) to haloes extracted from N-body simulations in order
to test the predictions of the ESP formalism. Namely haloes were
traced back to their ‘protohalo’ patch (since one is interested in
measuring Lagrangian biases) in the initial conditions, the linear
density field was smoothed on some ‘large-scale’ Rl and the quantity
Hn(νl = δl/σ0l) was computed (for n = 1, 2 only) at the location of
each protohalo. The average of Hn(νl) over all protohaloes reads

1

N

N∑
i=1

Hn(νl) =
∫ +∞

−∞
dνl N (νl)〈1 + δh|νl〉Hn(νl), (21)

where δh is the overdensity of protohaloes. This expression assumes
that the first-crossing condition can be implemented through a con-
straint of the form equation (9), so that P (νl) is well approximated
by a Gaussian (Musso et al. 2012). For the ESP considered here,
this ensemble average reads

1

n̄ESP

∫ +∞

−∞
dνl N (νl)〈nESP|νl〉Hn(νl)

= 1

n̄ESP

∫
d11w nESP(w) (−εν)n

×
(

∂

∂ν
+ εu

εν

∂

∂u
+ εμ

εν

∂

∂μ

)n

P1(w). (22)

MNRAS 441, 1457–1467 (2014)



Measuring non-local Lagrangian peak bias 1461

Here, εX denotes the cross-correlation between νl and the variables
X = (ν, u, μ) defined at the halo smoothing scale. The right-hand
side reduces to a sum of nth-order bias factors bijk weighted by
products of εν , εu and εμ. Relations between bias factors of a given
order (which arise owing to their close connection with Hermite
polynomials, see e.g. Musso et al. 2012) can then be used to extract
a measurement of each bijk.

Before we generalize this approach to the chi-squared bias fac-
tors χ ij, we emphasize that, in this cross-correlation approach, the
smoothing scale Rl can take any value as long as it is distinct from
the halo smoothing scale. Paranjape et al. (2013b) chose Rl � Rs

in the spirit of the peak-background split but this requirement is, in
fact, not necessary as long as the correlation between the two scales
is taken into account. In any case, we will stick with the notation Rl

for convenience.

3.2 Bias factors χ ij: Laguerre polynomials

The approach presented above can be generalized to χ2 distribu-
tions. The main difference is the appearance of Laguerre polyno-
mials L(α)

n . Consider for instance the χ2-quantity 3η2 smoothed at
the scale Rl, i.e. 3η2

l . In analogy with equation (21), the ensemble
average of L(1/2)

n (3η2
l ) at the peak positions is

1

N

N∑
i=1

L(1/2)
n

(
3η2

l

2

)
=

∫ ∞

0
d(3η2

l ) χ2
3 (3η2

l )

× 〈
1 + δh|3η2

l

〉
L(1/2)

n

(
3η2

l

2

)
. (23)

The conditional average 〈1 + δh|3η2
l 〉 reads

〈
1 + δh|3η2

l

〉 = 1

n̄ESP

∫
d11w nESP(w)P1

(
w|3η2

l

)

= 1

n̄ESP

∫
du dν dμN (ν, u, μ)

×
∫

d(3η2) χ2
3 (3η2|3η2

l )
∫

d(5ζ 2) χ2
5 (5ζ 2)

×
∫

d(angles) P (angles) nESP(w). (24)

We substitute this relation into equation (23) and begin with the
integration over the variable 3η2

l .
We use the following relation (which can be inferred from equa-

tion 7.414 of Gradshteyn & Ryzhik 1994):∫ ∞

0
dx e−xxj+αL(α)

n (x) = (−1)n

n!

j ! �(j + α + 1)

(j − n)!
. (25)

With the aid of this result and on expanding the conditional χ2-
distribution χ2

3 (3η2|3η2
l ) in Laguerre polynomials (see Appendix B

for details), we obtain∫ ∞

0
d(3η2

l ) χ2
3 (3η2

l ) L(1/2)
n

(
3η2

l

2

)
χ2

3 (3η2|3η2
l )

= (−1)n

n!

1

�(3/2)

(
3η2

2

)α
e−3η2/2(1−ε2)

2
(
1 − ε2

)α+1

×
∞∑

j=0

j !

(j − n)!

( −ε2

1 − ε2

)j

L
(1/2)
j

[
3η2

2(1 − ε2)

]
. (26)

For simplicity, let us consider the cases n = 0, 1 solely. For n = 0,
the sum simplifies to
∞∑

j=0

( −ε2

1 − ε2

)j

L
(1/2)
j

[
3η2

2(1 − ε2)

]

= (
1 − ε2

)3/2
exp

[(
ε2

1 − ε2

)
3η2

2

]
, (27)

and the integral equation (26) (L(1/2)
0 (3η2

l /2) ≡ 1) is trivially equal
to χ2

3 (3η2) (as it should be, since we are essentially marginalizing
over 3η2

l ).
For n ≥ 1, the sum can be evaluated upon taking suitable deriva-

tives of the right-hand side of equation (27), which indeed is a
generating function for the Laguerre polynomials L(1/2)

n . For n = 1,
a little algebra leads to
∞∑

j=0

j

( −ε2

1 − ε2

)j−1

L
(1/2)
j

[
3η2

2(1 − ε2)

]

= (
1 − ε2

)5/2
L

(1/2)
1

(
3η2

2

)
exp

[(
ε2

1 − ε2

)
3η2

2

]
. (28)

Hence, equation (26) with n = 1 equals ε2L
(1/2)
1 (3η2/2)χ2

3 (3η2).
Performing the remaining integrals over ν, u, μ and 5ζ 2 (the integral
over the angles is trivially unity) and taking into account the ESP
constraint through the multiplicative factor nESP(w), equation (23)
simplifies to∫ ∞

0
d(3η2

l ) χ2
3 (3η2

l )
〈
1 + δh|3η2

l

〉
L

(1/2)
1

(
3η2

l

2

)
= −ε2σ 2

1 χ10.

(29)

For the variable 3η2, the cross-correlation coefficient ε is

ε2 ≡ 〈η2η2
l 〉 − 〈η2〉〈η2

l 〉√(〈η4〉 − 〈η2〉2
) (〈η4

l 〉 − 〈η2
l 〉2

) =
(

σ 2
1X

σ1sσ1l

)2

, (30)

which we shall denote as ε1 in what follows. Furthermore,

σ 2
n× = 1

2π2

∫ ∞

0
dk k2(n+1) P (k)WG(kRs)WG(kRl) (31)

designates the splitting of filtering scales, i.e. one filter is on scale
Rs while the second is on scale Rl. It should be noted that, unlike
σ 1X defined in equation (6), both filtering kernels are Gaussian.

The derivation of the bias factors χ0k associated with the quadratic
variable ζ 2 proceeds analogously. In particular,∫ ∞

0
d(5ζ 2

l ) χ2
5 (5ζ 2

l )
〈
1 + δh|5ζ 2

l

〉
L

(3/2)
1

(
5ζ 2

l

2

)
= −ε2σ 2

2 χ01.

(32)

Here, the cross-correlation coefficient is ε = σ 2
2X/(σ2sσ2l) ≡ ε2.

Note that, in both cases, the cross-correlation coefficient drops very
rapidly as Rl moves away from Rs for realistic CDM power spec-
tra. In addition, one could in principle choose Rl < Rs (if there is
enough numerical resolution) to measure χ ij.

4 TEST W I TH NUMERI CAL SI MULATI ONS

In this section, we first validate our predictions based on peaks of
Gaussian random fields with measurements extracted from random
realizations of the Gaussian linear density field, and then move
on to calculate χ10 and χ01 for M � M� haloes, where M� is the
characteristic mass of the haloes.
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Figure 2. Sections for νl, 3η2
l and 5ζ 2

l (from left to right). A filtering scale of Rl = 5 and 10 h−1 Mpc is used for the first and second row, respectively. Note
that a tophat kernel is applied for νl, while a Gaussian window is used for η2

l and ζ 2
l . In each panel, the dimension of the section is 200 × 200 h−2 Mpc2.

4.1 Peaks of Gaussian random fields

We generate random realizations of the Gaussian, linear density field
with a power spectrum equal to that used to seed the N-body simula-
tions described above. To take advantage of Fast Fourier Transforms
(FFTs), we simulate the linear density field in periodic, cubic boxes
of side 1000 h−1 Mpc. The size of the mesh along each dimension
is 1536. We smooth the density field on scale Rs = 5 h−1 Mpc with
a tophat filter and find the local maxima by comparing the density
at each grid point with its 26 neighbouring values.

We then smooth the density field on the larger scales Rl = 10, 15
and 20 h−1 Mpc with a Gaussian filter and compute

η2
l = 1

σ 2
1l

(∇δl)
2 (33)

ζ 2
l = 3

2σ 2
2l

tr

[(
∂i∂j δl − 1

3
δij∇2δl

)2
]
. (34)

These density fields with derivatives sensitively depend on the
smoothing scales used. To illustrate this, we show in Fig. 2 sec-
tions of νl, 3η2

l and 5ζ 2
l . The sections, each of which of dimensions

200 × 200 h−2 Mpc2, were generated at z = 99 with the same ran-
dom seed. The first row corresponds to Rs = 5 h−1 Mpc, whereas the
second row displays results on the filtering scale Rl = 10 h−1 Mpc.
We note that, for the normalized density field νl, an increase in the
smoothing scale washes out the small-scale features, but the large-
scale pattern remains. For the quadratic variable η2

l however, the
resemblance between the features at the small and large filtering
scale is tenuous. This is even worse for ζ 2

l .

Compared to νl, the fields η2
l and ζ 2

l have one and two additional
derivatives which give rise to an effective window function whose
isotropic part is given by

Weff (k, R) = kne−(kR)2/2, (35)

where n = 0, 1 and 2 for νl, η2
l and ζ 2

l , respectively. For n = 0,
the window becomes narrower as Rl increases, yet remains unity
for wavenumbers k � 1/Rl. Weff reaches a maximum at

√
n/R.

Hence, for n = 1 and 2, Weff selects predominantly wavemodes with
k ∼ 1/R. Consequently, since in a Gaussian random field the wave-
modes at different scales are uncorrelated, patterns in the fields η2

l

and ζ 2
l can change drastically as Rl varies. This effect is expected

to be most significant for n = 2, i.e. ζ 2
l .

For each local density maxima, we store the peak height ν as
well as the value of η2

l and ζ 2
l at the peak position. The left-hand

panel of Fig. 3 displays as histograms the resulting probability
distribution P (3η2

l |pk) for three different values of Rl = 10, 15
and 20 h−1 Mpc. The solid curves represent the theoretical predic-
tion equation (B4) with x = 〈3η2|pk〉 = 0 and ε1 = 0.71, 0.44
and 0.29 (from the smallest to largest Rl) as was measured from
the random realizations. The dashed curve is the unconditional
χ2-distribution with 3 d.o.f. The theory gives excellent agreement
with the simulations. Note also that we did not find any evidence for
a dependence on the peak height, as expected from the absence of a
correlation between ν and η2

l . The right-hand panel of Fig. 3 shows
results for ζ 2

l . Here, however, since the cross-correlation coefficient
diminishes very quickly when Rl even slightly departs from Rs,
we show result for Rl = 10 h−1 Mpc only, which corresponds to
ε2 = 0.57. In addition, because one should expect a dependence of
the shape of the density profile around peaks to the peak height, we
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Figure 3. Conditional probability distribution for the variables 3η2
l (left-hand panel) and 5ζ 2

l (right-hand panel) measured at the position of maxima of the
linear density field smoothed with a Gaussian filter on scale R = 5 h−1 Mpc. Left-hand panel: histograms indicate the results for Rl = 10, 15 and 20 h−1 Mpc,
which leads to ε1 = 0.71, 0.44 and 0.29 as quoted in the figure. Right-hand panel: histograms show the results for a fixed Rl = 10 h−1 Mpc (which implies
ε2 = 0.57) but several peak height intervals. In all cases, the solid curves are the theoretical prediction (see text) whereas the dashed (green) curves represents
the unconditional distribution χ2

k (y).

consider three different ranges of ν as indicated in the figure. The
solid curves indicate the theoretical prediction equation (B4) with
ε2 = 0.57 and x = 〈5ζ 2|pk〉, where

〈5ζ 2|pk〉 = −2∂α ln
∫ νmax

νmin

dν G
(α)
0 (γ1, γ1ν). (36)

Here, G
(α)
0 is the integral of f(u, α) over all the allowed peak curva-

tures. The average 〈5ζ 2|pk〉 increases with the peak height to reach
5 in the limit ν → ∞. The figure shows a clear deviation from the
unconditional distribution χ2

5 (5ζ 2
l ) (shown as the dashed curve) and

a dependence on ν consistent with theoretical predictions.

4.2 Dark matter haloes

Having successfully tested the theory against numerical simulations
of Gaussian peaks, we will now attempt to estimate the bias factors
χ10 and χ01 associated with dark matter haloes. For this purpose,
we first trace back all dark matter particles belonging to virialized
haloes at redshift z = 0 to their initial position at z = 99. We then
compute the centre-of-mass positions of these Lagrangian regions
and assume that they define the locations of protohaloes. We can
now proceed as for the Gaussian peaks and compute ν, η2

l and ζ 2
l at

the position of protohaloes.
The quadratic bias factors χ10 and χ01 could be in principle

computed analogously to Paranjape et al. (2013b), i.e. by stacking
measurements of η2

l and ζ 2
l at the locations of protohaloes as

σ 2
1sχ̂10 = − 1

Nε2
1

N∑
i=1

L
(1/2)
1

(
3η2

l

2

)
(37)

and

σ 2
2sχ̂01 = − 1

Nε2
2

N∑
i=1

L
(3/2)
1

(
5ζ 2

l

2

)
. (38)

Here, N is the number of haloes, s designates smoothing at the halo
mass scale with a Gaussian filter WG on scale RG(RT), whereas
l designates Gaussian smoothing at the large-scale Rl. However,
because the cross-correlation coefficient is fairly small unless Rl is
very close to RG, we decided to compute χ10 and χ01 by fitting
the probability distribution P (3η2

l |halo) and P (5ζ 2
l |halo) with the

conditional χ2-distribution χ2
k (y|x). Namely

σ 2
1sχ̂10 = 1

2

(〈3η2|halo〉 − 3
)

σ 2
2sχ̂01 = 1

2

(〈5ζ 2|halo〉 − 5
)
, (39)

where 〈3η2|halo〉 and 〈5ζ 2|halo〉 are the best-fitting values obtained
for x. We used measurements obtained at the smoothing scale Rl =
10 h−1 Mpc only to maximize the signal.

To predict the value of RG given RT, we followed PSD and
assumed that RG(RT) can be computed through the requirement
that 〈δG|δT〉 = δT. This yields a prediction for the value of the cross-
correlation coefficients ε1 and ε2 as a function of halo mass, which
we can use as an input to χ2

k (y|x) and only fit for x. However,
we found that using the predicted ε1 leads to unphysical (negative)
values for x when one attempts to fit P (3η2

l |halo). Therefore, we
decided to proceed as follows.

(i) Estimate both ε1 and x = 〈3η2|halo〉 by fitting the model
χ2

3 (y|x; ε1) to the measured P (3η2
l |halo).

(ii) Compute ε2 assuming that the same RG enters the spectral
moments.

(iii) Estimate x = 〈5ζ 2
l |halo〉 by fitting the theoretical model

χ2
5 (y|x; ε2) to the simulated P (5ζ 2

l |halo).

We considered data in the range 0 < 3η2
l < 8 and 0 < 5ζ 2

l < 12
and gave equal weight to all the measurements (assuming Poisson
errors does not affect our results significantly). Table 1 summa-
rizes the best-fitting values obtained for four different halo bins
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Table 1. Best-fitting parameter values as a function of halo
mass. The latter is in unit of 1013 M� h−1. Note that we also
list the values of ε2 even though it is not directly fitted to the
data (see text for details).

Halo mass 〈3η2|halo〉 ε1 〈5ζ 2|halo〉 (ε2)

M > 30 0.71 0.80 2.98 (0.70)
10 < M < 30 1.24 0.66 4.49 (0.52)
3 < M < 10 1.62 0.54 5.82 (0.37)
1 < M < 3 1.94 0.49 6.12 (0.31)

Figure 4. Conditional probability distribution for 3η2
l (top panel) and 5ζ 2

l
(bottom panel) measured at the centre-of-mass position of protohaloes. The
filter is Gaussian with Rl = 10 h−1 Mpc. The various curves show the best-
fitting theoretical predictions for the halo mass bins considered here. Halo
mass range is in unit of 1013 M� h−1. Poisson errors are much smaller than
the size of the data points and, therefore, do not show up in the figure.

spanning the mass range 1013−1015 M� h−1, whereas the mea-
sured probability distributions together with the best-fitting models
are shown in Fig. 4. The data are reasonably well described by a
conditional χ2-distribution, but the fit is somewhat poorer when the
cross-correlation coefficient is close to unity.

The second-order bias factors χ10 and χ01 of the dark matter
haloes at z = 0 can be readily computed from equation (39) using
the best-fitting values of 〈3η2|halo〉 and 〈5ζ 2|halo〉. The results are
shown in Fig. 5 as the data points. Error bars indicate the scat-
ter among the various realizations and, therefore, likely strongly
underestimate the true uncertainty. The dashed curves indicate the
predictions of the ESP formalism. The measurements, albeit of the
same magnitude as the theoretical predictions, quite disagree with
expectations based on our ESP approach, especially χ01 which re-
verses sign as the halo mass drops below 1014 M� h−1.

4.3 Interpretation of the measurements

To begin with, we note that, if haloes were forming out of randomly
distributed patches in the initial conditions, then both χ10 and χ01

Figure 5. The bias factors σ 2
1 χ10 and σ 2

2 χ01 of dark matter haloes identified
in the N-body simulations at z= 0 are shown as filled (green) circle and (blue)
triangle, respectively. Error bars indicate the scatter among six realizations.
The horizontal dashed (green) line at −3/2 and the dashed (blue) curve are
the corresponding ESP predictions. The dotted (blue) curve is σ 2

2 χ01 in a
model where haloes are allowed to collapse in filamentary-like structures.
The solid curves are our final predictions, which take into account the offset
between peak position and protohalo centre-of-mass (see text for details).

would be zero since 〈3η2〉 = 3 and 〈5ζ 2〉 = 5 for random field
points.

The measured dimensionless bias factor σ 2
1 χ10 is always neg-

ative, which indicates that haloes collapse out of regions which
have values of η2 smaller than average. In our ESP approach, we
assume that the centre-of-mass position of protohaloes exactly co-
incides with that of a local density peak, so that σ 2

1 χ10 ≡ −3/2.
However, simulations indicate that, while there is a good correspon-
dence between protohaloes and linear density peaks, the centre-of-
mass of the former is somewhat offset relative to the peak position
(see e.g. Porciani, Dekel & Hoffman 2002; Ludlow & Porciani
2011). To model this effect, we note that, if the protohalo is
at a distance R from a peak, then the average value of 3η2 is
〈3η2〉(R) = ε2

1 (R)(〈3η2|pk〉 − 3) (in analogy with the fact that the
average density at a distance R from a position where δ ≡ δc is
〈δ〉(R) = ξδ(R) δc). Assuming that the offset R follows a Gaussian
distribution, the halo bias factor is

σ 2
1sχ10 = −3

2

√
2

π

∫ ∞

0

dR

σ

(
R

σ

)2

e−R2/2σ 2
ε2

1 (R). (40)

The rms variance σ (M) of the offset distribution, which generally
depends on the halo mass, can be constrained from our measure-
ments of χ10 for dark matter haloes. The best-fitting power-law
function,

σ (M) = 2.50

(
M

1013 M� h−1

)0.063

h−1 Mpc, (41)

turns out to be a weak function of halo mass. In unit of the (tophat)
Lagrangian halo radius, this translates into σ/RT ≈ 0.79 and ≈0.36
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for a halo mass M = 1013 and 1014 M� h−1, respectively. The re-
sulting theoretical prediction is shown as the solid curve in Fig. 5
and agrees reasonably well with our data. This crude approxima-
tion demonstrates that an offset between the protohalo centre-of-
mass and the peak position can have a large impact on the inferred
value of χ10, since the latter is very sensitive to small-scale mass
distribution.

Likewise, an offset between the protohalo centre-of-mass and the
position of the linear density peak will also impact the measurement
of χ01, yet cannot explain the observed sign reversal. In this regard,
one should first remember that density peaks become increasingly
spherical as ν → ∞. Nevertheless, while their mean ellipticity 〈e〉
and prolateness 〈p〉 converge towards zero in this limit, 〈v〉 = 〈ue〉
approaches 1/5 at fixed u (see equation 7.7 of Bardeen et al. 1986).
Hence, 〈ζ 2〉 = 〈3v2 + w2〉 does not tend towards zero but rather
unity, like for random field points. Consequently, σ 2

2 χ01 → 0 in the
limit ν → ∞. Secondly, at any finite ν, our ESP approach predicts
that χ01 be negative because we have assumed that protohaloes
only form near a density peak (λ3 > 0, where λ1 ≥ λ2 ≥ λ3 are
the eigenvalues of −∂i∂j δ). However, N-body simulations strongly
suggest that a fraction of the protohaloes collapse along the ridges
or filaments connecting two density maxima, and that this fraction
increases with decreasing halo mass (Ludlow & Porciani 2011). To
qualitatively assess the impact of such primeval configurations on
χ01, we extend the integration domain in the plane (v, w) to include
all the points with λ2 > 0 and λ3 < 0 (but still require that the cur-
vature u be positive). This way we not only consider density peaks,
but also extrema that correspond to filamentary configurations. The
resulting curvature function f(u, α) can be cast into the compact
form

f (u, α) = 1

α4

⎧⎨
⎩ e− 5αu2

2√
10π

(
αu2 − 16

5

)

+ e− 5αu2
8√

10π

(
31αu2 + 32

5

)
+

√
α

2

(
αu3 − 3u

)

×
[

erf

(√
5α

2

u

2

)
+ erf

(√
5α

2
u

)
− 1

]⎫⎬
⎭. (42)

The dotted curve in Fig. 5 shows σ 2
2 χ01 when the filamentary con-

figurations are included. While it agrees with the original ESP pre-
diction at large halo mass, it reverses sign around 1014 M� h−1

because, as the peak height decreases, configurations with λ3 < 0
or, equivalently, large values of ζ 2 become more probable. The solid
curve takes into account, in addition to filamentary configurations,
an offset between the protohalo and the peak position according to
the simple prescription discussed above. This is our final predic-
tion for σ 2

2 χ01. It is clearly at odds with the measurements, which
strongly suggest that σ 2

2 χ01 can be very different from zero for
M � 1013 M� h−1.

It is beyond the scope of this paper to work out a detailed
description of the measurements. Using a value of RG different
than that obtained through the condition 〈δG|δT〉 = δT has a large
impact on the mass function, suggesting that it will be difficult
to get a good fit of both the mass function and the bias factors
χ10 and χ01. Before concluding however, we note that, if the La-
grangian clustering of haloes also depends on s2(x) = sij (x)sij (x),

where (in suitable units)

sij (x) = ∂i∂j φ(x) − 1

3
δij δ(x), (43)

then we are not measuring χ01 but some weighted and scale-
dependent combination of both χ01 and the Lagrangian bias γ 2

associated with s2(x). Recent numerical work indeed suggests that
γ 2 might be non-zero for massive haloes (Baldauf et al. 2012; Chan,
Scoccimarro & Sheth 2012; Sheth, Chan & Scoccimarro 2013). In
this regards, our approach can furnish a useful cross-check of these
results since it can provide a measurement of γ 2 which is indepen-
dent of the bispectrum.

5 C O N C L U S I O N

Dark matter haloes and galaxies are inherently biased relative to
the mass density field, and this bias can manifest itself not only in
n-point statistics such as the power spectrum or bispectrum, but also
in simpler one-point statistics. In this work, we took advantage of
this to ascertain the importance of certain non-local Lagrangian bias
factors independently of a two-point measurement. We extended the
cross-correlation technique of Musso et al. (2012) to χ2-distributed
variables, focusing on the quadratic terms η2(x) and ζ 2(x) (see
equation 20) which arise from the peak constraint and for which we
have theoretical predictions. In principle, however, our approach
could be applied to measure the Lagrangian bias factor associated
with any χ2-distributed variable such as the tidal shear for instance.
We validated our method with peaks of Gaussian random field
before applying it to a catalogue of dark matter haloes with mass
M > 1013 M� h−1. Including an offset between the protohalo centre-
of-mass and the peak position in the modelling (motivated by the
analysis of Ludlow & Porciani 2011), we were able to reproduce
our measurements of the non-local bias σ 2

1 χ10. Our result χ10 < 0
is consistent with the findings of Ludlow & Porciani (2011), who
demonstrated that protohaloes with M > 1013 M� h−1 preferentially
form near initial density peaks (χ10 ≡ 0 for a random distribution).
However, we were unable to explain the measurements of σ 2

2 χ01,
even with the additional assumption that a fraction of the haloes
collapse from filamentary-like structures rather than density peaks.
We speculate that a dependence of the halo Lagrangian bias on s2(x)
might be needed to explain this discrepancy.

The dependence on η2(x) induces a correction −2χ10(k1 · k2)
to the halo bias which, for collinear wavevectors k1 and k2

of wavenumber 0.1 h−1 Mpc, is �b ≈ 0.02 (0.05) and ≈0.30
(0.88) for haloes of mass M = 1013 and 1014 M� h−1 at red-
shift z = 0 (1), respectively. Relative to the evolved, linear halo
bias bE

1 ≡ 1 + b100, the fractional correction is �b/bE
1 ∼2 per cent

and ∼15 per cent for the same low and high halo mass in the red-
shift range 0 < z < 1. Hence, this correction can safely be ignored
for M = 1013 h−1 Mpc, but it could become relevant at larger halo
masses.

We also refined the ESP approach of PSD so that clustering
statistics can be straightforwardly computed from the (effective)
bias expansion equation (19) (following the prescription detailed
in Desjacques 2013). We checked that the predicted halo mass
function, from which all the bias factors can be derived, agrees well
with the numerical data. However, some of the model ingredients,
especially the filtering of the density field, will have to be better
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understood if one wants to make predictions that are also accurate
at small scales.
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A P P E N D I X A : T H E C U RVAT U R E F U N C T I O N
O F D E N S I T Y PE A K S

The curvature function of density peaks is (Bardeen et al. 1986)

f (u, α) = 1

α4

⎧⎨
⎩ e− 5αu2

2√
10π

(
αu2 − 16

5

)

+ e− 5αu2
8√

10π

(
31

2
αu2 + 16

5

)
+

√
α

2

(
αu3 − 3u

)

×
[

erf

(√
5α

2

u

2

)
+ erf

(√
5α

2
u

)]⎫⎬
⎭. (A1)

Note that Desjacques et al. (2010) introduced the extra variable α

in order to get a closed form expression for their two-point peak
correlation, while Desjacques (2013) showed that α �= 1 can be
interpreted as a long-wavelength perturbation in ζ 2(x).

APPENDI X B: BI VARI ATE χ2 DI STRI BU TIO NS

We take the following expression for the bivariate χ2-distribution
(Gunst & Webster 1973)

χ2
k (x, y; ε) = (xy)k/2−1

2k�2(k/2)

(
1 − ε2

)−k/2
e
− x+y

2(1−ε2)

× 0F1

(
k

2
;

ε2xy

4(1 − ε2)2

)
, (B1)

where x and y are distributed as χ2-variables with k d.o.f., ε2 ≤ 1
is their correlation and 0F1 is a confluent hypergeometric function.

Figure A1. Conditional chi-squared distribution χ2
k (y|x; ε) for 3 and 5

d.o.f. Results are shown for several values of x and a fixed cross-correlation
coefficient ε = 0.7. The dashed (green) curve represents the unconditional
distribution χ2

k (y).
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On using the fact that modified Bessel functions of the first kind
can be written as Iα(x) = i−αJα(ix), where

Jα(x) = (x/2)α

�(α + 1)
0F1

(
α + 1; −x2

4

)
, (B2)

the bivariate χ2-distribution can be reorganized into the product

χ2
k (x, y; ε) = χ2

k (x)χ2
k (y|x; ε), (B3)

where

χ2
k (y|x; ε) = e

− y+ε2x

2(1−ε2)

2(1 − ε2)

( y

ε2x

)α/2
Iα

(
ε
√

xy

1 − ε2

)
, (B4)

and α = k/2 − 1. This conditional distribution takes a form similar
to that of a non-central χ2-distribution χ2′

k (x; λ), where λ is the
non-centrality parameter. Fig. A1 displays χ2

k (y|x; ε) for several

values of x, assuming k = 3 and 5. Note that χ2
k (y|x = k; ε) is

different from χ2
k (y).

Using the series expansion of χ2′
k (x; λ) in terms of Laguerre

polynomials (Tiku 1965), we arrive at

χ2
k (y|x; ε) = e

− y

2(1−ε2)

2(1 − ε2)α+1

(y

2

)α

×
∞∑

j=0

(
−ε2

1−ε2

)j

�
(

1
2 k + j

) ( x

2

)j

L
(α)
j

[
y

2(1 − ε2)

]
. (B5)

This series expansion is used to obtain the right-hand side of equa-
tion (26).
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