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A new method, herein referred to as optimal mode decomposition (OMD), of finding
a linear model to describe the evolution of a fluid flow is presented. The method
estimates the linear dynamics of a high-dimensional system which is first projected
onto a subspace of a user-defined fixed rank. An iterative procedure is used to find
the optimal combination of linear model and subspace that minimizes the system
residual error. The OMD method is shown to be a generalization of dynamic mode
decomposition (DMD), in which the subspace is not optimized but rather fixed to be
the proper orthogonal decomposition (POD) modes. Furthermore, OMD is shown to
provide an approximation to the Koopman modes and eigenvalues of the underlying
system. A comparison between OMD and DMD is made using both a synthetic
waveform and an experimental data set. The OMD technique is shown to have lower
residual errors than DMD and is shown on a synthetic waveform to provide more
accurate estimates of the system eigenvalues. This new method can be used with
experimental and numerical data to calculate the ‘optimal’ low-order model with a
user-defined rank that best captures the system dynamics of unsteady and turbulent
flows.

Key words: computational methods, low-dimensional models, nonlinear dynamical systems

1. Introduction
The temporal dynamics of a fluid flow form an infinite-dimensional system. A

common objective is to find a low-order representation of the fluid system which is
amenable to estimation and control methods. The reasons for wanting to control the
motion of a fluid are many and varied, such as reducing drag, noise, vibration or to
promote efficient mixing. Often, in practical applications, the economic argument
for even the most modest improvement in these areas is compelling. Therefore,
the question of how best to approximate high-dimensional dynamics by a lower-
dimensional system is a pertinent one. In many instances, even defining what
constitutes the best estimate is not obvious and is dependent on the task at hand.

In some instances the dominant features of the flow, such as regular vortex
shedding or a steady separation point, can be modelled using analytic expressions
with appropriate approximations and used in control schemes. These methods are
successful when carefully applied (Pastoor et al. 2008), but they lack the general
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applicability offered by a data-driven approach. In these approaches, large sets of data
from experiment or simulation are acquired with the objective of consolidating it into
some reduced form, while retaining the most important dynamic information.

The first notable progress toward this goal was made by Lumley (1970) and
Sirovich (1987) with the introduction of proper orthogonal decomposition (POD),
sometimes also called Karhunen–Loève decomposition. This method decomposes the
given data set into a set of weighted orthogonal basis functions, or modes, which are
ordered according to the magnitude of their singular values and truncated as required.
This is equivalent to retaining the modes that capture the maximum proportion of
the flow energy for a given order of system. The POD modes do not contain any
information on the system dynamics, but provide a reduced-order representation of
the flow which can be subsequently used in methods such as Galerkin projection.
It has been used with notable success in the description of flows with dominant
or periodic features such as jets, wakes, etc. to identify coherent structures (see
Bonnet et al. (1994) among various others). The attractiveness of the POD method
is its unambiguous mode-selection criteria, ease of calculation and broad applicability.
Problems can arise, however, if the flow contains low-energy features that have a
disproportionately large influence on system dynamics, as discussed in Noack et al.
(2003). Such nonlinearities are commonly found in fluid systems, particularly those
with high acoustic emissions or with transient growth (Ilak & Rowley 2008). In a
POD analysis such features would not be prioritized and may be discarded unwittingly
during the truncation of modes (Ma, Ahuja & Rowley 2011), leading to a poor
dynamic model. Noack et al. (2003) proposed an improvement to POD-based Galerkin
models by introducing the concept of a shift mode. The shift mode augments the
chosen POD basis with a new orthogonal mode representing a correction to the mean
flow field. Low-order models created by Galerkin projection using this extended basis
can more accurately represent the transient system dynamics (Tadmor et al. 2007).

An alternative extension of POD was proposed by Rowley (2005) in the context
of snapshot data sampled from a controlled system. The method, known as balanced
POD, and involves truncating the set of POD modes in a way that equally prioritizes
the observability and controllability of the reduced-order system. Balanced POD has
the advantage of preserving modes most relevant to subsequent control analyses as
well as providing known error bounds with respect to the truncation. Ma et al. (2011)
demonstrated that balanced POD produces the same reduced-order system as the
eigenvalue realization algorithm (ERA) method devised by Juang & Pappa (1985).
Although equivalent, the implementation of each method raises different practical
considerations. Balanced POD, unlike ERA, explicitly calculates the truncated system
modes, which often prove useful for visual interpretation of the fluid model. However,
ERA does not require adjoint information so, unlike balanced POD, is not restricted to
use only on numerical simulations. A detailed comparison of balanced POD and the
ERA is provided by Ma et al. (2011).

Schmid (2010, 2011) recognized that the modes of a reduced-order system can be
given a dynamic context by inspecting the eigenvalues of a matrix approximating
their evolution. This approach, called dynamic mode decomposition (DMD), was
also shown by Rowley et al. (2009) to fit within a more general framework of
analysis utilizing the Koopman operator. Schmid (2010) arranged the data into a
time-ordered set and projected it onto a truncated POD basis in order to make the
problem numerically tractable. The eigenvalues of the resulting linear model can then
be directly related to the POD modes on which the model is based. This provides each
mode with an interpretation in terms of its decay rate and frequency content. Applying
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DMD to both experimental and numerical test data, Schmid (2010, 2011) found that
the eigenvalues of the linear map form groups and patterns in which the corresponding
modes have similar structural features.

The present study demonstrates that choosing the truncated set of POD modes as
the basis of the DMD analysis restricts its performance. One reason for this is that
POD modes do not intrinsically contain any dynamical information about the flow. In
this paper, a more general solution is proposed in which the low-rank basis and linear
dynamic matrix are calculated simultaneously. In this way, dynamical information
is utilized in the construction of the mode shapes which form the low-rank basis.
By doing this, an optimum can be found for which the residual error of the linear
approximation to the system evolution is always the same or smaller than that of
DMD.

The new method, called optimal mode decomposition (OMD), is formulated in § 2
with an explanation of how it generalizes DMD as a linear modelling methodology.
Alternatively, DMD may be interpreted (Rowley et al. 2009) as a method of
approximating the Koopman modes of the underlying fluid system (see Bagheri (2013)
for a discussion of when this interpretation is appropriate). Consequently, in § 3 we
discuss DMD, OMD and a recently developed technique ‘optimized dynamic mode
decomposition’ (opt-DMD) (Chen, Tu & Rowley 2012) in this context. It is shown
that the OMD algorithm can be thought of as providing a low-order approximation
to the action of the Koopman operator on the observable (see § 3 for the definition
of an observable) describing the data measurement process. OMD is also a natural
generalization of DMD in this context. However, it is explained why, at the current
state of the literature, it is unclear which method provides the best approximation to
the Koopman modes and eigenvalues. An algorithm for solving the OMD optimization
problem is proposed in § 4, followed by demonstrations on both synthetic and
experimental data set in §§ 5 and 6, respectively.

2. Low-order modelling, DMD and OMD
Suppose that f (x, t) represents the velocity of a fluid flow at time t and spatial

location x ∈ Ω in the domain Ω ⊂ R3 of the flow. Our aim is to extract information
about the dynamics of f from an ensemble of numerical or experimental snapshot data.
We assume that N pairs (uk,u+k )

N
k=1 of velocity snapshots are available. The vector uk

contains velocity data over a given field of view {x1, . . . , xp} ⊂ Ω at time tk, while
u+k is a snapshot recorded after some fixed time interval 1t. The snapshot data can
therefore be written as

uk =

f (x1, tk)
...

f (xp, tk)

 ∈ Rp, u+k :=

f (x1, tk +1t)
...

f (xp, tk +1t)

 ∈ Rp. (2.1)

It is important to note that, in practice, the function f is not known and is not linear.
The only data available are the snapshots (uk,u+k ) which must be used to deduce
information about the underlying process f (x, t). Note also that it is not assumed that
the data is sequential, i.e. tk+1 6= tk + 1t in general. To extract dynamical information
from (2.1), we aim to construct an approximation to the linearized dynamics of f over
the time step 1t. That is, we search for a matrix X ∈ Rp×p such that Xui ≈ u+i for each
snapshot pair (ui,u+i ). Each candidate X for the linearized dynamics has an associated
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set of residual vectors ri satisfying

Xui = u+i + ri, (2.2)

which appear as a consequence of any system nonlinearities, measurement noise or
model inaccuracies. An obvious initial choice for X is the matrix that minimizes the
residuals ri, found by solving the minimization problem

min
X
‖A− XB‖2 =min

X

N∑
i=1

‖u+i − Xui‖2
2, (2.3)

where B ∈ Rp×N and A ∈ Rp×N are matrices containing the ‘before’ and ‘after’ snapshot
images:

B := (u1 | · · · | uN) , A := (u+1 | · · · | u+N) . (2.4)

In (2.3) and for the remainder of the paper, ‖ · ‖ denotes the Frobenius matrix norm.
The drawback of this approach is that each snapshot uk ∈ Rp contains velocity

information at every point of the chosen spatial domain, meaning that p is typically
very large. Therefore, X ∈ Rp×p with p� N and solving (2.3) necessarily results in an
overfit of the data. The aim of low-order flow modelling is to overcome this problem
by constructing a low-rank matrix X from which fundamental properties of the flow
can be deduced.

In § 2.2 we describe how such a matrix X may be constructed by solving a rank-
constrained version of (2.3), providing a low-order approximation of the flow in terms
of intrinsic mode shapes and associated linearized dynamics. It is shown that the
resulting optimization problem reduces, in a special case, to the recently developed
technique of DMD (Schmid 2010, 2011) and hence provides an extension to DMD.
Moreover, numerical experiments in § 5 show that the method developed in this paper
more accurately extracts eigenvalue information from snapshot data. We begin by
briefly discussing the existing DMD theory.

2.1. DMD
In DMD, (2.3) is approximated by solving the associated minimization

min
S
‖A− BS‖2 (2.5)

where S ∈ RN×N , which reduces the problem dimension. Furthermore, the data is
assumed to be sequential in the sense that u+i = ui+1 and the matrix variable S is
assumed to be of companion form (see e.g. Schmid 2010). The reasoning behind this
approach is that the DMD method is able to extract eigenvalue information in the case
that the underlying dynamics are noise-free and linear. To see why this is true, suppose
that the system dynamics satisfy

∂f

∂t
= X f (x, t), t > 0, (2.6)

for a matrix X ∈ Rp×p with rank(X)6 N. It follows from (2.1) that

A= eX1tB (2.7)

and, consequently, the non-zero eigenvalues of S are equal to the eigenvalues of eX1t

(a proof of this statement is given in appendix A). The DMD eigenvalues of the
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system are defined by

λDMD
i := log λi(S)

1t
, (2.8)

where λi(S) are the eigenvalues of S. Hence, it follows that λDMD
i are exactly the

eigenvalues of the true system matrix X . In the noise-free linear case, DMD therefore
provides a complete dynamical description of the data ensemble. If data is sampled
from an underlying system with nonlinear dynamics, then the DMD eigenvalues
λDMD

i instead approximate the system’s Koopman modes (Rowley et al. 2009). This
interpretation is discussed in § 3.

To improve numerical stability, Schmid (2010) showed that one can instead calculate
λDMD

i by using eigenvalues of the matrix S̃ := U>AVΣ−1, where B = UΣV> is the
compact singular value decomposition of B. This is since the optimal S from (2.5) and
S̃ are related by the similarity transformation

S̃ = (ΣV>
)

S
(
VΣ−1

)
. (2.9)

Associated with each eigenvalue λDMD
i is a dynamic mode

ΦDMD
i := Uyi (2.10)

defined in terms of the eigenvector yi satisfying S̃yi = λi(S̃)yi. Each mode ΦDMD
i

identifies a structure of the flow whose temporal growth rate and frequency are
determined by λDMD

i .
It is shown in this paper that DMD can in fact be directly related to a rank-

constrained version of the minimization (2.3), and can therefore be considered as
a special case of a more general approach to low-order systems modelling. By
appropriately constraining the form of the linear model, a solution can be found
that is optimal in the sense of minimizing the norm of the residual error of the system
at a chosen rank. This optimization approach will now be introduced before its link to
DMD is explained in § 2.4.

2.2. Low-order modelling via OMD

To create a low-order approximation of the flow dynamics, we propose to solve the
following rank-constrained version of (2.3):

min ‖A− LML>B‖2

s.t. L>L= I

M ∈ Rr×r, L ∈ Rp×r

(2.11)

where r = rank(LML>)� p is the chosen fixed dimension of the low-order model to be
calculated.

In contrast to (2.3) and the DMD approach, (2.11) has two optimization variables,
the matrices L and M, endowing the low-order approximation with a particular
structure, illustrated schematically in figure 1. The matrix L determines a low-
dimensional subspace S of the flow field given by S := Im(L) ⊂ Rp, while M
provides dynamics on this low-order subspace. Note that we do not simply solve (2.3)
with the pure rank constraint rank(X) 6 r, since this would provide no meaningful
low-order basis for the flow.
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Low-order 
dynamics

FIGURE 1. Structure of the rank-constrained solution to (2.11). The approximate dynamics
X consist of: (i) a projection into Rr by L>; (ii) a time-shift by M; and (iii) an image
reconstruction by L.

We now describe, in terms of these two structural components, the evolution

v 7 LML>−−−−→ v+ (2.12)

of a flow field v ∈ Rp to a flow field v+ ∈ Rp under the low-order dynamics
X = LML>.

The dynamics X = LML> has three components, illustrated in figure 1. First, the
initial flow field v is represented in the low-dimensional subspace S by the vector
α = (αi) = L>v ∈ Rr. This vector is a sequence of weights which represent the
projection of v into S by

PRp→S (v)=
r∑

i=1

αiLi, (2.13)

where Li are the columns of L. Second, the low-order dynamics of the flow over 1t
are governed by M acting on the weight sequence α, meaning that the weights of
v+ are given by α+ := Mα. That is, M is a linear approximation to the evolution
of the projection weights, rather than the evolution of the original field v. Finally,
the flow field v+ is reconstructed by lifting the weight sequence α+ back to the
high-dimensional space Rp via

v+ :=
r∑

i=1

α+i Li = Lα+. (2.14)

Combining the three steps gives v+ = LML>v.
The columns of L now have the important interpretation as intrinsic mode shapes

of the flow since, by (2.14), the dynamics of the low-order model evolve entirely
on S = Im(L). Note also that due to the constraint L>L = I , the columns of L
are in fact an orthonormal basis for the low-dimensional subspace S ⊂ Rp. Hence,
L is optimal in the sense that it represents the best r-dimensional subspace of the
flow field in which to describe the dynamics of the snapshot data using a linear
model. Therefore, we refer to this rank-constrained decomposition as optimal mode
decomposition (OMD).
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We now introduce eigenvalues and dynamic modes, analogous to λDMD
i and ΦDMD

i ,
associated with the OMD approach (2.11). The OMD eigenvalues are defined by

λOMD
i := log λi(M)

1t
, (2.15)

where λi(M) are the eigenvalues of low-order dynamics matrix M from (2.11).
Associated with each eigenvalue λOMD

i is a dynamic mode

ΦOMD
i := Lzi (2.16)

defined in terms of the eigenvector zi satisfying Mzi = λi(M)zi and the low-order
subspace basis L from (2.11).

Each mode ΦOMD
i represents a structure of the flow with temporal growth rate

Re(λOMD
i ) and frequency Im(λOMD

i ). To see why this is the case, note that if T is the
matrix whose columns are the eigenvectors zi and Λ is a diagonal matrix containing
the eigenvalues λi(M), then

LML> = L(TΛT−1)L> = (LT )Λ
(
T−1L>

)
. (2.17)

Consequently, the modes ΦOMD
i (the columns of LT ) have temporal growth rate and

frequency determined by the eigenvalues λOMD
i .

Before providing a relationship between (λOMD
i , ΦOMD

i ) and their DMD counterparts
in § 2.4, we first emphasize the structure inherent in (2.11) by considering the problem
of extracting dynamic information from a simple sinusoidal flow.

2.3. Example: mode shapes and dynamics for a sinusoidal flow
In this section, it is shown that the dynamics of the sinusoidal flow

f (x, t)= sin(2πx− ωt)eγ t (2.18)

can be represented naturally by a model of the form X = LML>, motivating the OMD
method (2.11). Furthermore, the eigenvalues associated with the OMD method are
shown to be λOMD

i = γ ± iω, meaning that the temporal dynamics of the flow can be
exactly identified by solving (2.11).

Assume that data is sampled from (2.18) over a spatial window 0 = x1 < x2 <

· · · < xp = 1 of p equally spaced points in [0, 1]. For a chosen time step 1t, N pairs
(ui,u+i )

N
i=1 of flow snapshots are recorded in the form (2.1). For this simple example,

the two components L and M of the low-order model can be constructed explicitly.
(i) Low-dimensional subspace basis L: the flow dynamics can be separated into

spatial mode shapes and temporal weighting functions as

f (x, t)= a1(t)φ2(x)+ a2(t)φ2(x) (2.19)

where a1(t) := −sin(ωt)eγ t, a2(t) := cos(ωt)eγ t and φ1(x) := cos(2πx), φ2(x) :=
sin(2πx). The snapshots ui,u+i can therefore also be decomposed as

ui = a1(ti)v1 + a2(ti)v2, u+i = a1(ti +1t)v1 + a2(ti +1t)v2 (2.20)

for vectors v1,v2 ∈ Rp consisting of the values of φ1, φ2 at the points of the chosen
spatial window,

v1 := [φ1(x1) . . . φ1(xp) ]>, v2 := [φ2(x1) . . . φ2(xp) ]>. (2.21)

The vectors v1,v2 therefore represent intrinsic mode shapes with which the observed
snapshot data can be described, and their span S := sp(v1,v2)⊂ Rp is an appropriate

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

21
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
42

6

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.426


480 A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart

low-dimensional subspace in which to identify the snapshot dynamics. This subspace
can be represented as the image of the matrix

L :=

 ↑ ↑
v1/c v2/c
↓ ↓

 ∈ Rp×2, (2.22)

where c := ‖v1‖2 = ‖v2‖2. Furthermore, since v1,v2 are orthogonal, the constraint
L>L= I appearing in (2.11) is satisfied.

(ii) Low-order dynamics M: by (2.20), the flow dynamics depend entirely on the
weight functions a1(t), a2(t) which satisfy

d
dt

[
a1(t)
a2(t)

]
= eγ t

[
−γ sin(ωt)− ω cos(ωt)
γ cos(ωt)− ω sin(ωt)

]
=
(
γ −ω
ω γ

)[
a1(t)
a2(t)

]
. (2.23)

Since we want M to represent the evolution of the weights over 1t, we obtain[
a1(ti +1t)
a2(ti +1t)

]
= M

[
a1(ti)

a2(ti)

]
, M := e

(
γ −ω
ω γ

)
1t
. (2.24)

Combining the above expression for M with (2.20) and (2.22), the relation between
each snapshot pair (ui,u+i ) can be written simply as

u+i =
[
v1 v2

] [a1(ti +1t)
a2(ti +1t)

]
=
[
v1 v2

]
M

[
a1(ti)

a2(ti)

]
= LML>ui (2.25)

which is the form of the dynamics in (2.11). Finally, note that the rank constrained
eigenvalues λOMD given by (2.15) are the eigenvalues γ ± iω of(

λ −ω
ω λ

)
. (2.26)

Hence, the temporal growth rate γ and frequency ω of the flow (2.18) are exactly
identified by solving the OMD optimization (2.11).

Since the underlying dynamics of the flow (2.18) are linear and noise-free, both the
DMD and OMD methods will theoretically be able to exactly extract the eigenvalue
information. In § 5, the performance of both techniques are analysed for this example
when the snapshot data is corrupted with Gaussian noise. In the presence of noise,
neither method is able to exactly identify the true system eigenvalues. However, the
OMD method (2.11) is shown to consistently outperform DMD in this case.

2.4. Relationship between DMD and OMD
DMD (2.5) is a restricted case of the OMD (2.11). To see this, suppose that
instead of optimizing (2.11) over both variables, we assume that L is fixed and
that the optimization is performed over the single variable M. In other words, a
low-dimensional subspace of the flow field data is selected a priori and we search
only for the best dynamical representation of the flow on that subspace. Since the best
dynamics will depend on the particular subspace chosen, we denote the solution of this
restricted optimization problem by M∗(L).
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DMD OMD

Low-order subspace basis U L
Low-order dynamics S̃ M

Eigenvalues λDMD
i = 1

1t
log λi(S̃) λOMD

i = 1
1t

log λi(M)

Dynamic modes ΦDMD
i = Uyi ΦOMD

i = Lzi

TABLE 1. Structural components of the DMD and OMD flow models. When L= U the
OMD method is equivalent to DMD.

It is in fact possible to find an analytical expression for M∗(L) by equating the
partial derivative

∂
∥∥A− LML>B

∥∥2

∂M
= 2

[−L>BA>L+ L>BB>LM>
]

(2.27)

to zero, which implies that

M∗(L) := L>AB>L
(
L>BB>L

)−1
. (2.28)

Now consider the particular case when L is fixed to be the first r columns of U,
where B = UΣV> is the compact singular value decomposition of B. In other words,
the low-dimensional subspace represented by L is fixed to be an r-dimensional POD
basis. Under this restriction (2.28) becomes

M∗(U)= U>AB>U
(
U>BB>U

)−1 = U>AVΣ−1 = S̃. (2.29)

Recalling that S̃ is the matrix from (2.9) used in the DMD construction, it is now clear
that if L= U, then λOMD

i = λDMD
i and ΦOMD

i =ΦDMD
i .

Consequently, DMD can be calculated as a special case of the OMD optimization
problem (2.11). Furthermore, this relation implies that DMD can be interpreted as
producing low-order dynamics which are a projection of the flow onto a POD
subspace, followed by a time step governed by S̃. Viewed in this way as a rank-
constrained optimization of the form (2.11), the structural components of DMD are
summarized in table 1.

It is now apparent that the DMD method is restrictive in the sense that the
projection is onto a fixed POD subspace. Since POD modes, especially in the case
of randomly sampled data, do not intrinsically contain any dynamical information
about the flow, it is not clear that L = U is the optimal choice of low-dimensional
subspace basis. Indeed, the restriction to a fixed basis in DMD can result in significant
underperformance of DMD in some cases. We give such an example in appendix B.
This motivates solving (2.11) in which both the subspace represented by L and the
dynamics M are searched for simultaneously.

The difficulty in solving (2.11) is that the problem is non-convex. Our approach
to the problem is to use techniques from matrix manifold theory (Absil, Mahony &
Sepulchre 2008) which are employed in the § 4 to construct a method, Algorithm 1, to
solve the OMD problem (2.11).
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3. Koopman modes
Before proceeding to the numerical solution of the OMD problem (2.11), we explain

the relation between OMD, DMD and a related identification method in (Chen et al.
2012) referred to as ‘optimized DMD’ or opt-DMD in the context of the Koopman
modes and eigenvalues of the underlying fluid system.

3.1. A Koopman mode interpretation of OMD
An introduction to Koopman modes, and their relation to DMD, is given by Rowley
et al. (2009) and Mezić (2013) and we therefore present only a brief summary here.

Suppose that the underlying velocity field is represented by an element z of a
manifold Z and evolves over a time step 1t to a new state z+ ∈ Z via the dynamical
system z+ = F(z). The Koopman (or composition) operator C is defined to act on the
space of one-dimensional observables γ : Z→ C via the composition formula

Cγ := γ ◦ F. (3.1)

An observable is simply a scalar-valued function on the space Z. Since DMD and
OMD modes are in general complex, it is convenient to work with complex-valued
observables even if the underlying data are real. Now, Cγ : Z → C is itself an
observable on Z with (Cγ )(z)= γ (F(z))= γ (z+). Since C is a linear operator, we may
assume that it has an infinite basis of linearly independent eigenfunctions φC

i : Z→ C
and associated eigenvalues λC

i .
To consider data arising from experiments or simulations in fluid mechanics,

it is convenient to work with a vector-valued observable g : Z → Cp where, for
example, each component of g(z) represents the velocity at a particular point in the
instantaneous flow field z. A standard assumption is that there exist vectors vK

j ∈ Cp

such that

g(z)=
∞∑

j=1

vK
j φ

C
j (z). (3.2)

That is, it is assumed that each of the components of g lies in the span of the
Koopman eigenfunctions φC

j . Following (Budišić, Mohr & Mezić 2012), define the
space of all such observables by F p. The vectors vK

j are referred to as the Koopman
modes of the mapping F corresponding to the observable g. Since each φC

j is an
eigenfunction of C,

g(z+)=
∞∑

j=1

vK
j (Cφ

C
j )(z)=

∞∑
j=1

vK
j λ

C
j φ

C
j (z). (3.3)

The compelling aspect of this analysis is that the above equality is exact and that the
(nonlinear) evolution g(z) 7→ g(z+) of the observable can be described in terms of the
eigenvalues and eigenfunctions of the (linear) Koopman operator. Furthermore, (3.3)
allows a natural extension of the Koopman operator to act on such a vector-valued
observable g= (g1, . . . , gp)

> ∈F p via

(Cg)(z) :=
∞∑

j=1

vK
j (Cφ

C
j )(z)=

(Cg1)(z)
...

(Cgp)(z)

= g(z+), z ∈ Z. (3.4)
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Now, suppose that the data ensemble arises in terms of an observable g such that
(uj,u+j ) = (g(zj), g(z+j )). Then, using (3.4), the OMD optimization problem (2.11) can
be written in component form as

min
L,M

N∑
j=1

∥∥(Cg)(zj)− (LML>g)(zj)
∥∥2

2
, (3.5)

where the observable LML>g : Z → Cp is defined by (LML>g)(z) := LML>g(z).
Therefore, given the data ensemble arising from an observable g ∈ F p, OMD can
be though of as providing the optimal (in a least-squares sense) approximation to the
Koopman operator by a finite-rank operator of the form LML> :F p→F p.

We now explain the nature of the approximation that the OMD modes ΦOMD
i and

eigenvalues λOMD
i provide to the Koopman modes vK

j and eigenvalues λC
j . For the

remainder of this section it will be assumed that the data ensemble is sequential in the
sense that u+i = ui+1, i.e.

B = (u1 | · · · | uN)=
(
g(z1) | · · · | (CN−1g)(z1)

)
(3.6a)

A= (u2 | · · · | uN+1)=
(
(Cg)(z1) | · · · | (CNg)(z1)

)
(3.6b)

where z1 ∈ Z is the initial point of the underlying flow from which the data was
sampled.

Now, consider decision variables L ∈ Rp×r and M ∈ Rr×r appearing in the OMD
problem (2.11). Assume that M is diagonalizable as M = TΛT−1, define

V := B>L(L>BB>L)
−1 ∈ RN×r (3.7)

and recall that, by (2.16), the OMD modes ΦOMD
i are the columns of LT . Note also

that the matrix V appears in (2.28) as a result of optimizing the OMD residual over
M for a fixed choice of basis L. A consequence is that an optimal solution pair L,M
necessarily satisfies

M = L>AV . (3.8)

This choice of M is intrinsically linked to the approximation that OMD modes and
eigenvalues provide to the system’s Koopman modes and eigenvalues. To see why,
consider the observables ΦL

i : Z→ Cp defined by

ΦL
i (z) :=

N∑
j=1

vjiLL>g(Fj−1(z)), (3.9)

where (vij)
N×r
i=1,j=1 = V T and F is the mapping describing the evolution of the

underlying fluid system over one time step 1t. Using (3.6) it can be seen
that ΦL

i (z1) ∈ Cp is the ith column of the matrix LL>BV T . Furthermore, since
LL>BV T = LT it follows from (2.16) that ΦL

i (z1) = ΦOMD
i . In other words, the OMD

modes are equal to the values of the observables ΦL
i at the initial point z1 ∈ Z of the

underlying flow from which the data was sampled.
Now, the value of each observable (CΦL

i )(·) at the point z1 can be calculated using
the relation ((

CΦL
1

)
(z1) | · · · |

(
CΦL

r

)
(z1)
)= (LT )Λ+ L(L>AV − M)T (3.10)
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which is proved in theorem 2 of appendix A. Therefore, if L,M are optimal decision
variables for OMD, then (3.8) implies that

(CΦL
i )(z1)= λOMD

i ΦL
i (z1)= λOMD

i ΦOMD
i . (3.11)

Hence, the observables ΦL
i (·) behave like vector-valued eigenfunctions of the

Koopman operator with eigenvalues λOMD
i at the point z1 and, furthermore, are equal

to the OMD modes at that point: ΦL
i (z1) = ΦOMD

i . In this sense, the OMD eigenvalues
approximate a subset of the eigenvalues of the Koopman operator since, as is shown
in lemma 1, the eigenvalues of C :F p→F p are the eigenvalues λC

j of the Koopman
operator acting on scalar-valued observables.

We now link the OMD modes ΦOMD
i with the Koopman modes vK

i . Since
C : F p → F p is linear, we assume it has a basis of vector-valued eigenfunctions
ΦC

i ∈F p. By assumption g ∈F p and, therefore, there exist scalars αi ∈ C such that

g(z)=
∞∑

i=1

αiΦ
C
i (z). (3.12)

The interpretation of (3.11) is now that (λOMD
i , ΦL

i ) approximates the behaviour of a
true eigenvalue–eigenfunction pair (λC

j , Φ
C
j ) at the point z1 ∈ Z. Assuming that the

eigenvalue λC
j is simple with respect to the Koopman operator acting on scalar-valued

observables, lemma 1 of appendix A implies that ΦC
j = wjφ

C
j for some wj ∈ Cp.

Using this relation to expand (3.12) in terms of the scalar-valued eigenfunctions
φC

j , comparing the expression to (3.2) and invoking linear independence implies that
wjαj = vK

j . Hence,

ΦOMD
i =ΦL

i (z1)≈ΦC
j (z1)= vK

j

(
α−1

j φ
C
j (z1)

)
. (3.13)

In this sense each OMD mode ΦOMD
i approximates a Koopman mode vK

j , up to a
multiplicative scalar.

Interestingly, it is clear from (3.10) that equality holds in (3.11) for any decision
variables L,M satisfying (3.8). In other words, fixing L in (3.5) then optimizing
over M only can be interpreted as providing an approximation to the Koopman
eigenvalues and modes for any L. The particular case when L is fixed equal to U
therefore provides a Koopman mode interpretation of DMD. On the other hand OMD
searches over all pairs L,M for which equality holds in (3.11) to obtain the variables
which provide the ‘optimal’ (in the least-squares sense of (3.5)) approximation to the
Koopman operator of the finite-rank form LML> :F p→F p. It should be noted that
the motivation for DMD in the literature is a slight modification of this argument. For
the DMD case when L is fixed to be U, because UU>g(zi) = g(zi) one may instead
define the observables ΦU

i without the projection term UU>. The right-hand-side of
(3.10) corresponding to this choice of observables is then UTΛ + (A − UMU>B)V T .
Since DMD selects M = S̃ to minimize A − UMU>B, a similar argument to the above
implies that DMD approximates the Koopman eigenvalues and modes, albeit without
equality in (3.11). Note that the resulting residual A − US̃U>B is equal to the ‘re>’
term in Rowley et al. (2009, equation (3.12)) while (A − US̃U

>
B)V T is equal to the

‘ηre
>V−1’ term in Budišić et al. (2012, equation (57)).

Finally, it is important to emphasize that (3.11) does not imply that ΦL
i is an

eigenfunction of C, merely that ΦL
i behaves like an eigenfunction at the single point

z1 ∈ Z. Furthermore, (3.11) does not quantify the quality of the approximation that
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the observables ΦL
i provide to the true Koopman eigenfunctions ΦC

i . Essentially, this
is due to the fact that we only have information concerning a single point z1 ∈ Z of
the underlying fluid system. For this reason, we emphasize that it is not currently
possible to say whether either DMD or OMD provides a better approximation to the
true Koopman modes vK

j and eigenvalues λC
j .

3.2. Opt-DMD
Koopman modes also provide the motivation for the recently proposed opt-DMD
algorithm of Chen et al. (2012). To calculate opt-DMD, the following optimization
problem is solved:

min
V ,T

‖B − VT‖2

s.t. V ∈ Rp×r

T =


1 λ1 λ2

1 . . . λN−1
1

1 λ2 λ2
2 . . . λN−1

2
...

...
...

...

1 λr λ2
r . . . λN−1

r

 some λi ∈ R.
(3.14)

The resulting mode shapes Φopt-DMD
i are the columns of the optimal variable V with

eigenvalues λopt-DMD
i given by the corresponding entries of the optimal matrix T . The

link between opt-DMD and OMD is given by the fact, proven in theorem 3 of
appendix A, that (3.14) is equivalent to

min
L,M,ξ1

N∑
i=1

‖ui − (LML>)
i−1
ξ1‖2

2

s.t. L>L= I, M diagonalizable, ξ1 ∈ Im(L).

(3.15)

Thus, opt-DMD can be thought of as searching for the best (in a least-squares
sense) linear trajectory {ξ1,Xξ1, . . . ,X N−1ξ1} to fit the data {u1, . . . ,uN}, under the
restrictions: (i) the linear process has the low-order form X = LML>; and (ii) the initial
value ξ1 of the trajectory lies in the subspace spanned by L.

Note that while the DMD and OMD methods do not actually require a sequential
data ensemble to work, opt-DMD does require sequential data. The reader will also
observe that the objective function in (3.14) is an Nth-order polynomial function of the
parameters λi, where N is the number of data samples. As noted by Chen et al. (2012),
the resulting optimization problem is very difficult to solve, and the authors proposed
a randomized solution approach based on simulated annealing. In contrast, we show
in § 4 that a solution to the OMD optimization problem (2.11) can be computed
using a standard gradient-based algorithm which require only standard linear algebraic
operations, is deterministic and is guaranteed to converge.

The original Koopman-mode motivation for opt-DMD is explained by the fact that
the Vandermonde structure of T in (3.14) implies that the data sequence can be
represented as

ui =
r∑

j=1

(λ
opt-DMD
j )

i−1
Φ

opt-DMD
j + ri (3.16)

where ri are components of the associated optimization residual. On the other hand, a
recursive application of (3.3) implies that each ui can alternatively be written in terms
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of the true Koopman modes and eigenvalues as

ui =
∞∑

j=1

vK
j (λ

C
j )

i−1
φC

j (z1). (3.17)

Since (3.16) resembles a finite truncation of (3.17), it is argued by Chen et al. (2012)
that the opt-DMD modes and eigenvalues approximate a subset of the Koopman
modes and eigenvalues. Again, there is an unquantified approximation involved in this
argument, since even small residuals ri do not guarantee that the identified modes and
eigenvalues are close to a subset of the true Koopman modes and eigenvalues.

3.3. Optimal Koopman mode identification?
We end this section by briefly reiterating that, at the current state of the literature,
it is not clear which of DMD, OMD or opt-DMD produces the best approximation
to the Koopman modes and eigenvalues. This is since the arguments used to
relate the Koopman modes to the modes produced by each algorithm all require
an approximation step, as described in §§ 3.1 and 3.2, and the quality of the
approximation cannot be formally quantified for any of the methods.

However, since OMD (and DMD when L is fixed to be U) seeks to minimize the
least-squares sum of the residuals

(Cg)(zj)− (LML>g)(zj), (3.18)

it can be thought of as providing a finite rank approximation LML> :F p→F p to the
Koopman operator. On the other hand, opt-DMD seeks to minimize the least-squares
sum of residuals

(Cj−1g)(z1)− (LML>)
j−1
ξ1 (3.19)

for some ξ1 ∈ Im(L). In this case, the direct link between C and LML> is less obvious
and, instead, the similarity of the sums (3.16) and (3.17) motivates the link between
opt-DMD and the Koopman operator. To the best of the authors’ knowledge it is
therefore an important open problem to formally quantify the approximation that each
of the three methods provides to the true Koopman modes and eigenvalues. This will
form the basis of future research.

4. Solution to the OMD minimization problem
The aim is to construct optimal variables L and M which minimize the norm in

(2.11). For a fixed L, the minimum M∗(L) over the variable M is given by (2.28).
Hence, (2.11) can be solved by substituting the expression for M∗(L) into the norm in
(2.11) and optimizing over the single variable L. Performing this substitution gives∥∥A− LM∗(L)L>B

∥∥2 = ∥∥A− LL>AQ(L)
∥∥2 = ‖A‖2 − ∥∥L>AQ(L)

∥∥2
, (4.1)

where Q(L) := B>L
(
L>BB>L

)−1
L>B is an orthogonal projection defined in terms of

L. Consequently, the two-variable minimization problem (2.11) is equivalent to the
single-variable maximization problem

max g(L) := ∥∥L>AQ(L)
∥∥2

s.t. L ∈ Rp×r, L>L= I,

Q(L)= B>L
(
L>BB>L

)−1
L>B.

(4.2)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

21
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
42

6

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.426


Optimal mode decomposition for unsteady flows 487

(a) (b)

FIGURE 2. The Grassman manifold G2,3. (a) Variables for (4.2) are matrices whose columns
are orthogonal elements of the unit sphere. In the case depicted, variables L1, L2 ∈ R3×2

have columns as solid and dotted unit vectors, respectively. Both matrices represent the same
subspace and hence the same element of G2,3. Furthermore, g(L1) = g(L2). (b) A sequence of
elements of G2,3, representing ‘subspace variables’ of (4.2).

If a maximizer L∗ to (4.2) can be found, it provides a solution pair (L∗,M∗(L∗)) to
(2.11), with M∗(L∗) given by (2.28). Algorithm 1, stated below, provides an iterative
method for solving (4.2). It is a conjugate-gradient-based algorithm, tailored to exploit
intrinsic properties of (4.2) by using tools from matrix manifold theory.

The fundamental property of (4.2) which must be utilized by any gradient-based
algorithm is that it is an optimization over r-dimensional subspaces of Rp, rather than
simply a matrix-valued optimization. To see why this is true, note first that due to
the constraint L>L= I , each feasible variable L ∈ Rp×r represents an orthonormal basis
for the subspace Im(L) ⊂ Rp. Hence, if L1, L2 are two variables representing the same
subspace then there exists an orthogonal transformation P ∈ Rr×r such that L1 = L2P.
Consequently,

g(L1)= f (L2P)= ‖P>L>2 AQ(L2P)‖ = ‖L>2 AQ(L2)‖ = g(L2), (4.3)

which implies that it is only the subspace represented by the variable L which
determines the value g. The search for an optimal value of g must therefore
be performed over the manifold of r-dimensional subspaces of Rp, known as the
Grassman manifold Gr,p.

Each element of the Grassman manifold Gr,p, i.e. each r-dimensional subspace
S ⊂ Rp, is represented by any matrix with orthogonal columns which span that
subspace S . For example, elements of the manifold G2,3 depicted in figure 2 are
planes in R3. Each plane can be represented by any matrix L ∈ R2×3 whose columns
are a pair of orthogonal unit vectors in that plane, as shown in figure 2(a). An
effective search algorithm over a Grassman manifold must take into account this fact
that each point in the manifold is represented by infinitely many matrices. In particular,
search directions will be chosen along geodesics of the manifold, which represent
the shortest distance between two given subspaces, while the search direction itself is
determined by the gradient ∇g at the current point on the manifold.

In (Edelman, Arias & Smith 1998), the following formulae are given for the
gradient and geodesic curves on a Grassman manifold. Given an element of Gr,p
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represented by a matrix L0 ∈ Rr×p, the gradient of a function g at L0 is given by

∇g= (I − L0L>0 )gL0, (4.4)

where gL0 := (∂g/∂L)(L0). The geodesic passing through L0 in the direction ∇g is
given by the parameterized formula

L0(t)= L0V cos(Σ t)V> + U sin(Σ t)V>, t ∈ [0, 1], (4.5)

where ∇g = UΣV> is the compact singular value decomposition of ∇f . These
expressions are used in Algorithm 1 to provide a solution to (4.2).

Algorithm 1 Conjugate gradient algorithm for solution of (4.1)

1: set initial L0 ∈ Rp×r satisfying L>0 L0 = I .
2: compute initial gradient G0 := (I − L0L>0 )gL0 and search direction H0 := −G0

3: repeat {for k = 0, 1, 2, . . . }
4: compute minimizer tmin ∈ [0, 1] of g(Lk(t)) over the geodesic curve

Lk(t) := LkV cos (Σ t)V> + U sin (Σ t)V>, t ∈ [0, 1],
in direction Hk = UΣV>

5: update subspace basis Lk+1 := Lk(tmin)

6: update gradient
Gk+1 := (I − Lk+1L>k+1)gLk+1

7: update (conjugate-gradient) search direction

Hk+1 := Gk+1 +∆k+1

8: until g(Lk+1)− g(Lk) < tolerance
9: return Optimal low-order subspace basis Lk+1 and dynamics M(Lk+1).

Algorithm 1 is described in Edelman et al. (1998) and is included here for
completeness. With respect to the particular problem (4.2), specific expressions for
the partial derivative gL0 := (∂g/∂L)(L0) and the conjugate-gradient correction ∆k+1

are given in appendix C. It should be noted that other algorithmic techniques, such
as Newton’s method, have been developed for subspace-valued optimization and may
therefore also be applied to (4.2). The reader is referred to (Edelman et al. 1998;
Goulart, Wynn & Pearson 2012) for more details. A MATLAB implementation of
Algorithm 1 and its application to the example of § 5 is available at http://control.ee.
ethz.ch/∼goularpa/omd/.

4.1. Computational performance
We now compare the computational performance of OMD with respect to DMD.
Each algorithm is applied to a data ensembles taken from an experimental data set
of velocity measurements for flow over a backward facing step. The experiment
is described in detail in § 6. Each snapshot contains velocity data at p = 15 600
pixels and data ensembles were selected to contain N = 100, 200, 500 and 1000
snapshots. For each data ensemble, reduced-order models of order r = 10, 20, 50 and
100 were computed using both the DMD and OMD methods. The OMD Algorithm
1 was applied to each data ensemble with tolerance 10−5 in each case. Table 2
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r = 10 r = 20 r = 50 r = 100

N = 100 0.94 (0.20) 4.15 (0.20) 24.65 (0.20) 7.83 (0.20)
N = 200 2.56 (0.50) 8.04 (0.50) 11.45 (0.50) 28.00 (0.50)
N = 500 4.17 (1.82) 11.40 (1.82) 39.90 (1.82) 113.65 (1.82)
N = 1000 9.15 (6.20) 16.72 (6.20) 69.49 (6.20) 157.00 (6.20)

TABLE 2. Computational times (s) for the OMD and DMD algorithms (DMD times in
parentheses) implemented on a data ensemble containing N snapshots and producing a
model of order r. Each snapshot has p= 15 600 data points.

compares the computation times for the OMD and DMD algorithms (DMD times in
parentheses). Since the OMD algorithm is iterative it requires more computation time
than DMD. However, even for a relatively large number of snapshots, neither method
represents a particularly burdensome computation; for example, with data parameters
p = 15 600, N = 1000, r = 100 the OMD algorithm was solved to tolerance in less
than 3 min. All computations were performed using MATLAB on a standard desktop
PC with a 2.2 GHz quad-core Intel i7 processor and 8 GB RAM running Mac OS X
10.6.

Note that even if the desired size r of the reduced model is small, it may still be
the case that N is large, i.e. we may wish to use a large ensemble of snapshot data.
In this situation, each evaluation of the function g required in step 4 of Algorithm 1
may be costly since it requires evaluation of the products L>B, L>A ∈ Rr×N . If it is the
case that this presents a computational issue, a method of reducing the dimension of
the optimization problem is presented in appendix D.

5. Comparison with DMD using a synthetic data ensemble
To compare the performance of the OMD with DMD, we analyse the ability of

each technique to extract eigenvalue information from data ensembles sampled from
the simple sinusoidal flow

f (x, t) := sin(kx− ωt)eγ t, (5.1)

corrupted with additive Gaussian noise.
This flow was used by Duke, Soria & Honnery (2012) to analyse the DMD

algorithm. Algorithm performance is determined by the relative growth rate error
statistic. Specifically, let γDMD and γOMD denote the respective growth rates associated
with the most unstable eigenvalues calculated by DMD and Algorithm 1:

γDMD :=max
{

Re(λDMD
1 ),Re(λDMD

2 )
}
, γOMD :=max

{
Re(λOMD

1 ),Re(λOMD
2 )

}
(5.2)

Then the relative growth rate errors associated with each algorithm are defined by

εDMD :=
∣∣∣∣γDMD − γ

γ

∣∣∣∣ , εOMD :=
∣∣∣∣γOMD − γ

γ

∣∣∣∣ . (5.3)

Thus εDMD and εOMD measure the quality of approximation that the extracted low-order
dynamics provide to the true temporal growth rate γ .

Relative growth rate errors were calculated using data simulated from (5.1). Growth
rate and spatial frequency were chosen to be γ = k = 1, while temporal frequency
was varied over the range ω ∈ [0.6, 1.6]. The number of temporal snapshots was
N = 50, taken at time intervals dt = π/100, while p = 200 spatial samples were
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FIGURE 3. Relative growth rate errors for (a) εDMD and (b) εOMD associated with DMD
and Algorithm 1, respectively. Errors calculated as the average of 103 simulations for
varying temporal frequencies ω ∈ [0.6, 1.6] and additive Gaussian noise with covariances
σ 2 ∈ [0.052, 1]. White areas denote growth rate error below tolerance ε = 10−4.

taken at intervals dx = π/100. After arranging snapshots into ‘before’ and ‘after’
matrices A,B ∈ Rp×N , the data was corrupted by adding zero-mean Gaussian noise
with covariance σ 2 ∈ [0.052, 1]. At each covariance and temporal frequency pair
(σ 2, ω) ∈ [0.052, 1] × [0.6, 1.6], 103 data ensembles were created and both DMD
and Algorithm 1 were applied to each simulation ensemble. Calculation of the DMD
eigenvalues was performed using the method described by Duke et al. (2012) with a
rank-reduction ratio of 10−1. A rank reduction ratio of 10−1 refers to the truncation of
the matrix Σ of singular values used in the calculation of DMD (see § 2.1) to contain
only those values within 10 % of the most energetic singular value.

Figure 3(a) depicts the growth rate errors εDMD and figure 3(b) the errors εOMD. For
both algorithms, performance improves as temporal frequency increases, since more
wavelengths are contained in the data ensemble. Performance also improves as noise
covariance decreases. However, it is apparent that for all temporal frequencies in the
simulation range, the error εOMD associated with Algorithm 1 is lower than the error
εDMD associated with DMD. Hence, Algorithm 1 provides an improvement over DMD
for the considered data parameters.

To analyse this performance advantage further, the percentage improvement

pε := 100 % · (εDMD − εOMD)/εDMD (5.4)

is plotted in figure 4(a). The horizontal banded structure implies that the percentage
improvement provided by Algorithm 1 over DMD is dependent on temporal frequency
as opposed to noise covariance. Furthermore, pε increases as ω increases.

Figure 4(b) shows the DMD eigenvalues λDMD
i and OMD eigenvalues λOMD

i
calculated for a fixed temporal frequency ω = 0.7 and varying noise covariances
σ 2 ∈ [0.352, 1]. For each noise covariance level, the pair of eigenvalues calculated
by each of the algorithms is plotted. As noise covariance increases, both algorithms
produce eigenvalues which are increasingly more stable (to the left of the figure)
than the true eigenvalues λtrue = 1 ± 0.7i. However, the OMD eigenvalue pairs are
consistently closer to the true system eigenvalues than the DMD eigenvalues and hence
provide a more accurate approximation of the relative growth rate error.
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FIGURE 4. (a) Percentage improvement provided by Algorithm 1 to the DMD algorithm for
the range (σ 2, ω) ∈ [0.052, 1] × [0.6, 1.6]. (b) DMD eigenvalues λDMD

i and OMD eigenvalues
λOMD

i calculated for temporal frequency ω = 0.7 and varying noise covariances. White shaded
regions indicate both growth rate errors εDMD, εOMD are below tolerance ε = 10−4.

6. Analysis of the backward-facing step
A demonstration of the OMD algorithm on an experimental data set is now

presented. The data set is of a low-speed turbulent boundary-layer flow over a
backward-facing step, measured using two-dimensional time-resolved particle image
velocimetry (PIV). The step, of height h = 30 mm, spans the full width of the wind
tunnel and is downstream of a turbulent boundary layer of thickness δ = 44 mm, with
a free-stream velocity of 6 m s−1. The PIV field of view is in the wall-normal plane
parallel to the streamwise flow as schematically depicted in figure 5(a). The data
is acquired at a frequency Fs = 8000 Hz for approximately 4 s, resulting in 31 606
images, from which 31 605 vector fields were calculated. The processing was done
using a 16× 16 pixel window with 50 % overlap, providing vector fields with a spatial
resolution of approximately 1.1 mm. Figure 5(b) shows contours of the mean flow
field, with streamlines overlaid to illustrate the size and shape of the recirculation
region. The flow has a large recirculation region extending to approximately x/h = 5,
and a smaller counter-rotating recirculation at the step face. Figure 5(c) shows an
example of the streamwise velocity perturbation field u′(x, y), clearly depicting the
turbulent shear layer at the edge of the separation region and large fluctuations in the
vicinity of the downstream reattachment.

To analyse this data using either the DMD or OMD approach, a selection of the
available data needs to be chosen. In the studies by Schmid (2010, 2011) the snapshots
uk are chosen as a sequence at regular intervals separated by 1t such that

u+k = uk+1. (6.1)

In § 6.1 we follow this approach and apply DMD and OMD to such a sequential data
set, so as to compare the algorithms in the setting in which DMD was developed.
However, it should be noted that this is not the context in which OMD is intended to
be applied. For this reason, in § 6.2, the OMD algorithm is also applied to snapshot
pairs (uk,u+k ) sampled at irregular time instances tk.

There is no precise way of determining the best number of snapshots N and the
temporal separation 1t of the snapshot pairs. Any appropriate selection is dependent
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FIGURE 5. (a) A schematic representation of the PIV field of view and coordinate system; (b)
contours of the mean streamwise velocity with selected mean streamlines; (c) an example of a
PIV u′ velocity field.

on the amount, type and format of the data and the dynamics to be modelled. Duke
et al. (2012) calculated the relation between these parameters (among others) and the
estimation error on the synthetic sinusoid (5.1). These results showed that, even for
this simple waveform, the dependency of the relative growth rate error ε on the choice
of method parameters is complex. They note in particular that error is sensitive to the
data signal-to-noise ratio and the resolution of the data sampling.

Measurement noise is quantified by the magnitude of noise floor of the velocity
power spectrum. Figure 6(a) shows the spectra for the present data at five different
streamwise positions and a noise floor at approximately 2000 Hz is observed. This
high-frequency measurement noise is over three orders of magnitude lower than the
dominant low frequencies and, for all analyses performed in this section, is removed
using a low-pass filter.

The appropriate choice of 1t needs to be made so that sufficient resolution is
provided at the dominant frequencies modelled by the matrices S̃ or M. As shown in
§ 2.2, these matrices do not describe the evolution of the velocity field uk 7→ u+k , but
rather that of the basis weights αi 7→ α+i . Furthermore, in § 2.4 it was shown that the
DMD basis is the POD modes and that αi,DMD are the POD weights. Since the POD
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FIGURE 6. (a) The u′ power spectral density of the flow at 5 streamwise locations with
low-pass filter shown; (b) the premultiplied power spectra of the mode weights αi.

basis is readily calculated for any data set, and is also a suitable initial condition for
OMD optimization, inspecting the frequency content of αi,DMD also serves as a useful
guide to the choice of appropriate 1t for the OMD method.

Figure 6(b) is the premultiplied power spectra for the POD weights αi(t) shown
for i = {1, 2, 5, 10, 25} over the full set of vector fields. The magnitude of the peak
power of each mode varies, with the higher modes dominated by higher frequencies.
However, all modes contain very little frequency content above 200 Hz and the most
dominant frequencies are typically closer to 10 Hz. To achieve relative growth-rate
errors of εDMD < 0.1 %, Duke et al. (2012) recommend that the dominant wavelength
should contain at least 40 samples. In addition, for a sequential data set, we require
the total number of snapshots to span several full periods of the dominant wavelength.
For the sequential data case studied in § 6.1 these criteria are satisfied by setting
N = 200 and 1t = 20/Fs, which provide 5 full periods of data with frequency 10 Hz
while keeping the computation within the capability of a desktop computer.

6.1. Comparison between DMD and OMD for sequential data
The individual modes of the L basis calculated using Algorithm 1 typically bear little
resemblance to those of the POD basis U used in DMD. However, since both bases are
composed of mutually orthogonal basis functions, each basis remains invariant under
an orthogonal transformation L 7→ LR. For the purposes of comparing the two, the L
matrix can be transformed such that the modes are best aligned to the singular values
of B in the same manner as a POD basis (Goulart et al. 2012). This is achieved
using the singular value decomposition L>B = ŪΣ̄ V̄> and setting R = Ū. All of the
following OMD results have been transformed in this way.

For a data set of the sequential form (6.1), the estimated mode weights at each
sample point tk

α̂+i,DMD(tk) := S̃αi,DMD(tk); α̂+i,OMD(tk) := Mαi,OMD(tk), (6.2)

can be compared directly with the actual values

α+i,DMD(tk)= αi,DMD(tk+1); α+i,OMD(tk)= αi,OMD(tk+1), (6.3)
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FIGURE 7. Comparison of the actual mode weights, α+i , with those estimated over a single
time step, α̂+i , for both DMD and OMD analyses.

to demonstrate the single-point estimation capability of both methods. Figure 7 shows
α̂+ and α+ for modes i= {1, 10, 50} on a system of rank 100 using each method. The
black markers indicate the sample points tk with separation 1t = 20/Fs.

The actual weights (black lines) of the POD modes α+i,DMD and those of the
transformed L-basis α+i,OMD are similar at low modes, but are different at the higher
modes, for example i = 50. This demonstrates that both methods use similar modes
to describe the large structures, but have found different modes to represent the high
frequencies. This extra freedom in mode shape selection allows OMD to produce
dynamics which more accurately capture the evolution of the snapshot data.

In figure 7, it can be seen that, compared with DMD, the estimated weight
sequence given by OMD more accurately models the true weights of the snapshot
data when projected onto the identified low-order subspace. Figure 8(a) highlights this
by showing the norm estimation error of each method for all 100 modes. The error of
the OMD method is over four times lower than that of the DMD method across all
modes. Figure 8(b) shows this translates into a lower estimation error of the system
‖A − XB‖ as a whole. The difference in the error becomes larger as the system rank
increases, meaning that the OMD algorithm performs proportionately better when the
system has many modes. This is because, as shown in figure 7, OMD has the freedom
to capture the high frequencies to a greater accuracy than DMD. This is a major
advantage in systems for which the high-frequency (and often low-energy) modes play
a crucial role in the flow dynamics (Ma et al. 2011).

We now consider the modes and eigenvalues produced by the OMD and DMD
algorithms. Subsets of the eigenvalues of S̃ and M are plotted against the unit circle in
figure 9 for: (a) a rank-100; (b) a rank-150; and (c) a rank-200 mode approximation
to the N = 200 mode sequential data ensemble. Figure 9(a) shows the eigenvalues
corresponding to the rank-100 approximation analysed in figures 7 and 8. It can be
seen that the OMD eigenvalues are concentrated in a narrower band than the DMD
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FIGURE 8. (a) The norm estimation error of α+ using the DMD and OMD analyses, for
each mode of a rank-100 system; (b) the norm system error for DMD and OMD analyses of
systems with varying rank.
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FIGURE 9. (Colour online) (a–c) Eigenvalues of S̃ (DMD) and M (OMD) calculated using
an ensemble of N = 200 sequential snapshots and with r = 100, 150, 200, respectively.
In each case, the solid line is an arc of the unit circle. OMD modes corresponding to
eigenvalues (highlighted in blue in the online version) in (a) are plotted as (d–f ). DMD
modes corresponding to eigenvalues (highlighted in blue in the online version) in (c) are
plotted (g–i).

eigenvalues and are also closer to the unit circle, which corresponds to the right-shift
trend observed for the sinusoidal waveform in figure 4(b). With increasing rank of
approximation, the absolute difference between the OMD and DMD eigenvalues can
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be seen to decrease in figure 9(b,c), although the shift trend is still clearly visible for
the rank-150 approximation in figure 9(b).

In figure 9(d–f ) the OMD modes corresponding to the eigenvalues (highlighted in
blue in the online version) in figure 9(a) are shown. Despite the fact that a lower-rank
system is used to generate them, it is interesting to note that they represent similar
spatial structures to the fully converged DMD modes shown in figure 9(g–i), which
correspond to the eigenvalues (highlighted in blue in the online version) in figure 9(c).
The Strouhal numbers St := fh/U∞ of the highlighted OMD modes are 0, 0.452, 0.957,
respectively, and those of the DMD modes are 0, 0.391, 1.005, respectively. We reserve
comment on the physical interpretation of the mode shapes until § 6.2.

As discussed in § 3, the DMD modes can be viewed as approximations of the
underlying Koopman modes of the system. The convergence of DMD and OMD
modes for a full-rank (r = 200, N = 200) approximation implies that, for this example,
OMD and DMD both provide similar approximations to the Koopman modes in
this case. We restate, however, that it is not known which method produces the
best approximation to the Koopman modes of a general nonlinear system. When a
lower-order approximation is used, OMD is nonetheless able to produce mode shapes
representing similar spatial structures to the fully converged DMD modes. We develop
this idea in the following section by applying the OMD algorithm to an irregularly
sampled data ensemble and show that coherent mode shapes can be created by using
models of significantly lower rank than the dimension of the data ensemble.

6.2. OMD modes and eigenvalues for irregularly sampled data

The OMD algorithm is applied to a data ensemble (ui,u+i )
N
i=1 containing N = 800

irregularly sampled snapshot pairs to create a rank r = 16 approximation. The
fact that a only very low-order approximating system is searched for makes the
problem computationally feasible. Furthermore, using a large number of snapshots
helps account for any measurement noise present in the data ensemble. The OMD
algorithm produces eigenvalues of M in an arc-like pattern symmetric about the
real axis, as shown in figure 10(a). In comparison with the fully converged DMD
and OMD eigenvalues in figure 9(c), which are distributed upon the entire unit
circle and hence represent a wide frequency range, the arc of OMD eigenvalues
in figure 10(a) corresponds to a set of relatively low-frequency modes. The OMD
eigenvalues λOMD

i = (1t)−1 log λi(M) are also plotted in figure 10(b).
The OMD mode shapes can be seen to separate into two subsets; low-frequency

modes with lighter damping in figure 10(c–e) and more highly damped high-frequency
modes in figure 10(f–h). The low-frequency modes are linked to the behaviour of the
recirculation region, shown schematically in figure 5(a). Mode (c) is a near-persistent
structure and resembles the modes 9(d,g) identified using the sequential data ensemble.
Mode 10(d) has a region of recirculation near y = 0 in 2 6 x/h 6 4.5. In addition, it
contains a larger area of flow in the free-stream direction indicating coupling between
the behaviour of the recirculation region and the shear layer. Mode 10(e) contains a
large region of flow in the free-stream direction with a smaller region of reversed flow
between 2 6 x/h 6 3. This mode has similar spatial features to 9(e,h) although is has
slightly lower frequency. Finally, modes 10(f–h) contain successive regions of low and
high speeds in the shear layer that separates the recirculation region from the free
stream. These modes represent the instabilities and the roll up of the shear layer. It is
interesting to note that the high-frequency modes appear to be much more converged
versions of the modes 9(f,i) identified from the sequential data ensemble. A possible
explanation is that the low-order modelling capability of OMD allows the use of a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

21
:1

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

3.
42

6

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2013.426


Optimal mode decomposition for unsteady flows 497

 

–1.0

0

0.5

1.0

–0.5

–1.0 –0.5 0 0.5 1.0

0

–50

–40

–30

–20

–10

–400 –200 0 200 400

1 2 3 4 5

1.0
1.5

0.5

1 2 3 4 5

1.0
1.5

0.5

1 2 3 4 5

1.0
1.5

0.5

1 2 3 4 5

1.0
1.5

0.5

1 2 3 4 5

1.0
1.5

0.5

0.01

0

–0.01

(a) (b)

(c)

(c)

(d)

(d)

(e)

(e)

( f )

( f )

(g)

(g)

(h)

(h)

1 2 3 4 5

1.0
1.5

0.5

0.01

0

–0.01

FIGURE 10. (Colour online) The OMD modes for turbulent flow over a backstep. A low-
order model with r = 16 modes is calculated using N = 800 snapshot pairs. OMD eigenvalues
shown in discrete (a) and continuous (b) time. Low-frequency modes (c–e) with Strouhal
numbers St = 0.017, 0.188, 0.279 and high-frequency modes (f–h) with Strouhal numbers
St = 0.847, 1.1824, 1.527.

large number of snapshots and enables a better extraction of coherent structures from
the data ensemble.

7. Conclusions
A general method of approximating the dynamics of a high-dimensional nonlinear

fluid system using a linear system of chosen rank has been presented. The system
is first projected onto an orthogonal basis of chosen rank. The linear evolution of
the flow is calculated on the low-rank basis, before projecting the result back to the
original dimension. The choice of basis and the linear model are both variables in the
optimization, in which the error ‖A− XB‖ is minimized in the Frobenius norm.

It is shown that if the basis is chosen to be that of the system POD modes, and
remains fixed during optimization, then the DMD solution results. The present method
is therefore a generalization of the DMD algorithm.

The relation of OMD to Koopman modes is discussed and it is shown that OMD
can be interpreted as providing a low-order approximation to the Koopman operator
acting on the observable from which the system measurements result. Furthermore, it
is shown that the OMD modes and eigenvalues approximate the Koopman modes an
eigenvalues and that this approximation is a generalization of that provided by DMD.
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However, we also highlight that it is not currently possible to prove mathematically
which method (DMD, OMD or opt-DMD) provides the best approximation to the
Koopman modes of a general nonlinear system.

The OMD method is tested on both synthetic and experimental data, and is shown
to achieve a better approximation of the flow than DMD in terms of minimizing
the system error norm. In the case of the synthetic example, OMD is shown to
consistently provide a more accurate approximation of the true system eigenvalues
than DMD in the presence of measurement noise. When applied to experimental data,
the extra flexibility enjoyed by OMD in the selection of mode shapes allows high-
frequency modes of the system to be more accurately identified. The high frequency
contributions to the turbulent flow dynamics will therefore be better represented
by OMD than if a POD basis were used. Therefore, this method is particularly
appropriate for use in instances where such dynamics play a important role in the flow.
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Appendix A
The following result shows that in the case of noise-free linear dynamics, the DMD

matrix S exactly identifies the system eigenvalues.

THEOREM 1. Suppose that snapshot data {u1, . . . ,uN+1} satisfies purely linear
dynamics ui+1 = Tui, for some matrix T ∈ Rp×p satisfying rank(T ) 6 N. Let S be
the minimizer of

min
S
‖A− BS‖2 (A 1)

where A := [u2, . . . ,uN+1] and B := [u1, . . . ,uN]. Then T and S have the same
non-zero eigenvalues.

Proof. Let mT(x) := xm + αm−1xm−1 + · · · + α1x+ α0 be the minimum polynomial of T .
Since rank(T )6 N, it follows that m6 N and consequently,

uN+1 = T Nu1 = T N−m(T mu1)=−
[
αm−1T N−1u1 + · · · + α0T N−mu1

]
=− [αm−1uN + · · ·α0uN−m+1] . (A 2)

Hence, if S is the companion-form matrix

0 0

1 0
...

1 0
−α0

0
...

1 −αm−1


, (A 3)
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then A = BS and S is the minimizer of (A 1). It can now be shown that
det(S − λI) = λn−mmT(λ), which implies that S and T have the same non-zero
eigenvalues. �

In the remainder of this section we provide proofs of the results described in § 3.

A.1. OMD, DMD, opt-DMD and the Koopman operator

THEOREM 2. Consider the data ensemble (3.6), generated in terms of a vector valued
observable g : Z→ Cp. Let L ∈ Rp×r be such that L>L = I , suppose that M ∈ Rr×r

is diagonalizable as M = TΛT−1 and define V := B>L(L>BB>L)
−1
. Then the

observables ΦL
i defined by (3.9) satisfy((
CΦL

1

)
(z1) | · · · |

(
CΦL

r

)
(z1)
)= (LT )Λ+ L(L>AV − M)T . (A 4)

Proof. Denoting columnwise application of the Koopman operator by C[ · ], we begin
with the relation C[B] = A. Multiplying on the right by V T implies

C[BV T ] = AV T = LML>BV T + (A− LML>B)V T . (A 5)

Premultiply (A 5) by LL> and use the identity L>BV = I to obtain

C[LL>BV T ] = LTΛ+ L(L>AV − M)T . (A 6)

The result follows since the columns of C[LL>BV T ] are the vectors (CΦL
i )(z1). �

LEMMA 1. Suppose that Φ ∈ F p is a vector-valued eigenfunction of the Koopman
operator C with eigenvalue λ. Then:

(i) there exists φ : Z→ C such that Cφ = λφ;
(ii) if λ, when interpreted as an eigenvalue of a scalar-valued observable, is simple

there exists w ∈ Cp such that Φ = wφ.

Proof. (i) Let Φ(z) := (φ(1)(z), . . . , φ(p)(z))> denote the p scalar-valued components of
the observable Φ. Then since (CΦ)(z)= λΦ(z), it follows that (Cφ(i))(z)= λφ(i)(z) for
each i. Since Φ is an eigenfunction, at least one component is non-zero and hence λ is
an eigenvalue of a scalar-valued observable.

(ii) If λ is simple, there exist scalars wi ∈ C such that φ(i) = wiφ, for each i. Hence,
Φ = wφ for w := (w1, . . . ,wp)

> ∈ Cp. �

THEOREM 3. Suppose that {u1, . . . ,uN} is a sequential data ensemble containing
snapshots taken at a fixed time step 1t apart. Then the optimal value of the
minimization problem (3.14) is equal to the optimal value of (3.15).

Proof. Suppose first that L, M, ξ1 are feasible decision variables for (3.15). Since M is
diagonalizable, there exists invertible U ∈ Rr×r and Λ = diag

(
λ1 . . . λr

)
such that

M = UΛU−1. Since ξ1 ∈ Im(L)= Im(LU), there exists σi ∈ R such that

ξ1 =
r∑

i=1

σi(LU)i = LUΣ1 (A 7)

where Σ = diag
(
σ1 . . . σr

)
, 1 = (1 . . . 1

)> ∈ Rr and (LU)i denotes the ith
column of LU. Now, let V := LUΣ ∈ Rp×r and T ∈ Rr×N be the Vandermonde matrix
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defined in terms of the eigenvalues of Λ. Then
N∑

i=1

‖ui − (LML>)
i−1
ξ1‖2

2 =
N∑

i=1

‖ui − (LUΛi−1U−1L>)ξ1‖2
2

(by (A 3))=
N∑

i=1

‖ui − LUΛi−1Σ1‖2
2

=
N∑

i=1

‖ui − (LUΣ)λ(i−1)‖2
2

= ‖B − VT‖2 (A 8)

where λ(i) := (λi
1 . . . λi

r

)>
. Hence, the optimal value of (3.14) is less than the

optimal value of (3.15).
Conversely, suppose that (V , T ) are feasible decision variables for (3.14) with

T defined in terms of eigenvalues λ1, . . . , λr. Let V = LZ be a reduced QR-
decomposition of V , M := ZΛZ−1 and ξ1 :=

∑N
i=1Vi ∈ Im(L). Then, similar to above,

it can be shown that (A 8) holds. Hence, the optimal value of (3.14) is less than the
optimal value of (3.15), which completes the proof. �

Appendix B. An example
We present a simple illustrative example for which OMD provides a superior

estimate of the system dynamics relative to that produced via DMD when used to
reduce the system order. Consider the following system:

x+ =
(
λtrue 0

0 0

)
x+ w, (B 1)

where λtrue = 0.5 and w is a normally distributed random variable with zero mean
and variance E(ww>) = diag(1, 10). The initial state is x = (1; 0 ) and the system is
simulated for N = 1000 time steps.

Assume that we want a rank-one approximation for the preceding system. Using the
DMD method, we obtain

L∗DMD =
(
−0.002
0.999

)
, M∗DMD = 0.028,

(LML>)
∗
DMD =

(
+1.2× 10−7 −5.8× 10−5

−5.8× 10−5 +0.028

)
,

(B 2)

but with OMD,

L∗OMD =
(

0.999
0.005

)
, M∗OMD = 0.509,

(LML>)
∗
OMD =

(
+0.509 +2.5× 10−3

+2.5× 10−3 +3.6× 10−5

)
.

(B 3)

Note that the difference in the performance metric ‖A − XB‖ is relatively small due
to the process noise in the system; ‖A − (LML>)∗OMDB‖ = 105.9 for OMD, compared
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to ‖A − (LML>)∗DMDB‖ = 107.5 for DMD. A more revealing performance metric is the
matrix induced 2-norm (i.e. the spectral norm) error

∥∥(LML>)∗ − diag(λtrue, 0)
∥∥

2
. The

results are ∥∥(LML>)
∗
DMD − diag(λtrue, 0)

∥∥
2
= 0.5 (B 4a)∥∥(LML>)

∗
OMD − diag(λtrue, 0)

∥∥
2
= 0.009 (B 4b)

showing that OMD significantly outperforms DMD in identifying the underlying
system.

Appendix C
The partial derivative gL := (∂g/∂L)(L) of the objective function g appearing in (4.2)

can be shown (Goulart et al. 2012) to be equal to

gL =−2BL(L>BL)
−1
(L>A >L)(L>A L)(L>BL)

−1

+ 2
[
A L(L>BL)

−1
(L>A >L)+A >L(L>A L)(L>BL)

−1
]
, (C 1)

where A := AB> and B := BB>.
With respect to Algorithm 1 the conjugate-gradient correction term ∆k+1 is given by

∆k+1 := 〈Gk+1 − τ(Gk),Gk+1〉
‖Gk+1‖2

τ(Hk), (C 2)

where

τ(Gk) := Gk − (LkV sin(Σ tk)+ U(I − cos(Σ tk)))U
>Gk (C 3)

τ(Hk) := (−LkV sin(Σ tk)+ U cos(Σ tk))ΣV> (C 4)

and Hk = UΣV> is a singular value decomposition of Hk. The constant tk ∈ [0, 1] is
the minimizer in Algorithm 1, step 4, at the kth iterate.

Appendix D
In the case of a large data ensemble (N large), the following procedure can be

applied to reduce the dimension of the optimization problem which must be solved to
calculate the OMD eigenvalues and modes.

Suppose that we select a matrix Γ ∈ Rp×s satisfying Γ>Γ = I , Im(Γ) ⊆ Im(B) and
s 6 N, e.g. by setting Γ equal to the first s right singular vectors of B. One can then
constrain the basis vectors L to those in the form

L= ΓZ, Z ∈ Rs×r, Z>Z = I. (D 1)

Such a constraint amounts to requiring that the columns of L are themselves restricted
to some subspace of Im(B). Using this additional constraint, the objective function in
(2.11) can be rewritten as∥∥A− LML>B

∥∥2 = ∥∥A− ΓZMZ>Γ>B
∥∥2
. (D 2)

Since this objective is invariant under a unitary transformation, we can left-multiply
both terms by the transpose of Γ augmented with its orthogonal complement Γ⊥ to
obtain ∥∥A− ΓZMZ>Γ>B

∥∥2 = ∥∥Γ>A− ZMZ>Γ>B
∥∥2 + ∥∥Γ>⊥A

∥∥2
. (D 3)
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It is clear that the approximation error introduced by this constraint on L will be no
larger than ‖Γ>⊥A‖2. This term will be small, for example, in cases where the images
of A and B are nearly coincident and Γ spans their dominant left singular vectors.

If we then define Ã ∈ Rs×N as Ã := Γ>A and B̃ ∈ Rs×N as B̃ := Γ>B, then we arrive
at the new optimization problem

min ‖Ã− ZMZ>B̃‖2

s.t. Z>Z = I

M ∈ Rr×r, Z ∈ Rs×r.

(D 4)

This is exactly the same form as the original problem (2.11), meaning that Algorithm
1 may be applied to provide a solution. However, (D 4) is a smaller optimization
problem than (2.11) and may therefore be solved more efficiently.
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MEZIĆ, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev.

Fluid Mech. 45 (1), 357–378.
NOACK, B. R., AFANASIEV, K., MORZYNSKI, M., TADMOR, G. & THIELE, F. 2003 A hierarchy

of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech.
497, 335–363.

PASTOOR, M., HENNING, L., NOACK, B. R., KING, R. & TADMOR, G. 2008 Feeback shear layer
control for bluff body drag reduction. J. Fluid Mech. 608, 161–196.

ROWLEY, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition.
Intl J. Bifurcation Chaos 15 (3), 997–1013.
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