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The natural setting for the Lane–Emden equation −Δu= |u|p−2u on a domain Ω ⊂ R
n,

n≥ 3, for supercritical exponents p> 2∗ = 2n/(n− 2) is identified as the space of func-

tions u∈ H1
0 ∩ L p(Ω) with finite scale-invariant Morrey norms. We show that this Morrey

regularity is propagated by the heat flow associated with this equation, and we study

the blow-up profiles.

1 Introduction

Consider the Dirichlet problem for the Lane–Emden equation

− Δu= |u|p−2u on Ω, u= 0 on ∂Ω, (1.1)

where Ω is a smoothly bounded domain in R
n, n≥ 3. A challenging question attributed

to Paul Rabinowitz is whether for domains Ω with nontrivial topology, in particular,

for domains sufficiently close to an annulus, there exists a solution u> 0 to (1.1) for
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any p> 2 (see [2, p. S19], and [35] for further background; see also [6–8, 13, 26, 29, 30] for

partial results). Formally, solutions to (1.1) correspond to critical points of the functional

E p(u) = 1

2

∫
Ω

|∇u|2 dx − 1

p

∫
Ω

|u|p dx, u∈ H1
0 ∩ L p(Ω).

The purpose of the present paper is to identify a functional analytic framework

for dealing with problem (1.1) in the “supercritical” case when p> 2∗ := 2n/(n− 2) and

to discuss the corresponding heat flow

ut − Δu= |u|p−2u on Ω × [0, T [, u= 0 on ∂Ω × [0, T [, T ≤ ∞, (1.2)

for given initial data u0 ∈ H1 ∩ L p(Ω) as a suitable gradient flow for E p.

Much of our work has been inspired by Pacard’s [28], where he presents a

remarkable monotonicity formula and a partial regularity theory for “stationary” solu-

tions to (1.1), the notion of “stationary” solution being modeled on Evans’ [9] notion of a

stationary weakly harmonic map. In Proposition 5.1, moreover, we extend Pacard’s [28]

partial regularity result to the full range of exponents p> 2∗.

Pacard’s work motivates the study of (1.1) in the Morrey space H1
0 ∩ L p,μ(Ω)

defined below, where μ = 2p
p−2 . By combining Pacard’s ideas with the arguments giving

monotonicity and partial regularity for the heat flow of harmonic maps developed in

[34], we obtain a monotonicity formula similar to Pacard’s for the flow (1.2) from which

we deduce Morrey estimates and partial regularity results. Our Proposition 6.2 shows

that—up to a constant—the Morrey L p,μ-bounds of the data are preserved along the flow,

even when the solution to (1.2) blows up in finite time. In the latter case, the Morrey esti-

mates hold on domains whose size naturally decreases as we approach the blow-up time,

which is sufficient to recover partially regular blow-up profiles as “tangent cones” to the

flow by rescaling the solution suitably around blow-up points; see Theorem 6.9. The

Pacard-type monotonicity formula in Proposition 3.1 in Section 3 and the ε-regularity

result for weak solutions of (1.2), Proposition 4.1 in Section 4, also may be of interest in

themselves.

A particular consequence of our estimates is that classical solutions of (1.2) on a

convex domain always either blow up in finite time or uniformly decay to 0 as t → ∞, as

shown in Proposition 6.6, which agrees with results of Matano and Merle [22] for global

radially symmetric solutions of (1.2).
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For so-called “borderline solutions” u≥ 0 of (1.2) in the sense of [27] partial reg-

ularity results similar to ours previously were obtained by Chou et al. [5], however,

exploiting the additional global bounds available in that case.

2 Morrey Spaces

Recall that (in Adams’ [1] notation) a function f ∈ L p(Ω) on a domain Ω ⊂ R
n belongs to

the Morrey space L p,λ(Ω) if

‖ f‖p
L p,λ(Ω)

:= sup
x0∈Rn, r>0

rλ−n
∫

Br(x0)∩Ω

| f |p dx < ∞, (2.1)

where Br(x0) denotes the Euclidean ball of radius r > 0 centered at x0.

Similarly, a function f ∈ L p(E) on a subset E of the spacetime R
n+1 belongs to

the parabolic Morrey space L p,λ(E) if

‖ f‖p
L p,λ(E)

:= sup
z0=(x0,t0)∈Rn+1,r>0

rλ−(n+2)

∫
Pr(z0)∩E

| f |p dz< ∞, (2.2)

where Pr(x, t) denotes the backward parabolic cylinder Br(x)×]t − r2, t[.

For either problem (1.1) or (1.2) the number μ = 2p
p−2 turns out to be the relevant

Morrey exponent. In fact, by work of Adams [1] for u∈ H1
0 (Ω) satisfying ∇u∈ L2,μ(Ω) we

have u∈ L p,μ(Ω) with continuous embedding; similarly, for any u∈ W2,
p

p−1 ∩ H1
0 (Ω) with

Δu∈ L
p

p−1 ,μ
(Ω) there holds ∇u∈ L2,μ(Ω) and ‖∇u‖L2,μ(Ω) ≤ C‖Δu‖

L
p

p−1 ,μ
(Ω)

. We revisit these

estimates in Section 5, which, in particular, imply a threshold result for weak solutions

u∈ H1
0 ∩ L p,μ(Ω) of (1.1); see Proposition 5.7. As we shall see, similar local and global

threshold results hold true for blow-up of the heat flow (1.2).

3 The Heat Flow

Let Ω be a smoothly bounded domain in R
n, n≥ 3, and let u0 ∈ C ∞

0 (Ω). For given p> 2 we

consider the flow (1.2) with initial data

u= u0 at t = 0. (3.1)

Given a smooth solution u to (1.2), (3.1), upon multiplying (1.2) by ut and integrating by

parts, for any T > 0 we obtain the familiar energy identity

E(u(T)) +
∫T

0

∫
Ω

|ut|2 dx dt = E(u0) (3.2)
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for E = E p. In particular, the function t → E(u(t)) is nonincreasing; in fact, the flow (1.2),

(3.1) defines the L2-gradient flow for E .

For “small” data u0 ∈ C 1(Ω̄) it is not hard to show that the solution to (1.2), (3.1)

exists for all time. On the other hand, if E(u0) < 0, the flow (1.2), (3.1) will blow up in

finite time T > 0 in the sense that ‖u(t)‖L∞(Ω) → ∞ as t ↑ T ; see, for instance, Fujita [11] or

Kaplan [19]. Given 0 ≤ u0 ∈ C 1(Ω̄) \ {0}, thus the Cauchy problem for (1.2) with initial data

λu0 will have a global classical solution uλ for small λ > 0, and uλ will blow up in finite

time when λ > 0 is large. Letting λ∗ = sup{λ; uλ is global}, one may hope that on a suitable

domain for suitable data u0 the “borderline” solution u∗ = limλ↑λ∗ uλ introduced by Ni

et al. [27] will converge, as t → ∞ to a solution u∞ > 0 of the time-independent problem

(1.1). However, λ∗ might be smaller than the number where supλ>0 E(λu0) is achieved,

which sparks our interest also in solutions to (1.2) blowing up in finite time.

3.1 The Giga–Kohn analysis

In a seminal paper, Giga and Kohn [15] studied the asymptotic behavior of bounded

solutions to (1.2) on the space-time cylinder P1 := B1(0)×] − 1, 0[⊂ R
n × R blowing up at

the origin of space-time. Note that a solution u to (1.2) on P1 induces a family

uR(x, t) = R2/(p−2)u(Rx, R2t), R> 0, (3.3)

of solutions to this equation on the scaled domains P1/R = B1/R(0)×] − 1/R2, 0[. In the

case when n≥ 3, p≤ 2∗, and when

|t|1/(p−2)|u(x, t)| ≤ C uniformly on P1, (3.4)

Giga–Kohn were able to derive a precise characterization of the blow-up profile, improv-

ing previous results of Weissler [37] and Friedman and McLeod [10]. Their technique

relies on the introduction of self-similar variables

s = − log(−t), y= x/
√−t, w(y, s) = (−t)βu(x, t) = e−βsu(e−s/2y,−e−s), (3.5)

where β = 1/(p− 2). The function w then satisfies the equation

ws − Δw + 1
2 y · ∇w + βw = |w|p−2w, (3.6)

and an energy-type inequality for solutions of (3.6) allows one to conclude that the

functions w(·, s) as s → ±∞ converge to limits w± independent of s, corresponding to
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self-similar solutions u± ≡ u±
R for any R> 0 of (1.2) on R

n×] − ∞, 0[, much in the same way

as blowing up a minimal surface around a singular point produces a tangent cone. The

paper [15] thus provides the first instance of a “monotonicity formula” being employed in

the analysis of a nonlinear flow problem. Later, analogous monotonicity formulas were

discovered also for the harmonic map heat flow by Struwe [34] and for the mean curva-

ture flow by Huisken [18]. Ultimately, monotonicity formulas for the Ricci flow played a

key role in Perelman’s [31] proof of the Poincaré conjecture.

In the latter geometric applications, monotonicity formulas either involve the

Dirichlet energy, the area, or curvature; in contrast, the quantity in the Giga–Kohn mono-

tonicity formula is the difference of two non-negative terms related to energy and is

noncoercive.

3.2 Pacard-type monotonicity

Our first goal in this paper is to develop an improved monotonicity formula for the flow

(1.2), similar to the monotonicity formula found by Pacard [28] for the time-independent

problem. We achieve this through a combination of Pacard’s ideas with the approach to

the heat flow of harmonic maps presented in [34].

Let Ω be a smoothly bounded domain in R
n, n≥ 3. Fix a point x0 ∈ Ω and a time

t0 > 0. Given a solution u to (1.2), for R> 0 let

uR(x, t) = R2/(p−2)u(x0 + Rx, t0 + R2t) on ΩR ×
[
− t0

R2
, 0
[

, (3.7)

similar to (3.3), where ΩR = {x; x0 + Rx ∈ Ω}. Also let

G(x, t) = 1

(4π |t|)n/2
e− |x|2

4|t| , x ∈ R
n, t < 0,

be the fundamental solution to the heat equation with singularity at (0, 0), and set

G(x0,t0)(x, t) = G(x − x0, t − t0), G∗(x) = G(x,−1) = 1

(4π)n/2
e−|x|2/4

for brevity. We sometimes also write z= (x, t) for a generic point in space-time.

It will be useful to be able to work with localized quantities, in particular, when

the domain Ω is nonconvex. For this purpose, let ϕ = ϕ(|x|) ∈ C ∞(Rn) be a compactly

supported cutoff function such that 0 ≤ ϕ ≤ 1, and, for R> 0, let

ϕR(x) = ϕ(Rx).
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Define

Dϕ(R) = 1

2

∫
ΩR

|∇uR(x,−1)|2ϕ2
R(x)G∗(x) dx

= 1

2
R

2p
p−2

∫
Ω×{t0−R2}

|∇u|2ϕ2(x − x0)G(x0,t0) dx.

For q ≥ 2 we also let

F ϕ
q (R) = 1

q

∫
ΩR

|uR(x,−1)|qϕ2
R(x)G∗(x) dx

= 1

q
R

2q
p−2

∫
Ω×{t0−R2}

|u|qϕ2(x − x0)G(x0,t0) dx.

Observe the identities

d

dR

∣∣∣∣
R=1

uR(x,−1) =
(

x · ∇u− 2ut + 2

p− 2
u
)

(x0 + x, t0 − 1)

and
d

dR

∣∣∣∣
R=1

∫
ΩR

f dx = −
∫
∂Ω

(x − x0) · ν f(x − x0) do

for any f ∈ C 0(Ω̄), where ν is the exterior unit normal along ∂Ω.

Shift coordinates so that x0 = 0. Then, integrating by parts and using the

Equation (1.2), we compute

d

dR
Dϕ(R)

∣∣∣∣
R=1

=
∫
ΩR×{−1}

∇uR∇
(

d

dR
uR

)
ϕ2

RG∗ dx

∣∣∣∣
R=1

+ 1

2

∫
ΩR×{−1}

|∇uR|2x · ∇ϕ2(Rx)G∗ dx

∣∣∣∣
R=1

− Bϕ

=
∫
Ω×{t0−1}

(
−Δu+ 1

2
x · ∇u

)(
x · ∇u− 2ut + 2

p− 2
u
)

ϕ2G(x0,t0) dx + I ϕ

= 1

2

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx

+
∫
Ω×{t0−1}

(
|u|p−2u− u

p− 2

)(
x · ∇u− 2ut + 2

p− 2
u
)

ϕ2G(x0,t0) dx + I ϕ,

with I ϕ = Bϕ + Lϕ

D, where Bϕ is the boundary term

Bϕ = 1

2

∫
∂Ω×{t0−1}

ν · x|∇u|2ϕ2G(x0,t0) do (3.8)
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and where Lϕ

D is the error term

Lϕ

D =
∫
Ω×{t0−1}

|∇u|2ϕx · ∇ϕG(x0,t0) dx

− 2
∫
Ω×{t0−1}

∇u · ∇ϕ

(
x · ∇u− 2ut + 2

p− 2
u
)

ϕG(x0,t0) dx (3.9)

induced by localization. Similarly, for q ≥ 2, we have

d

dR
F ϕ

q (R)

∣∣∣∣
R=1

=
∫
ΩR×{−1}

|uR|q−2uR

(
d

dR
uR

)
ϕ2

RG∗ dx

∣∣∣∣
R=1

+1

q

∫
ΩR×{−1}

|uR|qx · ∇ϕ2(Rx)G∗ dx

∣∣∣∣
R=1

=
∫
Ω×{t0−1}

|u|q−2u
(

x · ∇u− 2ut + 2

p− 2
u
)

ϕ2G(x0,t0) dx + Lϕ
q,

where

Lϕ
q = 1

q

∫
Ω×{t0−1}

|u|qx · ∇ϕ2G(x0,t0) dx. (3.10)

In particular, we can now write

d

dR
Dϕ(R)

∣∣∣∣
R=1

= 1

2

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx

+ d

dR
F ϕ

p(R)

∣∣∣∣
R=1

− 1

p− 2

d

dR
F ϕ

2 (R)

∣∣∣∣
R=1

+ Aϕ

D + Bϕ, (3.11)

where

Aϕ

D = Lϕ

D − Lϕ
p + 1

p− 2
Lϕ

2, (3.12)

which is the identity corresponding to the monotonicity formula of Giga–Kohn [15,

Proposition 3].
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On the other hand, using (1.2), we find the equation

d

dR
F ϕ

2 (R)

∣∣∣∣
R=1

=
∫
Ω×{t0−1}

u
(

x · ∇u− 2ut + 2

p− 2
u
)

ϕ2G(x0,t0) dx + Lϕ

2

=
∫
Ω×{t0−1}

u
(

x · ∇u− 2Δu− 2|u|p−2u+ 2

p− 2
u
)

ϕ2G(x0,t0) dx + Lϕ

2

= 2
∫
Ω×{t0−1}

|∇u|2ϕ2G(x0,t0) dx

− 2
∫
Ω×{t0−1}

u
(

|u|p−2u− u

p− 2

)
ϕ2G(x0,t0) dx + Aϕ

2

= 4Dϕ(1) − 2pF ϕ
p(1) + 4

p− 2
F ϕ

2 (1) + Aϕ

2,

where

Aϕ

2 = Lϕ

2 + 2
∫
Ω×{t0−1}

u∇u · ∇ϕ2G(x0,t0) dx. (3.13)

This scales

R
d

dR
F ϕ

2 (R) = 4Dϕ(R) − 2pF ϕ
p(R) + 4

p− 2
F ϕ

2 (R) + Aϕ

2(R)

and may be combined with (3.11) to give

d

dR
F ϕ

p(R)

∣∣∣∣
R=1

= 2

p

d

dR
Dϕ(R) − 1

2p

d

dR

(
R

d

dR
F ϕ

2 (R) − Aϕ

2(R)

)
+ 2

p(p− 2)

d

dR
F ϕ

2 (R)

= 1

p

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx + 2

p
(Bϕ + Aϕ

D)

+ 2

p

d

dR
F ϕ

p(R)

∣∣∣∣
R=1

− 1

2p

d

dR

(
R

d

dR
F ϕ

2 (R) − Aϕ

2(R)

)∣∣∣∣
R=1

.

Collecting terms, we conclude the following result.

Proposition 3.1. Let u be a smooth solution of (1.2) and let ϕ be a cutoff function as

above. Then there holds

d

dR

(
p− 2

p
F ϕ

p(R) + 1

2p

(
R

d

dR
F ϕ

2 (R) − Aϕ

2(R)

))∣∣∣∣
R=1

= 1

p

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx + 2

p
(Aϕ

D + Bϕ), (3.14)

where Aϕ

2 is defined in (3.13), and with Aϕ

D, Bϕ as defined in (3.12), (3.8), respectively. �



2350 S. Blatt and M. Struwe

Remark 3.2. (i) For our later purposes it will be convenient to write the term

Hϕ(R) := p− 2

p
F ϕ

p(R) + 1

2p

(
R

d

dR
F ϕ

2 (R) − Aϕ

2(R)

)

= p− 2

p
F ϕ

p(R) + 1

2p

(
d

dR

(
RF ϕ

2 (R)
)− F ϕ

2 (R) − Aϕ

2(R)

)

appearing on the left of (3.14) in a somewhat different manner. Comparing (3.14) with

the Giga–Kohn formula (3.11), we also have

Hϕ(R) = 2

p
Dϕ(R) − 2

p
F ϕ

p(R) + 2

p(p− 2)
F ϕ

2 (R). (3.15)

We can therefore eliminate F2(R) from the above expressions in a manner similar to

Pacard [28] to obtain

Hϕ(R) = 2(p− 2)

p(p+ 2)
(Dϕ(R) + F ϕ

p(R)) + 2

p(p+ 2)

(
d

dR

(
RF ϕ

2 (R)
)− Aϕ

2(R)

)
(3.16)

as an equivalent expression for Hϕ , which will be very useful later. We also use the

notation

Hϕ(R) = Hϕ

u,(x0,t0)(R) = Hϕ
u (R) = Hϕ

(x0,t0)(R)

whenever the solution u and/or the center (x0, t0) of scaling are not clear from the con-

text, and similarly for Dϕ , etc.

(ii) For any smooth, bounded Ω ⊂ R
n we can find numbers CΩ > 0, ρ0 > 0 such

that, for any 0 < ρ < ρ0 and any choice of origin x0 = 0 ∈ Ω with dist(x0, ∂Ω) ≥ CΩρ2, there

holds x · ν ≥ 0 on B2ρ(0) ∩ ∂Ω. We may take CΩ = 0 if Ω is convex. Provided that our cutoff

function ϕ is supported in B2ρ(0), then also Bϕ ≥ 0 in (3.14). Also estimating the second

term in Lϕ

D via Young’s inequality

8
∫
Ω×{t0−1}

∇u · ∇ϕ

(
x · ∇u− 2ut + 2

p− 2
u
)

ϕG(x0,t0) dx

≤
∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx

+ 16
∫
Ω×{t0−1}

|∇u|2|∇ϕ|2G(x0,t0) dx

from (3.14) we then obtain the bound

d

dR
Hϕ(R)

∣∣∣∣
R=1

≥ 1

2p

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

ϕ2G(x0,t0) dx + 2

p
Aϕ

0 . (3.17)
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with error term

Aϕ

0 =
∫
Ω×{t0−1}

|∇u|2ϕx · ∇ϕG(x0,t0) dx

− 4
∫
Ω×{t0−1}

|∇u|2|∇ϕ|2G(x0,t0) dx − Lϕ
p + 1

p− 2
Lϕ

2

=
∫
Ω×{t0−1}

(
|∇u|2 − 2

p
|u|p + 1

p− 2
|u|2

)
ϕx · ∇ϕG(x0,t0) dx

− 4
∫
Ω×{t0−1}

|∇u|2|∇ϕ|2G(x0,t0) dx.

(iii) Still with the choice x0 = 0, for general R> 0 formula (3.17) reads

R
d

dR
Hϕ(R) ≥ Rμ

2p

∫
Ω×{t0−R2}

|x · ∇u+ 2(t − t0)ut + au|2
|t0 − t| ϕ2G(x0,t0) dx + 2

p
Aϕ

0(R), (3.18)

where a= 2
p−2 and

Aϕ

0(R) = Rμ

∫
Ω×{t0−R2}

(
|∇u|2 − 2

p
|u|p + R−2 |u|2

p− 2

)
ϕx · ∇ϕG(x0,t0) dx

− 4Rμ+2
∫
Ω×{t0−R2}

|∇u|2|∇ϕ|2G(x0,t0) dx. (3.19)

Moreover, we have

Aϕ

2(R) = Rμ−2

2

∫
Ω×{t0−R2}

|u|2x · ∇ϕ2G(x0,t0) dx

+ 2Rμ

∫
Ω×{t0−R2}

u∇u · ∇ϕ2G(x0,t0) dx.

(iv) Letting ϕ ≡ 1, from Proposition 3.1 we obtain the identity

d

dR

(
p− 2

p
Fp(R) + 1

2p
R

d

dR
F2(R)

)∣∣∣∣
R=1

= 1

p

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

G(x0,t0) dx + 2

p
B,

where Fp = F 1
p, etc., and where B = B1 is the boundary term

B1 = 1

2

∫
∂Ω×{t0−1}

ν · x|∇u|2G(x0,t0) do.
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If our domain Ω is convex, for any choice of origin x0 = 0 ∈ Ω we have x · ν ≥ 0 on all of

∂Ω, and hence B1 ≥ 0 in this case. With the equivalent expression

H(R) = p− 2

p
Fp(R) + 1

2p

(
d

dR
(RF2(R)) − F2(R)

)

= 2(p− 2)

p(p+ 2)
(D(R) + Fp(R)) + 2

p(p+ 2)

d

dR
(RF2(R)), (3.20)

for H = H1 we then obtain

d

dR
H(R)

∣∣∣∣
R=1

≥ 1

p

∫
Ω×{t0−1}

(
x · ∇u− 2ut + 2

p− 2
u
)2

G(x0,t0) dx ≥ 0 (3.21)

for any such x0 and t0.

(v) When (x0, t0) = (0, 0), in the self-similar variables (3.5) we can express

(
x · ∇u+ 2tut + 2

p− 2
u
)

(x, t) = −2 eβsws(y, s). �

4 The ε-Regularity Theorem

Given a smoothly bounded domain Ω ⊂ R
n, for (x0, t0) ∈ R

n × R, r > 0 let Qr(x0, t0) =
Pr(x0, t0) ∩ (Ω × R). Also recall that μ = 2p

p−2 .

Proposition 4.1. There are constants ε > 0 and C < ∞ with the following property: Let

u∈ L p,μ be a weak solution to Equation (1.2) on Q1(0, 0) and suppose that

‖u‖L p,μ(Q1(0,0)) ≤ ε.

Then

‖u‖L∞(Q1/4(0,0)) + ‖∇u‖L∞(Q1/8(0,0)) ≤ C‖u‖L p,μ(Q1(0,0)). �

For f ∈ Lq(Rn+1) with compact support we set

Sf(x, t) :=
∫ t

−∞

∫
Rn

f(y, s)G(x − y, s − t) dyds

so that Sf solves

(Sf)t − Δ(Sf) = f on R
n+1.

By adapting the methods of Adams [1], we can show that S is well-behaved on Morrey

spaces.
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Lemma 4.2. For 2 < λ ≤ n+ 2 and any 1 < q < λ
2 let s be given by 1

q − 1
s = 2

λ
. Then the map

S : Lq,λ(Rn+1) → Ls,λ(Rn+1)

is bounded. �

Proof. Similar to Adams [1, proof of Proposition 3.1], we first derive pointwise esti-

mates in terms of the fractional maximal functions

Mα f(x, t) := sup
r>0

rα−(n+2)

∫∫
Pr(x,t)

| f(y, s)| dyds, α > 0.

Note that, from Hölder’s inequality, we obtain

(Mλ/q f)q ≤ Mλ(| f |q) ≤ ‖ f‖q
Lq,λ . (4.1)

For f �= 0 we use the well-known heat kernel estimate

|G(x, t)| ≤ C (|x| + t1/2)−n

and, for δ > 0 to be chosen later, we split

|Sf(x, t)| ≤ C
∫ t

−∞

∫
Rn

(|x − y| + |t − s| 1
2 )−n| f(y, s)| dyds

≤ C
∞∑

k=1

∫∫
Pδ2−k+1 (x,t)−Pδ2−k(x,t)

(|x − y| + |t − s| 1
2 )−n| f(y, s)| dyds

+ C
∞∑

k=0

∫∫
Pδ2k+1 (x,t)−Pδ2k(x,t)

(|x − y| + |t − s| 1
2 )−n| f(y, s)| dyds

to obtain the bound

|Sf(x, t)| ≤ C
∞∑

k=1

(δ2−k)−n(δ2−k+1)n+2M0 f(x, t)

+ C
∞∑

k=0

(δ2k)−n(δ2k+1)
n+2− λ

q Mλ
q

f(x, t)

≤ C δ2M0 f(x, t) + C δ
2− λ

q Mλ
q

f(x, t).
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Choosing δ = δ(x, t) = (Mλ/q f(x, t)/M0 f(x, t))
q
λ , we find

|Sf(x, t)| ≤ C (Mλ/q f(x, t))
2q
λ (M0 f(x, t))1− 2q

λ .

As the space-time R
n+1 equiped with the metric

dpar((x, t), (y, s)) = max{|x − y| + |t − s|1/2}

and the Lebesgue measure is a doubling measure space, the maximal function M0 sat-

isfies an L p-estimate for 1 < p< ∞; see [33, Theorem 1, Chapter 1]. Hölder’s inequality

together with these L p estimates for our choice of s with 1 − 2q
λ

= q
s then leads to

‖Sf‖Ls(Rn+1) ≤ C‖Mλ/q f‖
2q
λ

L∞(Rn+1)
‖ f‖1− 2q

λ

Lq(Rn+1)
. (4.2)

Finally, for (x0, t0) ∈ R
n+1 we decompose f = f ′ + f ′′, where f ′ = fχP2r(x0,t0). By

(4.1), (4.2) then there holds

‖Sf ′‖Ls(Pr(x0,t0)) ≤ C‖Mλ/q f ′‖
2q
λ

L∞‖ f ′‖1− 2q
λ

Lq ≤ Cr
n+2−λ

s ‖ f‖Lq,λ .

Furthermore, for (x, t) ∈ Pr(x0, t0) we have

|Sf ′′(x, t)| ≤ C
∫∞

r
ρ−n−1

(∫
Pρ(x,t)

| f(y, s)| dyds

)
dρ

≤ C Mλ/q f(x, t)
∫∞

r
ρ

1− λ
q dρ ≤ Cr2− λ

q ‖ f‖Lq,λ = Cr− λ
s ‖ f‖Lq,λ ;

hence

‖Sf ′′‖Ls(Pr(x0,t0)) ≤ Cr
n+2−λ

s ‖ f‖Lq,λ ,

which concludes the proof. �

Remark 4.3. For a smoothly bounded domain Ω ⊂ R
n we let Γ be the fundamental solu-

tion of the heat equation on Ω. By the maximum principle we then have 0 ≤ Γ ≤ G; the

analog of Lemma 4.2 therefore also holds on any domain. �

Proof of Proposition 4.1. We may assume ε ≤ 1. First suppose that B1(0) ⊂ Ω. Through-

out the following we will use the abbreviation Pr := Pr(0, 0) for r > 0. Decompose u=
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v + w, where

w = S(|u|p−2uχP1).

Note that |u|p−1χP1 ∈ L
p

p−1 ,μ. Observing that p−1
p − 1

p = 2
μ

from Lemma 4.2 we conclude

‖w‖L p,μ(P1) ≤ C‖|u|p−1‖
L

p
p−1 ,μ

(P1)
= C‖u‖p−1

L p,μ(P1) ≤ C ε p−2‖u‖L p,μ(P1).

Since

vt − Δv = 0 on P1

and

‖v‖L p(P1) ≤ ‖u‖L p(P1) + ‖w‖L p(P1) ≤ C‖u‖L p,μ(P1)

parabolic regularity leads to the bound

‖v‖L∞(P1/2) ≤ C‖u‖L p,μ(P1). (4.3)

Using Hölder’s inequality, we hence derive

‖v‖L p,μ(Pσ ) ≤ Cσμ/p‖u‖L p,μ(P1) (4.4)

for all σ ≤ 1
2 .

Therefore, if we choose σ, ε > 0 small enough, we obtain

‖u‖L p,μ(Pσ ) ≤ ‖w‖L p,μ(Pσ ) + ‖v‖L p,μ(Pσ ) ≤ C (εp−2 + σμ/p)‖u‖L p,μ(P1)

≤ 1
2‖u‖L p,μ(P1). (4.5)

Applying this for (x0, t0) ∈ P1/2 and 0 < R< 1
2 for the scaled solution uR(x, t) :=

R2/(p−2)u(x0 + Rx, t0 + R2t) which solves (1.2) on P1, and using the invariance of ‖ · ‖L p,μ

under this scaling, we find that

‖u‖L p,μ(Pσr(x0,t0)) ≤ 1
2‖u‖L p,μ(Pr(x0,t0))

for all (x0, t0) ∈ P1/2 and r < 1
2 .
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Iterating this inequality proves that, for θ > 0 small enough, we have

‖u‖L p,μ−θ (P1/2) ≤ C‖u‖L p,μ(P1), (4.6)

where C and θ do not depend on u. Clearly, we may assume that p
p−1 <

μ−θ

2 , and we may

decrease θ further, if necessary.

For any q ≥ p with q
p−1 <

μ−θ

2 let s > 1 be given by

1

s
= p− 1

q
− 2

μ − θ
.

Note that

1

q
− 1

s
= 2

μ − θ
− p− 2

q
= 2

μ

(
μ

μ − θ
− p

q

)
≥ 2

μ

(
μ

μ − θ
− 1

)
= 2θ

μ(μ − θ)
=: γ

with a constant γ > 0, so that

s ≥ q/(1 − qγ ) ≥ q/(1 − pγ ).

Let 0 < r < R< 1
2 and assume that u∈ Lq,μ−θ (PR) for some q ≥ p with ‖u‖Lq,μ−θ (PR) ≤

C‖u‖L p,μ(P1) ≤ C . Suppose that q
p−1 <

μ−θ

2 and let s = s(q) > 1 be given as above. As before,

we decompose u= v + w where now

w := S(|u|p−2u χPR).

Lemma 4.2 now gives the bound

‖w‖Ls,μ−θ (PR) ≤ C‖u‖p−1
Lq,μ−θ (PR)

.

Again we may use parabolic regularity to see that

‖v‖Ls,μ−θ (Pr) ≤ C‖v‖L∞(Pr) ≤ C‖u‖Lq,μ−θ (PR)

for some C > 0 independent of u. Thus, from (4.6) we obtain

‖u‖Ls,μ−θ (Pr) ≤ C (1 + ‖u‖p−2
Lq,μ−θ (PR)

)‖u‖Lq,μ−θ (PR)

≤ C‖u‖Lq,μ−θ (PR) ≤ C‖u‖L p,μ(P1).

Choosing q0 = p, R0 = 1
2 and letting qk+1 = s(qk), Rk = 1

4 + 2−k−2, rk = Rk+1 for k∈ N0,

as long as qk

p−1 <
μ−θ

2 , we obtain u∈ Lqk+1,μ−θ (PRk+1) for each k= 0, 1, . . . with a uniform
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bound

‖u‖Lqk+1 ,μ−θ (PRk+1 ) ≤ C‖u‖L p,μ(P1),

where C = Ck is independent of u.

For some number k0 ∈ N independent of u then we have

qk0−1

p− 1
<

μ − θ

2
≤ qk0

p− 1
.

Hence, by Hölder’s inequality, also using the fact that PRk ⊂ P1 for each k, for any qk0−1 ≤
q ≤ qk0 we have

u∈ Lqk0 ,μ−θ (PRk0
) ⊂ L

q,
q(μ−θ)

qk0 (PRk0
) ⊂ Lq,μ−θ (PRk0

)

with

‖u‖Lq,μ−θ (PRk0
) ≤ C‖u‖L p,μ(P1)

for some constant C independent of u. Letting R̄ := Rk0+1 and choosing a number q ∈
[qk0−1, qk0 [ with

2

μ − θ
<

p− 1

q
<

2

μ − θ
+ 2

(n+ 2)(p− 1)
,

there results u∈ Ls,μ−θ (PR̄) for some s = s(q) >
(n+2)(p−1)

2 , and

‖u‖Ls,μ−θ (PR̄) ≤ C‖u‖L p,μ(P1).

Parabolic regularity then gives

w := S(|u|p−2uχPR̄
) ∈ L∞(P1)

with

‖w‖L∞(P1) ≤ C‖u‖Ls,μ−θ (PR̄) ≤ C‖u‖L p,μ(P1),

and the asserted bound for ‖u‖L∞(P1/4) follows upon splitting u= v + w with v bounded as

in (4.3). The corresponding bound for |∇u| now is a consequence of parabolic regularity.

In the case when B1(0) \ Ω �= ∅ we argue similarly, using Remark 4.3. �

5 The Time-Independent Case

5.1 Partial regularity

By applying Proposition 4.1 to a time-independent weak solution u∈ H1 ∩ L p,μ of

Equation (1.1), we obtain the following result.
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For x0 ∈ R
n, r > 0 let Ωr(x0) = Br(x0) ∩ Ω.

Proposition 5.1. There are constants ε > 0 and C < ∞ with the following property: If

u∈ H1 ∩ L p,μ is a weak solution to the Equation (1.1) on Ω1(0) satisfying

‖u‖L p,μ(Ω1(0)) ≤ ε,

then u is smooth in Ω1/4(0) and

‖u‖L∞(Ω1/4(0)) + ‖∇u‖L∞(Ω1/8(0)) ≤ C‖u‖L p,μ(Ω1(0)). �

For exponents p≥ 2+ = 2(n−1)

n−3 Proposition 5.1 can serve as a substitute for Pac-

ard’s [28, Proposition 1], which relies on [28, Lemma 5], where the bound p< 2+ is

imposed, and thus allows one to extend the results of Pacard [28] to the full range of

exponents p> 2∗. Note that in Proposition 5.1, in contrast to Pacard, we need not assume

that u is stationary; it suffices to assume that u is small in the natural Morrey norm.

Adams’ [1] potential theoretic methods also offer a direct approach to the proof

of Proposition 5.1. Without going into details, we quickly sketch the main ideas. For

f ∈ Lq(Rn) with compact support set

S0 f(x) :=
∫

Rn
f(y)G0(x − y) dy,

where G0(x) = c(n)|x|2−n is the Green’s function for the Laplacian on R
n, so that

−Δ(S0 f) = f on R
n.

Then, similar to Adams [1, Theorem 3.1] or Lemma 4.2, we have the following result. (The

details of the proof can be carried over almost literally.)

Lemma 5.2. For 2 < λ ≤ n and any 1 < q < λ
2 let s be given by 1

q − 1
s = 2

λ
. Then the map

S0 : Lq,λ(Rn) → Ls,λ(Rn)

is bounded. �

Remark 5.3. By the maximum principle, we have 0 ≤ Γ0 ≤ G0 for the Green’s function Γ0

of the Laplacian on a domain Ω ⊂ R
n. Hence the analog of Lemma 5.2 also holds on any

domain. �
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The proof of Proposition 5.1 then can be completed in the same way as the proof

of Proposition 4.1.

5.2 Morrey space embedding

As a second side remark we note the following results similar to (a special case of)

Adams’ [1, Theorem 3.2].

Proposition 5.4. For 1 < λ ≤ n and any 1 < q < λ let s be given by 1
q − 1

s = 1
λ
. There is a

constant C < ∞ with the following properties: If u∈ W1,q
0 (Ω) satisfies ∇u∈ Lq,λ(Ω), then

u∈ Ls,λ(Ω) and ‖u‖Ls,λ(Ω) ≤ C‖∇u‖Lq,λ(Ω). �

Proof. Extend u≡ 0 outside Ω. Using the representation

u(x) =
∫
Ω

∇u(y)∇G0(x − y) dy,

and observing that |∇G0(x − y)| ≤ C |x − y|1−n, similar to [1, proof of Proposition 3.1] or

the proof of Lemma 4.2 for any x ∈ Ω we can bound

|u(x)| ≤ C (Mλ/q|∇u|(x))
q
λ (M0|∇u|(x))1− q

λ .

From Hölder’s inequality and the Lq-estimate for the maximal function in view of the

identity 1 − q
λ

= q
s , then we obtain

‖u‖Ls(Ω) ≤ C‖Mλ/q|∇u|‖
q
λ

L∞(Ω)‖∇u‖1− q
λ

Lq(Ω).

For any x0 ∈ R
n and any r > 0 upon decomposing f := |∇u| = f ′ + f ′′, where f ′ = fχB2r(x0),

and letting u= u′ + u′′ from the above estimate then we obtain

‖u′‖Ls(Br(x0)) ≤ C‖Mλ/q f ′‖
q
λ

L∞‖ f ′‖1− q
λ

Lq(B2r(x0)) ≤ Cr
n−λ

s ‖∇u‖Lq,λ(Ω).

Furthermore, for x ∈ Br(x0) we have

|u′′(x)| ≤ C
∫∞

r
ρ−n

(∫
Bρ(x0)

|∇u(y)| dy

)
dρ

≤ C Mλ/q|∇u|(x)

∫∞

r
ρ

− λ
q dρ ≤ Cr1− λ

q ‖∇u‖Lq,λ(Ω) = Cr− λ
s ‖∇u‖Lq,λ(Ω)



2360 S. Blatt and M. Struwe

and hence

‖u′′‖Ls(Br(x0)) ≤ Cr
n−λ

s ‖∇u‖Lq,λ(Ω),

which concludes the proof. �

Similarly, we obtain derivative estimates. Again let Γ0 be the Green’s function

on Ω. Note the following simple consequence of the maximum principle. A proof can be

found in [12, Theorem 4.7, p. 105].

Lemma 5.5. There is C > 0 such that, for any x, y∈ Ω, we have

|∇Γ0(x, y)| ≤ C |x − y|1−n. �

We can use this bound to obtain the following result.

Proposition 5.6. For 1 < λ ≤ nand any 1 < q < λ let s be given by 1
q − 1

s = 1
λ
. There is a con-

stant C < ∞ with the following properties: If u∈ W2,q ∩ W1,q
0 (Ω) satisfies Δu∈ Lq,λ(Ω),

then ∇u∈ Ls,λ(Ω) and

‖∇u‖Ls,λ(Ω) ≤ C‖Δu‖Lq,λ(Ω). �

Proof. Extend Δu= 0 on R
n \ Ω. Using the representations

u(x) = −
∫
Ω

Δu(y)Γ0(x, y) dy, ∇u(x) = −
∫
Ω

Δu(y)∇Γ0(x, y) dy,

in view of Lemma 5.5 we can bound

|∇u(x)| ≤ C
∫

Rn
|x − y|1−n|Δu(y)| dy.

Again, following [1, proof of Proposition 3.1] then we find the estimate

|∇u(x)| ≤ C (Mλ/q|Δu|(x))
q
λ (M0|Δu|(x))1− q

λ .

Hölder’s inequality together with the Lq-estimate for the maximal function and the iden-

tity 1 − q
λ

= q
s then lead to the bound

‖∇u‖Ls(Ω) ≤ C‖Mλ/q|Δu|‖
q
λ

L∞(Ω)‖Δu‖1− q
λ

Lq(Ω). (5.1)
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Given x0 ∈ R
n, we decompose f := Δu= f ′ + f ′′ where f ′ = fχB2r(x0), and let u= u′ + u′′,

where

u′(x) =
∫
Ω

f ′(y)Γ0(x, y) dy,

and similarly for u′′. By (5.1) then we have

‖∇u′‖Ls(Ωr(x0)) ≤ C‖Mλ/q| f ′|‖
q
λ

L∞‖ f ′‖1− q
λ

Lq(Ω2r(x0)) ≤ Cr
n−λ

s ‖Δu‖Lq,λ(Ω).

Furthermore, for x ∈ Br(x0) there holds

|∇u′′(x)| ≤ C
∫∞

r
ρ−n

(∫
Bρ(x0)

|Δu(y)| dy

)
dρ

≤ C Mλ/q|Δu|(x)

∫∞

r
ρ

− λ
q dρ

≤ Cr1− λ
q ‖Δu‖Lq,λ(Ω) = Cr− λ

s ‖Δu‖Lq,λ(Ω)

and hence

‖∇u′′‖Ls(Ωr(x0)) ≤ Cr
n−λ

s ‖Δu‖Lq,λ(Ω).

The proof is complete. �

We conclude that there is a threshold for the scaled energy of nontrivial entire

solutions to (1.1) on any bounded domain Ω ⊂ R
n.

Proposition 5.7. There is a constant ε > 0 with the following property: Let u∈ H1 ∩
L p,μ(Ω) weakly solve (1.1). Then either u≡ 0, or we have ‖u‖L p,μ(Ω) ≥ ε. �

Proof. Combining the results of Propositions 5.4 and 5.6, recalling that 1
2 = p−1

p − 1
μ

, we

find the chain of estimates

‖∇u‖L2,μ(Ω) ≤ C‖Δu‖
L

p
p−1 ,μ

(Ω)
= C‖u‖p−1

L p,μ((Ω) ≤ C‖∇u‖p−1
L2,μ(Ω)

.

The claim follows. �

The above results naturally lead to the question if, analogous to the case

of Sobolev’s embedding Ḣ1(Rn) ↪→ L2∗
(Rn), the best constant for the Morrey estimate

‖u‖L p,μ((Rn) ≤ C‖∇u‖L2,μ(Rn) given by Proposition 5.4 is attained at a function v > 0, and if
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the corresponding v induces a solution of (1.1), which then might be called a “ground

state”.

6 Applications

We now apply the results of the preceding sections to the flow (1.2), (3.1). Given smooth

initial data u0, there is a smooth solution u∈ C ∞(Ω × [0, T [) of (1.2), (3.1), defined on a

maximal time interval [0, T [ for some T > 0. Our aim is to show that Proposition 3.1 can

be exploited to obtain bounds for u in the natural Morrey spaces so that the results from

Section 4 may be applied. We start by deriving estimates for the functions H and/or Hϕ

both at the initial time and close to any fixed point (x0, t0) ∈ Ω × [0, T [.

6.1 Upper bounds for H and Hϕ at t= 0

Fix any x0 ∈ Ω̄, t0 > 0, and let 0 < R≤ R0 = √
t0 > 0. We shift coordinates so that x0 = 0, as

usual. The expression (3.15) is the most suitable for bounding

H(R) = H1
(x0,t0)(R) = p− 2

p
Fp(R) + 1

2p
R

d

dR
F2(R)

= 2

p
(D(R) − Fp(R)) + 2

p(p− 2)
F2(R) (6.1)

from above. By Hölder’s inequality and in view of the fact that G∗ defines a probability

measure on R
n, we can bound

F2(R) ≤ F 2/p
p (R) (6.2)

and from (6.1) we obtain the bound

H(R) ≤ 2

p

(
D − Fp + 1

p− 2
F 2/p

p

)
(R). (6.3)

The functions involved behave well with respect to the Morrey norms considered

above. Letting Rk = 2kR0, k∈ N, upon bounding

G(x0,t0)(x, 0) = C R−n
0 e

− |x−x0 |2
4R2

0 ≤ C R−n
0 e−22(k−2)

on BRk \ BRk−1(x0), k∈ N,
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for any initial data (3.1) we find

2D(R0) = Rμ

0

∫
Ω×{0}

|∇u0|2G(x0,t0) dx

≤ C
∞∑

k=1

2k(n−μ) e−22(k−2)

Rμ−n
k

∫
BRk\BRk−1 (x0)

|∇u0|2 dx

≤ C sup
R≥R0

Rμ−n
∫

BR(x0)

|∇u0|2 dx ≤ C‖∇u0‖2
L2,μ .

Similarly, we can estimate

2F2(R0) = Rμ−2
0

∫
Ω×{0}

|u0|2G(x0,t0) dx

≤ C sup
R≥R0

Rμ−2−n
∫

BR(x0)

|u0|2 dx ≤ C‖u0‖2
L2,μ−2 .

Using the fact that 2μ/p= μ − 2 and again using also Hölder’s inequality

Rμ−2−n
∫

BR(x0)

|u0|2 dx ≤ C
(

Rμ−n
∫

BR(x0)

|u0|p dx
)2/p

,

we can also bound

‖u0‖2
L2,μ−2 ≤ C‖u0‖2

L p,μ

to obtain

H(R0) ≤ C‖∇u0‖2
L2,μ + C‖u0‖2

L2,μ−2 ≤ C‖∇u0‖2
L2,μ + C‖u0‖2

L p,μ . (6.4)

Of course, we can also estimate

H(R0) ≤ C D(R0) + C F2(R0)

≤ C Rμ

0

∫
Ω×{0}

|∇u0|2G(x0,t0) dx + C Rμ−2
0

∫
Ω×{0}

|u0|2G(x0,t0) dx

≤ C Rμ

0 ||∇u0||2L∞ + C0 Rμ−2
0 ||u0||2L∞, (6.5)

or simply bound

H(R0) ≤ C Rμ−n
0 ||∇u0||2L2 + C0 Rμ−2−n

0 ||u0||2L2 . (6.6)

The previous estimates rely on global bounds for the data. For bounding Hϕ with

a compactly supported cutoff function ϕ, only local estimates are needed and we have

bounds similar to the ones above.
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6.2 Lower bounds for H and Morrey estimates

For the derivation of Morrey estimates we now use the equivalent expressions (3.20) and

(3.16) of H and Hϕ .

First consider the case when the domain Ω is convex, and let u∈ C ∞(Ω̄ × [0, T [)

be a solution to (1.2), (3.1). Fix some point x1 = 0 and let 0 < T/2 < t2 < T . Observe that,

for the choice (x1, t2) as the center of scaling, letting uR(x, t) = R2/(p−2)u(x1 + Rx, t2 + R2t),

there holds rF2(r) → 0 as r ↓ 0. Thus, for 0 < R< R2 = √
t2 by (3.20), (3.21), for H = H(x1,t2)

we have

H(R) ≥ R−1
∫ R

0
H(r) dr ≥ 2(p− 2)

p(p+ 2)
R−1

∫ R

0
(D + Fp)(r) dr.

Note that, for any such t2 < T , R< R2 = √
t2 with an absolute constant c0 > 0 there holds

G(x1,t2) ≥ c0 R−n > 0 on PR/2(x1, t2 − R2/4).

Extending u by u= 0 outside Ω and substituting t = t2 − r2, we thus obtain the estimate

Rμ−n−2
∫

PR/2(x1,t2−R2/4)

(|∇u|2 + |u|p) dx dt ≤ C R−2
∫ R

R/2
(D(r) + Fp(r))r dr

≤ C H(R) ≤ C H(R2) = C H(x1,t2)(
√

t2).

But at time t = 0, for any 0 < t2 < T we can bound

G(x1,t2)(x, 0) = C t−n/2
2 e− |x−x1 |2

4t2 ≤ (T/t2)
n/2G(x1,T)(x, 0). (6.7)

Hence, for any 0 < R2 < T/2 < t2 < T with a uniform constant C > 0 there holds

Rμ−n−2
∫

PR/2(x1,t2−R2/4)

(|∇u|2 + |u|p) dx dt ≤ C H(x1,T)(
√

T), (6.8)

where the right-hand side is now independent of t2.

Fixing x0 ∈ Ω and any time t0 ∈] 7
8 T, T [, we let r0 = √

T − t0. For any (x1, t1) ∈
Pr0(x0, t0)) and any 0 < R< 2r0 we set t2 = t1 + R2/4. Since R2 < 4r2

0 = 4(T − t0) < T/2, we

may then use (6.8) and (6.6) to obtain the bound

‖∇u‖L2,μ(Pr0 (x0,t0)) + ‖u‖L p,μ(Pr0 (x0,t0))

≤ C sup
|x1−x0|<r0

H(x1,T)(
√

T) ≤ C T
μ−n

2
(||∇u0||2L2 + T−1||u0||2L2

)
, (6.9)
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or we may use (6.8) and (6.4) to find

‖∇u‖L2,μ(Pr0 (x0,t0)) + ‖u‖L p,μ(Pr0 (x0,t0)) ≤ C (‖∇u0‖2
L2,μ + ‖u0‖2

L p,μ ); (6.10)

that is, up to a uniform constant C > 0 the flow (1.2) preserves the Morrey bounds of the

data, however, on domains that naturally shrink as we approach the blow-up time.

6.3 Lower bounds for Hϕ

For an arbitrary smoothly bounded domain Ω, we choose ρ0 > 0, CΩ ≥ 0 as in Remark 3.2

such that, for any 0 < ρ < ρ0, we have (x − x0) · ν ≥ 0 on ∂Ω ∩ B2ρ0(x0) whenever x0 ∈ Ωρ ,

where

Ωρ := {x ∈ Ω; dist(x, ∂Ω) ≥ CΩρ2}.

Recall that if Ω is convex, we may let CΩ = 0 so that Ωρ = Ω̄ for any 0 < ρ < ρ0. With no

loss of generality, we may assume that ρ0 < 1. Also set

δ(ρ, R) =
⎧⎨
⎩R−n e− ρ2

4R2 if R≤ ρ,

ρ−n(1 + R2ρμ−2) else.

Fix a smooth cutoff function η such that χB1(0) ≤ η ≤ χB2(0), |∇η| ≤ 4 and, for any

number 0 < ρ < ρ0, let ϕ(x) = ϕρ(x) = η(x/ρ). For the function Hϕρ

then we have the fol-

lowing perturbed monotonicity result.

Proposition 6.1. For any smooth solution u of (1.2) on Ω × [0, T [, any 0 < ρ < ρ0, any

x1 ∈ Ωρ , and any 0 < R≤ R1 ≤ √
T there holds

Hϕρ

(x1,T)(R) ≤ Hϕρ

(x1,T)(R1) + C δ(ρ, R1). (6.11)

�

Moreover, the following analog of (6.9) holds. Recall that Ωr(x) = Ω ∩ Br(x).

Proposition 6.2. Let u be a smooth solution of (1.2) on Ω × [0, T [ and let x0 ∈ Ω. Then,

for any 0 < ρ < ρ0, any R1, r0 > 0 such that 2r0 < ρ, Ωr0(x0) ⊂ Ωρ , 8r2
0 ≤ R2

1 ≤ T , letting t0 =
T − r2

0 , we have

‖∇u‖2
L2,μ(Pr0 (x0,t0)) + ‖u‖p

L p,μ(Pr0 (x0,t0)) ≤ C sup
|x1−x0|<r0

Hϕρ

(x1,T)(R1) + C δ(ρ, R1). �
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For the proof of these results we fix 0 < ρ < ρ0 and again write ϕ instead of ϕρ for

brevity.

For any choice of origin 0 = x1 ∈ Ωρ and any 0 < T/2 < t2 < T , with (x1, t2) as the

center of scaling as before we have rF ϕ

2 (r) → 0 as r ↓ 0. Proposition 3.1, (3.16), and (3.18)

then yield

1

R

∫ R

0
(Dϕ(r) + F ϕ(r)) dr ≤ C

R

∫ R

0
(Hϕ(r) + |Aϕ

2(r)|) dr

≤ C Hϕ(R) + C

R

∫ R

0
|Aϕ

2(r)| dr + C
∫ R

0
|Aϕ

0(r)|r−1 dr (6.12)

and

Hϕ(R) ≤ Hϕ(R1) + C
∫ R1

R
|Aϕ

0(r)|r−1 dr (6.13)

for any 0 < R≤ R1 ≤ √
t2.

In view of the exponential decay of G(x1,t2) we can easily bound the error terms

given by Aϕ

0 and Aϕ

2 by means of the following estimate. Observe that this bound agrees

with the blow-up rate vp(t) ∼ (T − t)−
p

p−2 of a solution v = v(t) > 0 to the ordinary differ-

ential equation vt = vp−1 blowing up at time T > 0.

Lemma 6.3. Let u∈ C ∞(Ω × [0, T [) be a smooth solution to (1.2) for smooth initial data

u0. There exist a uniform constant C1 > 0 and a constant C > 0 depending only on E(u0)

such that, for any 0 < t1 < T , letting t2 = (T + t1)/2 we have the bound

∫ t2

t1

∫
Ω

(|∇u|2 + |u|p) dx dt ≤ C1(T − t1)
− 2

p−2 + C (1 + T − t1). �

Proof. Multiplying (1.2) by u and integrating by parts, for any 0 < t < T we obtain

1

2

d

dt

(∫
Ω

|u(t)|2 dx
)

+
∫
Ω×{t}

(|∇u|2 − |u|p) dx = 0.

Comparing with the expression for E(u(t)) and recalling the energy identity (3.2), we find

the equation

1

2

d

dt

(∫
Ω

|u(t)|2 dx
)

= p− 2

p

∫
Ω

|u|p dx − 2E(u(t) ≥ p− 2

p

∫
Ω

|u|p dx − 2E(u0).
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Hence, by Hölder’s inequality for any 0 < t1 < t < T we obtain the bound

C‖u(t)‖2
L p(Ω) ≥ ‖u(t)‖2

L2(Ω)

≥ ‖u(t1)‖2
L2(Ω) + 4

∫ t

t1

(
p− 2

2p
‖u(s)‖p

L p(Ω) − E(u0)

)
ds. (6.14)

For t1 < t < T set

g = g(t) =
∫ t

t1

(
p− 2

2p
‖u(s)‖p

L p(Ω) − E(u0)

)
ds.

Then, from (6.14) with a uniform constant c0 > 0 we find that

d

dt
g = p− 2

2p
‖u(t)‖p

L p(Ω) − E(u0) ≥ 2c0gp/2 − E(u0), (6.15)

and the latter is larger than c0gp/2 for all t0 ≤ t < T , where t0 ∈ [t1, T [ is minimal with the

property that c0gp/2(t0) ≥ E+(u0) = max{E(u0), 0}. (We let t0 = T if c0gp/2(t) < E+(u0) for all

t ∈ [t1, T [.) Recalling that μ = 2p
p−2 , in the case where t2 = (T + t1)/2 ≤ t0 we have

μ−1
∫ t2

t1

‖u(s)‖p
L p(Ω) ds = g(t2) + (t2 − t1)E(u0)

≤ (E+(u0)/c0)
2/p + (T − t1)E(u0).

On the other hand, if t2 > t0, upon integrating (6.15) from t2 to T , we obtain

g(t2) ≤
(

c0
p− 2

2
(T − t2)

)− 2
p−2

=
(

c0
p− 2

4
(T − t1)

)− 2
p−2

,

which gives

μ−1
∫ t2

t1

‖u(s)‖p
L p(Ω) ds ≤ C1(T − t1)

− 2
p−2 + (T − t1)E(u0).

The corresponding bound for ‖∇u(t)‖L2(Ω) follows from combining the bound for

‖u(t)‖L p(Ω) and the uniform energy bound. �

Lemma 6.4. For any 0 < R≤ √
t2 there holds

1

R

∫ R

0
|Aϕ

2(r)| dr +
∫ R

0
|Aϕ

0(r)|r−1 dr ≤ C δ(ρ, R). �
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Proof. Let A=Aρ(x1) := Ω ∩ (B2ρ(x1) \ Bρ(x1)). With the help of Young’s inequality

rμ−2|u|2 ≤ rμ|u|p + C we can easily bound

Aϕ

0(r) =
∫
Ω×{t2−r2}

(
rμ|∇u|2 − 2

p
rμ|u|p + rμ−2 1

p− 2
|u|2

)
ϕx · ∇ϕG(x1,t2) dx

− 4
∫
Ω×{t2−r2}

(rμ+2|∇u|2|∇ϕ|2G(x1,t2) dx

≤ Crμ(1 + r2ρ−2)

∫
A×{t2−r2}

(|∇u|2 + |u|p)G(x1,t2) dx

+ C
∫
A×{t2−r2}

G(x1,t2) dx.

Similarly, we have

Aϕ

2(r) =
∫
Ω×{t2−r2}

(rμ−2|u|2x · ∇ϕ + 4rμu∇u · ∇ϕ)ϕ G(x1,t2) dx

≤ C
∫
A×{t2−r2}

(rμ−2|u|2 + rμ+2|∇u|2|∇ϕ|2)G(x1,t2) dx

≤ Crμ(1 + r2ρ−2)

∫
A×{t2−r2}

(|∇u|2 + |u|p)G(x1,t2) dx

+ C
∫
A×{t2−r2}

G(x1,t2) dx

for all r ≤ R1. Since we can bound

G(x1,t2) ≤ Cr−n e− ρ2

4r2 on A × {t2 − r2},

for 0 < R≤ √
t2 we have

1

R

∫ R

0
|Aϕ

2(r)| dr +
∫ R

0
|Aϕ

0(r)|r−1 dr ≤
∫ R

0
(|Aϕ

2(r)| + |Aϕ

0(r)|)r−1dr

≤ C
∫ R

0
rμ−n−1

∫
A×{t2−r2}

(
1 +

(
r

ρ

)2
)

(|∇u|2 + |u|p)e− ρ2

4r2 dx dr + C I, (6.16)

where

I =
∫ R

0

∫
A×{t2−r2}

G(x1,t2) dxr−1 dr ≤ C
∫ R

0

(ρ

r

)n
e− ρ2

4r2 r−1 dr ≤ C
( ρ

R

)n
e− ρ2

4R2 ,

if R≤ ρ, and I ≤ C , else.
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If R≤ ρ ≤ 1, letting rk = 2(1−k)/2 R, k∈ N, and substituting t = t2 − r2, we have

∫ R

0
rμ−n−1

∫
A×{t2−r2}

(
1 +

(
r

ρ

)2
)

(|∇u|2 + |u|p)e− ρ2

4r2 dx dr

≤ 2
∞∑

k=1

∫ rk

rk+1

∫
A×{t2−r2}

rμ−n−2 e− ρ2

4r2 (|∇u|2 + |u|p) dxr dr

≤ C
∞∑

k=1

rμ−n−2
k e

− ρ2

4r2
k

∫
A×[t2−r2

k ,t2−r2
k+1]

(|∇u|2 + |u|p) dx dt. (6.17)

But by Lemma 6.3 with t1 = t2 − r2
k , T = t2, for all rk ≤ 1, there holds

rμ−2
k

∫
A×[t2−r2

k ,t2−r2
k+1]

(|∇u|2 + |u|p) dx dt ≤ C . (6.18)

Hence, if R≤ ρ ≤ 1, we have

1

R

∫ R

0
|Aϕ

2(r)| dr +
∫ R

0
|Aϕ

0(r)|r−1 dr ≤ Cρ−n
∞∑

k=1

(
ρ

rk

)n

e
− ρ2

4r2
k + C

( ρ

R

)n
e− ρ2

4R2

≤ C (1 + ρ−n)
( ρ

R

)n
e− ρ2

4R2 ≤ C R−n e− ρ2

4R2 .

For the case R≥ ρ we can argue in a similar fashion to bound the remaining integral,

also using the fact that, by Lemma 6.3, for any ρ ≤ rk ≤ R there holds

∫
A×[t2−r2

k ,t2−r2
k+1]

(|∇u|2 + |u|p) dx dt ≤ C (1 + ρ2−μ + R2)

to obtain

∫ R

ρ

rμ−n−1
∫
A×{t2−r2}

(
1 +

(
r

ρ

)2
)

(|∇u|2 + |u|p) e− ρ2

4r2 dx dr

≤ Cρ−2
k0∑

k=1

rμ−n
k e

− ρ2

4r2
k

∫
A×[t2−r2

k ,t2−r2
k+1]

(|∇u|2 + |u|p) dx dt

≤ C (1 + ρ2−μ + R2)ρ−2
k0∑

k=1

rμ−n
k e

− ρ2

4r2
k ≤ C (ρ2−μ + R2)ρμ−n−2,

where k0 ∈ N is chosen such that rk0+1 ≤ ρ ≤ rk0 , as claimed. �
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Proof of Proposition 6.1. Coupling (6.13) and Lemma 6.4, for any fixed x1 ∈ Ωρ , any t2 ∈
[T/2, T [, and any 0 < R< R1 ≤ √

t2, we find

Hϕρ

(x1,t2)(R) ≤ Hϕρ

(x1,t2)(R1) + C δ(ρ, R1).

Passing to the limit t2 ↑ T , we conclude the proof of Proposition 6.1. �

Proof of Proposition 6.2. Fix any point x0 ∈ Ω and suppose that Ωr0(x0) ⊂ Ωρ and 8r2
0 ≤

R2
1 ≤ T . Set t0 = T − r2

0 ≥ 7T/8.

For any (x1, t1) ∈ Qr0(x0, t0)) and any 0 < R< 2r0 < ρ we let t2 = t1 + R2/4 > t0 − r2
0 =

T − 2r2
0 . With (x1, t2) as the center of scaling and observing that ϕ = ϕρ = 1 on B2r0(x1), for

any r > 0 with R/2 < r < R/
√

2 we can bound

Rμ−n
∫
Ωr(x1)×{t2−r2}

(|∇u|2 + |u|p) dx ≤ C (Dϕ(r) + F ϕ(r)).

Integrating in R/2 < r < R/
√

2, substituting t = t2 − r2, and dividing by R2, from (6.12)

and Lemma 6.4 we then obtain the bound

Rμ−n−2
∫

QR/2(x1,t2−R2/4)

(|∇u|2 + |u|p) dx dt ≤ C

R

∫ R/
√

2

0
(Dϕ(r) + F ϕ(r)) dr

≤ C Hϕρ

(x1,t2)(R/
√

2) + C δ(ρ, R/
√

2)

≤ C Hϕρ

(x1,t2)(R2) + C δ(ρ, R2)

for any R< 2r0 < R1 ≤ √
T , where 0 < R2 < R1 is such that t2 − R2

2 = T − R2
1; in particular,

R2
2 = R2

1 − (T − t2) > R2
1 − 2r2

0 ≥ 2r2
0 ≥ R2/2.

Here we also used the bound

( ρ

R

)n
e− ρ2

2R2 ≤ C
(

ρ

R2

)n

e
− ρ2

4R2
2

for 0 < R/
√

2 < R2. An estimate similar to (6.7) then gives

Rμ−n−2
∫

QR/2(x1,t1)

(|∇u|2 + |u|p) dx dt ≤ Hϕρ

(x1,T)(R1) + C δ(ρ, R1)
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for any (x1, t1) ∈ Qr0(x0, t0)) and any 0 < R< 2r0. Thus, we conclude that

‖∇u‖L2,μ(Qr0 (x0,t0)) + ‖u‖L p,μ(Qr0 (x0,t0)) ≤ sup
|x1−x0|<r0

Hϕρ

(x1,T)(R1) + C δ(ρ, R1)

analogous to (6.9), as claimed. �

6.4 Characterization of blow-up and tangent cones

The estimates in the preceding section allow one to characterize blow-up, as follows.

First note the following lower bound on the blow-up time of solutions in terms of the

L∞-norm of the data.

Proposition 6.5. For given smooth data u0 let u∈ C ∞(Ω × [0, T [) be the unique maximal

smooth solution of (1.2), (3.1) as above. Then T ≥ ‖u0‖2−p
L∞ /(p− 2). �

Proof. (i) Letting

m(t) := sup
Ω

|u(t)|,

by (1.2) we have that m(t) is locally Lipschitz and increases at most at the rate

dm(t)/dt ≤ m(t)p−1;

that is,

m2−p(t) ≥ m2−p(0) − t(p− 2), (6.19)

and our claim follows. �

As usual, in the definition of the functions H(x0,t0), Hϕ

(x0,t0) below we choose the

origin so that x0 = 0, and, for given 0 < ρ < ρ0, we let ϕ = ϕρ .

Proposition 6.6. Let Ω be convex. For given smooth data u0 let u∈ C ∞(Ω × [0, T [) be the

unique maximal smooth solution of (1.2), (3.1).

(i) There is ε0 > 0 such that, whenever T < ∞, for any 0 < ρ < ρ0 we have

sup
x0∈Ω

H(x0,T)(
√

T) ≥ lim inf
R↓0

sup
x0∈Ω

Hϕ

(x0,T)(R) ≥ ε0.

(ii) If T = ∞, there holds ||u(t)||H1∩L∞(Ω) → 0 as t → ∞. �
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Proof. (i) By Proposition 4.1 for any δ > 0 there exists ε = ε(δ) > 0 such that whenever

for some x0 ∈ Ω and 0 < R2 < t0 < T there holds ‖u‖p
L p,μ(QR(x0,t0)) < ε, then we have

‖u‖L∞(QR/2(x0,t0)) ≤ δR−2/(p−2). (6.20)

For a suitable number δ > 0, to be determined below, we now fix the associated number

ε > 0. Suppose that there holds

lim sup
r↓0

sup
x0∈Ω

‖u‖p
L p,μ(Qr(x0,T−r2))

< ε. (6.21)

In view of (6.20) then there is r0 > 0 such that, for any t = T − r2 > T − r2
0 , we obtain the

bound

m(t) = sup
Ω

|u(t)| ≤ δr−2/(p−2);

that is, we have

m(t) ≤ δ(T − t)−1/(p−2) for any T − r2
0 < t < T.

But then, for any sufficiently large t0 < T from (6.19), after shifting time by t0, we obtain

m(t)2−p ≥ δ2−p(T − t0) − (t − t0)(p− 2) for all t0 < t < T,

and the latter is strictly positive at time t = T if 0 < δ < (p− 2)−1/(p−2) is fixed sufficiently

small, contradicting the maximality of T . Thus, we must have

lim sup
r↓0

sup
x0∈Ω

‖u‖p
L p,μ(Qr(x0,T−r2))

≥ ε > 0.

Since Ω is convex, for any fixed 0 < ρ < ρ0 we have Ωρ = Ω. Thus, we may invoke Propo-

sition 6.2 to obtain the bound

0 < ε ≤ lim sup
r↓0

sup
x0∈Ω

‖u‖p
L p,μ(Qr(x0,T−r2))

≤ C lim inf
R↓0

sup
x0∈Ω

Hϕ

(x0,T)(R).

Moreover, clearly Hϕ

(x,T)(R) ≤ H(x,T)(R) for any R> 0 and any x ∈ Ω. Monotonicity (3.21)

then yields the claim. Note that the number ε0 := ε > 0 may be chosen independent of u

and T .
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(ii) If we assume that T = ∞, by (6.6) for any ε > 0 we may choose Tε > 0 such that,

for t > Tε, we have

sup
x0∈Ω

H(x0,t)(
√

t) ≤ C t
μ−n

2 < ε.

Our claim then follows from (6.9) (with r0 = 1) and Proposition 4.1. �

In fact, we can characterize the blow-up more precisely.

Lemma 6.7. Let Ω be convex. Given smooth data u0, let u∈ C ∞(Ω × [0, T [) be the unique

maximal smooth solution to (1.2), (3.1). Then there exists a point x0 ∈ Ω̄ such that

Hϕ

(x0,T)(R) ≥ ε0/2 for any sufficiently small R∈]0,
√

T ], where ε0 > 0 is as defined in Propo-

sition 6.6. �

Proof. By Proposition 6.6, for any fixed 0 < ρ < ρ0 and any sufficiently small R> 0 there

exists x = x(R) ∈ Ω̄ such that Hϕ

(x,T)(R) ≥ ε0, where ϕ = ϕρ . For a suitable sequence Rk ↓ 0

then we may assume that xk = x(Rk) → x0.

We claim that x0 has the desired property. Since Ω is convex and hence Ωρ = Ω̄,

from Proposition 6.1 for suitably small R1 > 0 we obtain the uniform bound

Hϕ

(x,T)(r) ≤ Hϕ

(x,T)(R) + ε0/2

for all 0 < r < R< R1, uniformly for all x ∈ Ω. Suppose by contradiction that Hϕ

(x0,T)(R) <

ε0/2 for some 0 < R< R1. Fix k0 ∈ N such that Rk < R for k≥ k0. Then, for k≥ k0 we have

Hϕ

(xk,T)(Rk) ≤ Hϕ

(xk,T)(R) + ε0/2 → Hϕ

(x0,T)(R) + ε0/2 < ε0 (k→ ∞),

contradicting our choice of (xk) for large k∈ N. �

With the help of Lemma 6.3 we can show the analog of Lemma 6.7 on an arbitrary

smooth, bounded domain.

Proposition 6.8. Let Ω ⊂ R
n be smooth and bounded. Given smooth data u0, let u∈

C ∞(Ω × [0, T [) be the unique maximal smooth solution to (1.2), (3.1). Then, for any

0 < ρ < ρ0, any x0 ∈ Ωρ either

(i) there is r > 0 such that u extends smoothly to the closure of Qr(x0, T), or

(ii) for any sufficiently small R> 0, there holds Hϕ

(x0,T)(R) ≥ ε0, where ϕ = ϕρ and

where ε0 > 0 is an absolute constant. �
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Proof. Fix 0 < ρ < ρ0 and let x0 ∈ Ωρ . Suppose that, for a sufficiently small number ε > 0

to be determined and any sufficiently small R1 > 0, there holds

sup
|x1−x0|<R1; x1∈Ωρ

Hϕ

(x1,T)(R1) ≤ ε. (6.22)

By Proposition 6.1, for given 0 < ρ < ρ0 and suitably small R1 > 0 we again have the uni-

form bound

Hϕ

(x,T)(r) ≤ Hϕ

(x,T)(R) + ε/2 (6.23)

for all 0 < r < R< R1, uniformly for all x ∈ Ωρ . In particular, in view of our assumption

about x0 we have

sup
|x1−x0|<R1; x1∈Ωρ

Hϕ

(x1,T)(R) < 2ε, 0 < R< R1.

By Proposition 6.2 then, for any 0 < R< R1, we have

sup
|x1−x0|<R1; x1∈Ωρ

‖u‖p
L p,μ(QR/2(x1,T−R2/4))

< C ε.

After scaling for sufficiently small ε > 0, Proposition 4.1 implies the bound

(T − t)p/(p−2)‖u(t)‖p
L∞(ΩR1/2(x0)) ≤ C ε. (6.24)

We claim that, for sufficiently small ε > 0, this bound implies conclusion (i) in the

statement of the Lemma. To see this, fix a smooth cutoff function η such that χBR1/4(x0) ≤
η ≤ χBR1/2(x0). The function v = v(x, t) = (T − t)αuη then satisfies the equation

vt − Δv = v(|u|p−2 − α(T − t)−1) − f,

with

f = 2(T − t)α∇u∇η + (T − t)αuΔη.

Multiplying by 2v, then we have

(∂t − Δ)|v|2 + 2|∇v|2 = 2|v|2(|u|p−2 − α(T − t)−1) − 2 fv,

where

fv = 2(T − t)2αu∇uη∇η + (T − t)2αu2ηΔη
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in view of the estimate

|∇u|η ≤ (T − t)−α|∇v| + |u||∇η|

can be bounded

|2 fv(t)| ≤ |∇v|2 + C (T − t)2αu2(ηΔη + |∇η|2).

Thus, we find

(∂t − Δ)|v|2 + |∇v|2 = 2|v|2(|u|p−2 − α(T − t)−1) + g,

where now

‖g(t)‖L∞(ΩR1/2(x0)) ≤ C (T − t)2α‖u(t)‖2
L∞(ΩR1/2(x0)) ≤ C (T − t)2α− 2

p−2 .

For sufficiently large 0 ≤ α < 1/(p− 2) then we see that ‖g(t)‖L∞(ΩR1/2(x0)) ∈ L1([t0, T [) for

some t0 < T , while (6.24) for sufficiently small ε > 0 implies that |u|p−2 ≤ α(T − t)−1 on

ΩR1/2(x0) × [t0, T [. The maximum principle then gives a uniform bound for v on [t0, T [;

hence

(T − t)αp‖u(t)‖p
L∞(ΩR1/4(x0)) ≤ C for t0 < t < T.

By iteration, in finitely many steps we can achieve the bound

(T − t)1/2‖u(t)‖p
L∞(ΩR1/8(x0)) ≤ C for t1 < t < T.

Repeating the above argument with α = 0, we see that u∈ L∞(QR1/9(x0, T)). By parabolic

regularity then u smoothly extends to the closure of QR1/10(x0, T)).

Negating (6.22), for any sufficiently small R> 0 we can find x = x(R) ∈ Ωρ such

that |x − x0| < R and Hϕ

(x,T)(R) ≥ ε. We may then proceed as in the proof of Lemma 6.7.

For a suitable sequence Rk ↓ 0 we let xk = x(Rk) → x0. It is now easy to show that x0

has the desired property. Indeed, suppose by contradiction that Hϕ

(x0,T)(R) < ε/2 =: ε0 for

some 0 < R< R1. Arguing as above, we may assume that R1 > 0 is chosen such that (6.23)

holds. Fix k0 ∈ N such that Rk < R for k≥ k0. Then, for k≥ k0 by (6.23) we have

Hϕ

(xk,T)(Rk) ≤ Hϕ

(xk,T)(R) + ε/2 → Hϕ

(x0,T)(R) + ε/2 < ε (k→ ∞),

contradicting our choice of (xk) for large k∈ N. �

Theorem 6.9. Let Ω ⊂ R
n be smooth and bounded. For given smooth data u0 let u∈

C ∞(Ω × [0, T [) be the unique maximal smooth solution to (1.2), (3.1). Let (x0, T) be a first
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blow-up point in the sense of Lemma 6.8(ii), where x0 ∈ Ω. (If Ω is convex, we also allow

x0 ∈ ∂Ω.) Shift coordinates so that (x0, T) = (0, 0). Then the following holds:

(i) There exists a sequence Rk → 0 and a self-similar “ancient” weak solution

ū for all R> 0 on R
n×] − ∞, 0[ (or on the half-space R

n
+×] − ∞, 0[) which

is smooth away from a set sing(ū) of locally finite (n+ 2 − μ)-dimensional

Hausdorff measure such that uk = uRk → ū as k→ ∞, smoothly locally away

from sing(ū) and from t = 0. (Recall that ū is self-similar if ū≡ ūR for all R> 0,

where, for any R> 0, we let uR(x, t) = R2/(p−2)u(Rx, R2t).)

If (x0, T) = (0, 0) is of Type I in the sense that there exist constants

C , r0 > 0 such that

lim sup
t↑0

(
|t|1/(p−2) sup

x∈Ωr0 (0)

|u(x, t)|
)

≤ C , (6.25)

then ū �= 0, ū is smooth, and (uk) converges smoothly to ū, locally away from

t = 0.

(ii) If (x0, T) = (0, 0) is not of Type I in addition to the above, there exist

sequences Rk → 0, tk ↑ 0, Ω � xk → 0, and an “eternal” solution ū �= 0 of 1.2 on

R
n × R (or possibly on the half-space R

n
+ × R if Ω is convex and x0 ∈ ∂Ω) with

‖ū‖L∞ = |ū(0, 0)| = 1

and such that

uk(x, t) = R
2

p−2
k u(xk + Rkx, tk + R2

kt) → ū

smoothly locally as k→ ∞. �

Proof. Let x0 ∈ Ω with Hϕ

(x0,T)(R) ≥ ε > 0 for any sufficiently small R> 0 and some uni-

form number ε > 0. Shift (x0, T) = (0, 0). Since Ω is open, there exists 0 < ρ < ρ0 such that

x0 ∈ Ωρ . (Recall that, for any convex domain, we have Ωρ = Ω̄ for any 0 < ρ < ρ0.)

(i) If (x0, T) = (0, 0) satisfies (6.25), we may assume that ρ < r0/4. Moreover, by

assumption (6.25) there is τ > 0 such that, for any R> 0, the rescaled solution uR is

uniformly locally bounded on the domain QR := Ωr0/R(0)×] − τ/R2, 0[ with

sup
−τ/R2<t<0, |x|≤r0/R

|t| 1
p−2 |uR(x, t)| < ∞, (6.26)
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and uR solves (1.2) on QR. By parabolic regularity then, after scaling, for any sufficiently

small R> 0 we also have the bound

sup
− τ

2R2 <t<0, |x|≤ r0
2R

|t| p
p−2 |∇uR(x, t)|2 ≤ C . (6.27)

Therefore, a subsequence uk = uRk converges smoothly locally on R
n×] − ∞, 0[ to a C 1-

solution ū of (1.2) on R
n×] − ∞, 0[. (Similarly, if Ω is convex and x0 ∈ ∂Ω, a subsequence

uk = uRk converges smoothly locally on a half-space R
n
+×] − ∞, 0[.)

Moreover, from (3.18), (3.19), Lemma 6.4, and (6.12), upon integrating in R and

substituting t = −R2, for any R0 > 0 with ϕ = ϕρ we obtain

Hϕ(R0) ≥ Hϕ(R0) − lim inf
R→0

Hϕ(R) =
∫ R0

0

d

dR
Hϕ(R) dR

≥
∫ R0

0

Rμ−4

2p

∫
Ω×{−R2}

|x · ∇u+ 2tut + au|2ϕ2G dx RdR + I ϕ

0

= 1

4p

∫0

−R2
0

∫
Ω

|t|a−1|x · ∇u+ 2tut + au|2ϕ2G dx dt + I ϕ

0 ,

where a= 2
p−2 and where in view of Lemma 6.4 we have

I ϕ

0 = 2

p

∫ R0

0
R−1 Aϕ

0(R) dR≤ C δ(ρ, R0) → 0 (R0 ↓ 0).

Therefore, we find
∫0

−∞

∫
Rn

|t|a−1|x · ∇ū+ 2tūt + aū|2G dx dt

= lim
L→∞

∫−1/L2

−L2

∫
BL (0)

|t|a−1|x · ∇ū+ 2tūt + aū|2G dx dt

≤ lim
L→∞

lim sup
R→0

∫−1/L2

−L2

∫
BL (0)

|t|a−1|x · ∇uR + 2tuR,t + auR|2G dx dt

= lim
L→∞

lim sup
R→0

∫ (R/L)2

−L2 R2

∫
BL R(0)

|t|a−1|x · ∇u+ 2tut + au|2ϕ2G dx dt = 0,

and we conclude that dūR
dR ≡ 0, so that ū= ūR for any R> 0. Similarly, from (6.26), (6.27) it

follows that

0 < ε ≤ lim inf
R↓0

Hϕ
u (R) ≤ Hϕ

u (Rk) = H
ϕRk
uRk

(1) → Hū(1) as k→ ∞;

hence ū �= 0, as claimed.
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If (x0, T) = (0, 0) is not of Type I, we can still show existence and partial regular-

ity of ū, as follows. For any compact Q ⊂ R
n×] − ∞, 0[ we can find finitely many parabolic

cylinders Pri (yi, si) such that Q ⊂ ∪i Pri (yi, si) and si + r2
i = 0. For any fixed R1 > 0 and suf-

ficiently small R> 0 with 2 maxi Rri < R1, by Proposition 6.2 we have

‖∇uR‖2
L2,μ(Pri (yi ,si))

+ ‖uR‖p
L p,μ(Pri (yi ,si))

= ‖∇u‖2
L2,μ(Pri R(Ryi ,R2si))

+ ‖u‖p
L p,μ(Pri R(Ryi ,R2si))

≤ C (R1) < ∞.

Hence we obtain that

‖∇uR‖L2(Q) + ‖uR‖L p(Q) ≤ C (Q) < ∞,

uniformly for sufficiently small R> 0, and we may assume that, for a sequence Rk → 0,

the rescaled functions uk = uRk → ū locally weakly in L p on R
n×] − ∞, 0[ as k→ ∞ with

∇uk → ∇ū locally weakly in L2, where ū solves (1.2).

For a suitable number ε > 0 to be determined and any given compact set Q ⊂
R

n×] − ∞, 0[ define

S =
{

z= (y, s) ∈ Q; lim inf
r↓0

lim inf
k→∞

rμ−n−2
∫

Sr(z)
(|∇uk|2 + |uk|p) dz′ > ε

}
,

where for any z0 = (x0, t0) in our new coordinates and any r > 0 now

Sr(z0) = {z= (x, t); |x − x0| < r, |t − t0| < r2}

is a centered parabolic cylinder.

Let rQ > 0 such that 26r2
Q + t < 0 for all z= (x, t) ∈ Q. For any given 0 < r0 < rQ and

each z0 = (x0, t0) ∈ S there is 0 < r = r(z0) < r0 such that

rμ−n−2
∫

Sr(z0)

(|∇uk|2 + |uk|p) dz≥ ε

for all sufficiently large k∈ N.

The family (Sr(z)(z))z∈S covers S. By Vitali’s covering lemma (see Caffarelli et al. [4,

Lemma 6.1, p. 806], for a parabolic version) there exists a collection zi = (yi, si) ∈ S, i ∈ N,

such that the cylinders Si = Sri (zi) are disjoint while S ⊂ ∪i∈NS∗
i , where ri = r(zi) and where
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S∗
i = S5ri (zi), i ∈ N. Since zi ∈ S ⊂ Q, we have S∗

i ⊂ U5rQ(Q) := ∪z∈QS5rQ(z), and by assumption

rQ > 0 is so small that the closure Q0 of U5rQ(Q) is contained in R
n×] − ∞, 0[. Hence we

can estimate

ε
∑
i∈N

rn+2−μ

i ≤
∫
⋃

i∈N
Si

(|∇uk|2 + |uk|p) dz≤
∫
⋃

i∈N
S∗

i

(|∇uk|2 + |uk|p) dz

≤
∫

Q0

(|∇uk|2 + |uk|p) dz≤ C < ∞

with a uniform constant independent of r0. Hence Hn+2−μ(S) ≤ C . In particular, we note

that the (n+ 1)-dimensional measure of the cover ∪i∈NS∗
i of S converges to 0 as r0 → 0.

Thus, in fact, Hn+2−μ(S) = 0.

To complete the proof in case (i) observe that, for any z0 = (x0, t0) ∈ Q \ S and any

0 < r0 < ρ0, with a number L ∈ N to be determined below by Proposition 6.1, (6.3), Fubini’s

theorem, and the definition of S, there exists 0 < r < r0/3 such that, with ϕ = ϕr for a

sequence k→ ∞, there holds

sup
|x1−x0|<r

Hϕ

uk,(x1,t0+2r2/L2)
(2r/L)

≤ C inf
r/L<s<2r/L

sμ−n
∫

B3r(x0)×{t0−2s2}
(|∇uk|2 + |uk|p) dx + C δ(r, 2r/L)

≤ C Ln+2−μrμ−n−2
∫

S3r(z0)

(|∇uk|2 + |uk|p) dz + C δ(ρ, 2r/L)

≤ C Ln+2−με + C δ(r, 2r/L).

Setting R1 = 2r/L = 2r0, T = t0 + 2r2/L2 in Proposition 6.2, upon fixing L ∈ N sufficiently

large to guarantee that δ(r, 2r/L) ≤ Ln+2−με, we find ‖uk‖L p,μ(Pr0 (z0)) ≤ C Ln+2−με. Choosing

ε > 0 sufficiently small, from Proposition 4.1 we then deduce a uniform bound for (uk) in

a neighborhood of z0.

Exhausting the domain R
n×] − ∞, 0[ by compact regions Q = Qk as above and

passing to a suitable diagonal subsequence (uk), we obtain the claim.

ii) If (after shifting time by T ) (x0, T) = (0, 0) is not of Type I, for all r > 0 we have

lim sup
t↑0

|t| 1
p−2 sup

x∈Ωr(0)

|u(x, t)| = ∞.
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Following Hamilton [16], for k∈ N and any r > 0 we let (xk, tk) ∈ Ωr × [−T,− 1
k ] such that

Mk := sup
(x,t)∈Ωr×[−T,− 1

k ]

|u(x, t)|
(

−1

k
− t
) 1

p−2

(r − |x|) 2
p−2

= |u(xk, tk)|
(

−1

k
− tk

) 1
p−2

(r − |xk|)
2

p−2 ,

where Ωr = Ωr(0) for brevity.

Since for any (x, t) we have

lim
k→∞

|u(x, t)|
(

−1

k
− t
) 1

p−2

= |u(x, t)||t|
1

p−2 ,

from our assumption we deduce that Mk → ∞ and tk ↑ 0 as k→ ∞.

Set Rk := |u(xk, tk)| 2−p
2 > 0 and scale

uk(x, t) = R
2

p−2

k u(xk + Rkx, tk + R2
kt) = u(xk + Rkx, tk + R2

kt)

|u(xk, tk)| .

Note that as k→ ∞, we have

R−2
k (− 1

k − tk)(r − |xk|)2 =
(

|u(xk, tk)|
(

−1

k
− tk

) 1
p−2

(r − |xk|)
2

p−2

)p−2

→ ∞

and hence

R−2
k (− 1

k − tk), R−1
k (r − |xk|) → ∞. (6.28)

For (x, t) ∈ R
n × R and any sufficiently large k∈ N so that R−1

k (r − |xk|) ≥ |x| and

t ∈ [−R−2
k (T + tk), R−2

k (− 1
k − tk)] in view of (6.28) as k→ ∞, we then find

|uk(x, t)| = |u(xk + Rkx, tk + R2
kt)|

|u(xk, tk)|

≤
(

− 1
k − tk

− 1
k − tk − R2

kt

) 1
p−2 ( r − |xk|

r − |xk + Rkx|
) 2

p−2

≤
(

R−2
k (− 1

k − tk)

R−2
k (− 1

k − tk) − t

) 1
p−2
(

R−1
k (r − |xk|)

R−1
k (r − |xk|) − |x|

) 2
p−2

→ 1

uniformly on compact subsets of R
n × R.
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For sequences rm ↓ 0, Lm → ∞ by the argument above we can then find a sequence

of points (xm, tm) ∈ Ωrm × [− 1
m , 0) and radii 0 < Rm < L−1

m → 0 such that the rescaled solu-

tions

um(x, t) = R
2

p−2
m u(xm + Rmx, tm + R2

mt) = u(xm + Rmx, tm + R2
mt)

|u(xm, tm)|

solve (1.2) on BLm(0) × [−Lm, Lm] with |um(0, 0)| = 1 and such that

‖um‖L∞(BLm (0)×[−Lm,Lm]) ≤ 1 + 1

m
.

Hence, (um) converges smoothly locally to an “eternal” solution ū of (1.2) on R
n × R as

k→ ∞, which satisfies

‖ū‖L∞ = 1 = |ū(0, 0)|. �

Remark 6.10. In certain situations the possible blow-up profiles ū arising in

Theorem 6.9 have been classified completely. Giga and Kohn [15] showed that a Type

I blow-up, as defined in Theorem 6.9, in the subcritical and critical cases p≤ 2∗ always

is associated with a spatially constant profile. Moreover, Merle and Zaag [23, 24] estab-

lished that in the subcritical case non-negative solutions u of (1.2) on a convex domain

can only have blow-up of Type I and that ancient solutions uon R
n×] − ∞, T ] necessarily

are of ode-type (spatially constant). For p> 2∗, however, examples of self-similar Type I

blow-up with spatially nonconstant profile were obtained by Troy [36], and Herrero and

Velazquez [17] demonstrated that, for sufficiently large n and p, also a Type II blow-up

may occur. Matano and Merle [20–22] and Mizoguchi [25] characterize the different pos-

sible blow-up regimes in the radially symmetric case. (See [22] for a more exhaustive list

of references.)

If we assume that ū= ū(x) > 0 is a time-independent, self-similar solution of (1.1)

on R
n, that is, satisfying ū≡ ūR for all R> 0, and if we suppose that in case n> 3 we have

p< 2 n−1
n−3 , the critical Sobolev exponent in n− 1 dimensions, a result of Gidas and Spruck

[14], implies that ū(x) = c∗|x|−a, where c∗ = (a(n− 2 − a))
1

p−2 ; see [38] or [32] for details.

(Any exponent p> 2∗ is admissible when n= 3.) �

6.5 Well-posedness in the Morrey space

The estimates in the preceding section allow one to considerably relax the regularity

assumptions on the data. For instance, Proposition 6.5 shows that the Cauchy problem

(1.2), (3.1) is locally well-posed for initial data u0 ∈ L∞(Ω).
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Moreover, if the domain is convex, and if u0 ∈ H1 ∩ L p,μ(Ω) with ∇u0 ∈ L2,μ(Ω) for

sufficiently small ε > 0 satisfies the condition

sup
x0∈Rn, 0<r<r0

rλ−n
∫
Ωr(x0)∩Ω

(|∇u0|2 + |u0|p) dx < ε (6.29)

for some number r0 = r0(ε) > 0, then (6.9) and Proposition 4.1 give the a priori L∞-bound

‖uk(t)‖L∞(Ω) ≤ C t− 2
p−2

on a uniform time interval 0 < t < T for the solutions uk of (1.2) for suitable smooth data

u0k → u0 in H1 ∩ L p(Ω) (k→ ∞) satisfying the bound (6.29). Thus, we can extend our

results to data u0 in this class.

The latter reasoning fails, however, when the domain is nonconvex, and it is

not clear if the Cauchy problem (1.2), (3.1) is locally well-posed on an arbitrary smooth

domain for small data in this class. More generally, we may ask if the Cauchy problem

is locally well-posed even for arbitrarily large initial data u0 ∈ H1 ∩ L p,μ(Ω) with ∇u0 ∈
L2,μ(Ω). See [3] for a related study.

Concerning the time-independent problem, it seems an interesting question if

any (not necessarily stationary) weak solution u∈ H1 ∩ L p,μ(Ω) of (1.1) with ∇u∈ L2,μ(Ω)

is partially regular in the sense of Pacard. Likewise, we may ask if Pacard’s partial reg-

ularity result [28, Proposition 1] and our improvement of this result in Proposition 5.1

extend up to the boundary of the domain when the domain is nonconvex.
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