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ABSTRACT

In this paper a method for determining benchmark rates for the excess of loss
reinsurance of a Motor Third Party Liability insurance portfolio will be devel-
oped based on observed market rates. The benchmark rates are expressed as
a percentage of the expected premium income that is available to cover the
whole risk of the portfolio. The rates are assumed to be based on a compound
process with a heavy tailed severity, such as Burr or Pareto distributions. In the
absence of claim data these assumptions propagate the theoretical benchmark
rate component of the regression model.

Given the whole set of excess of loss reinsurance rates in a given market, the
unknown parameters are estimated within the framework of quasi-likelihood
estimation. This framework makes it possible to select a theoretical benchmark
rate model and to choose a parsimonious submodel for describing the observed
market rates over a 4-years observation period. This method is applied to the
Belgian Motor Third Party Liability excess of loss rates observed during the
years 2001 till 2004.

KEYWORDS
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1. INTRODUCTION

In the reinsurance market, the different companies compete in order to offer
excess-of-loss contracts at the best possible prices given their own portfolio
structure and the varying market conditions, as for example the cyclic transi-
tion from soft to hard markets and vice versa. It is therefore quite important
to analyze market benchmarks.

It is natural to suppose that the market prices of excess-of-loss contracts
are based on a compound modelling of the reinsured claims. The compound
model is based on two components: the number of claims and the severity per
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claim. The obtained expected values of the contracts are further loaded to a
commercial rate and discounted with some rate depending on the long tail
structure. Here the negotiation mechanisms of the reinsurance market are
taken into account. The loading and discounting is not necessarily propor-
tional to the expected claim cost. In most cases one may accept that the load-
ings relative to the expected claim cost increase for higher layers. This implies
that one cannot expect to model the components of the underlying claim model
but only a compound model of the commercial rates. This commercial compound
model will also exist out of two components: one component combining the
expected number of claims with the proportional loading factor (including the
discount factor, not necessarily larger than 1), and secondly a transformed
severity. Note that the distribution of the loading structure over the two
components cannot be reconstituted from observed market rates. It also implies
that the change of the excess of loss tariff over time should be analysed by
comparing the commercial compound models. It is important to judge the
significance of these differences.

In this paper we discuss the regression modelling of market rates on the
basis of available rate data over a short observation period. In this way a sum-
mary of the market and the differences in the structure of the premium rates
from one year to another are obtained. We stress here that most commonly in
this setting the individual claim data are not available. Severity models can
then only be used to propagate a rate model which will be considered here as
a regression function. Once a commercial compound model is selected, one can
easily estimate or predict the benchmark rate for any excess of loss cover. The
influence of the priority and the cover of an excess of loss contract on the rates
and the rate on lines (ROL’s, i.e. the excess of loss premium expressed as a
percentage of the excess of loss cover) are exactly known within the context
of the selected model. This stands in contrast with other methods that are
often used in practice that are only based on one covariate being a (weighted)
average of the priority and (upper-) limit of the excess of loss contract.

We make use of quasi-likelihood regression theory as rooted in the theory
of generalised non-linear models. This methodology allows for statistical
inference in a regression context with heteroscedasticity, which is present in
the excess of loss rate data. Moreover within the quasi-likelihood approach
one does not need to specify a distribution function for the observed rates but
only a model for the mean rates and a mean-variance relationship are needed.
Nevertheless quasi-likelihood allows to retain nearly full efficiency compared
to maximum likelihood estimation. The mean-variance relationship can be
verified from the observed commercial rates, and up to some extent can also
mathematically be motivated. References to quasi-likelihood estimation and
generalised linear models are Agresti (2002), McCullagh & Nelder (1985),
Hardin & Hilbe (2001), McCulloch & Searle (2001) or Dobson (2002).

Here, as an illustration, we approximate the benchmark rates with Pareto
type models such as the Pareto and the Burr model. This choice essentially
stems from the knowledge that the Pareto models are of the most favourite in
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practice to describe the underlying claims (see e.g. Schmitter, 1978, Schmit-
ter & Bütikofer, 1997, Doerr, 1980, Schmutz & Doerr, 1998). The analysis of
the presented case study will show that this will lead to a fair estimate. The uses
of the more general Burr model is natural in the loading structure context dis-
cussed above as a generalization of the Pareto models, and for describing heavy
tailed data (see e.g. Beirlant et al., 2005). However other models could be sug-
gested, such as the loggamma or the lognormal models (see e.g. Mack, 1997).

The quasi-likelihood theory supposes independent observations. This is the
most important reason not to work with the cumulative rates of the combined
excess of loss contracts. However, successive layers of the same underlying
portfolio are related to each other. At the other hand, the rates of these suc-
cessive layers in general are not defined by the same reinsurer. Also the highest
excess of loss covers is strongly determined by more or less flat market rates.
Both observations indicate that the independence assumption is not strongly
violated. A further reason not to work with cumulative rates is the fact that
the successive layers are not always specified in the data set such that the cumu-
lative rate approach will lead to loss of information.

In section 2 we recollect some facts from excess of loss reinsurance. Sec-
tion 3 deals with the quasi-likelihood approach as applied in the present
context. Finally the proposed method is applied to Belgian Motor Third Party
Liability data in section 4.

2. EXCESS OF LOSS RE-INSURANCE

For a more detailed description of excess of loss reinsurance we refer to Carter
et al. (2000), Gerathewohl (1980, 1982), Kiln (1982) and Verlaak and Beirlant
(2003). Working in the framework of the classical collective risk model, we
assume that the aggregate claims of a portfolio of insurance risks are described
by the random variable S defined by a compound process i 0=S i= N X! with N
the random variable of the number of claims and the individual claims Xi

being distributed as X for all i. The excess of loss risk after a priority R and
an upper limit L is given by �(R,L) = ii 0= ,X R L0N! ] g6 @, with X/ R = min(X,R)
and X 0 (R,L) = (X / L) – (X / R). From classical risk theory we know that
(Klugman et al. (1998)

E [�(R,L)] = E [N ] · {E [X / L] – E [X / R ]}. (1)

We are considering market rates. This implies that some unknown loading and
discounting structure is applied to the underlying compound process. As men-
tioned in the introduction, we assume that some part of the loading structure
is incorporated in the transformed severity X.

Further we will assume that a market rate b(R,L) can be described as

b(R,L) = v · (1 + l ) · (E [N ] /PI ) · {E [X / L] – E [X / R ]}
= d · {E [X / L] – E [X / R ]} with 0 ≤ R < L ≤ � (2)
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where PI, v, l denote respectively the premium income for the underlying insur-
ance portfolio, the discount rate, and the (proportional) loading factor.

Due to the fact that the priority R and the upper limit L do not influence
the expected number of claims E [N ], the factor E [N ] can be absorbed in the
parameter d together with the discount v and loading factor l.

As discussed in the Introduction, we will further assume that X can be
described by a Pareto or a Burr distribution. The Burr distribution being
defined through the distribution function F (x) = 1 – ua, u = 1/(1 + (x⁄q)g). The
special case g = 1 yields the Pareto distribution. From Klugman et al. (1998)
we find that in case of the Burr model the market rate equals 
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which specifies to the following expression in case of the Pareto distribution:
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Here b refers to the beta distribution. Such assumption of course has to be
confirmed by a residual analysis (see for example below in Figure 2 and Fig-
ure 3). The bench rates will further be denoted by b(R,L,d,q,a,g) when the
dependence on the model parameters is discussed.

Remark that the rate is also influenced by an annual aggregate deductible,
an annual aggregate limit or a reinstatement (payable pro rata time or pro rata
amount or both). To calculate this influence one needs to know the claim num-
ber process N (for instance Poisson or Negative Binomial). Analogous to the
severity X, one can assume that, for this kind of clauses, a loading structure
is also incorporated in a transformed claim number process. But this implies
that the expected number of claims can be isolated from the discount and
loading factor. This will not be pursued here, as we do not use the claim num-
ber process explicitly.

Modelling the rates with a compound process allows to deduce or verify
indirectly the claim severity as appreciated by the market. Moreover, the expected
number of claims (relative to a proportional factor) ceded to the excess of loss
contract can also be estimated. Let E [NR ] denote the expected number of claims
in excess of the priority R and F(R) = 1 – F (R) the survival function of the
severity. Then we have that E [NR ] = E [N ] · F(R) =

v l
d
1$ +] g

· PI · F(R). This
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means that, once the parameters of b(R,L,d,‡,a,g) are estimated and once one
has an acceptable judgment of the discounted loading factor, an estimate of
E [NR ] can be deduced. This will be illustrated with the Belgian case study.

Further from Klugman et al. (1998) we find that the coefficient of variation in

case of a Burr respectively Pareto severity equals to 
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from this point of view very attractive. Afterwards we will see that for the Bel-
gium Motor Third Party Liability this sub-model is one of the best choices.

The benchmark rates as described before gave a summary of what the mar-
ket has done after the reinsurance renewal. However it is helpful in practice to
have a good reference before starting a new negotiation such that one can eas-
ily compare the new proposed rates.

Supposing that the only difference with the subsequent year will be a tar-
iff increase t, a claim inflation c and a homogenous portfolio increase p. Then
we have from (2) that the benchmark rate b�(R,L) of the following year can
be described by a severity X� = X · (1 + c), applied to a portfolio with premium
income PI� = PI · (1 + t) · (1 + p) and an expected claim frequency E [N�] =
E [N ] · (1+ p). Without any additional modelling assumption the next year ref-
erence benchmark is then easily calculated from the current benchmark:

I, /

,

b R L v l E N P E X L E X R

t
c

d E X c
L

E X c
R

t
c

b c
R

c
L

� �1

1
1

1 1 1
1

1 1

$ $ $ / /

$ $ / / $

= + -

=
+
+

+
-

+
=

+
+

+ +

� � �] ] ^

c

g g h

m

6 6 6

; ;

@ @ @

E E

"

(

,

2

(5)

Note that the coefficient of variation of the severity is not affected while the
expected excess of loss rates will be influenced, even if the tariff change is
equal to the claims inflation.

In the context of the Burr (and Pareto) modelling we additionally have that
the next year reference severity X� is still Burr (or Pareto) such that the refer-
ence benchmark can be described through a set of new parameters:

b�B (R,L) = b(R,L,d�,q�,a�,g�) = b (R,L,d / (1+ t), q · (1 + c), a, g) (6)

If one has additional information concerning other expected changes, one can
incorporate these also in the parameters. The parameter d is further affected
through the expected change in reinsurance loading and the expected change
in frequency. If one holds back the g constant sub-model, one can increase
the variability of the severity by increasing the coefficient of variation through
the parameter a. This will essentially influence the tail and thus the prices of
the higher layers, the price of the lower layers can be kept more or less con-
stant by correcting additionally the parameter d.

Finally remark that a rate of a limited cover is described by the difference
of two unlimited covers. Consequently, no constant factor or intercept will be
used to describe the market rates. This implies that the rates are supposed to
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be additive: the rate of one larger layer can be subdivided in the sum of non
overlapping sub layers with the same total coverage. Note that clauses like
annual aggregate limits or reinstatements do not satisfy the additive property.
However, in practice their influence is (in most cases) very limited.

Further, the benchmark approach as defined above and formulated in (2)
implies that for all cedents the claim severity for large claims is supposed to
be common for the whole market. Also the expected number of claims (from
ground up and biased with the discounted loading factor of the excess con-
tract) is supposed to be constant per unit of premium income. This implies that
the number of expected claims is proportional to the premium income. This
seems to be a reasonable approximation for Motor Third Party Liability.

However for other branches one could absorb the premium income in the
severity, such that the severity as a percentage of the premium income is com-
mon for the market. The expected number of claims should then be fixed for
the market, which could be a better approximation for windstorm, earthquake
or flood.

3. MAXIMUM QUASI-LIKELIHOOD ESTIMATION

When the response distribution Y in a regression setting does not exhibit nor-
mal residuals with a constant variance, as it will turn out to be the case in our
setting, quasi-likelihood estimation provides an inferential method which works
as well or almost as well as maximum likelihood but without having to make
specific distributional assumptions. The idea behind the quasi-likelihood is to
derive a likelihood-like quantity whose construction requires few assumptions.
The derivative of the log-likelihood of Y has expected value 0 and, in case of
the exponential family of distributions, possesses a variance which is inversely
proportional to the variance function V = V( m) that describes Variance(Y) as
a function of the expected value m. Then it is straightforward to verify that for

some factor ƒ (the dispersion parameter), the ratio q = f V
Y

m
m

$

-

^ h
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same conditions as the derivative of the log-likelihood. One then defines the
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of yi, i = 1, …, N.

Here we can refer to McCullagh and Nelder (1985).
The quasi-likelihood function is now considered as a function of m =

( m1, …, mN)� and is defined by the system of partial differential equations
�l q(m; y) /�m = V–(m) · (y – m) where the vector of responses y of length N has
mean m and covariance matrix ƒ · V(m) with the dispersion ƒ being strictly
positive and V(m) a positive semi-definite matrix whose elements are known
function of m. In addition it is necessary to assume that the systematic part of
the model is specified in terms of the mean-value parameter. The systematic
part is described in general by m = m(b) where b is a vector of p unknown
regression parameters to be estimated. Remark that this relationship is not
necessarily linear as it will be the case in our example.
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The maximum quasi-likelihood equations for estimating the regression
coefficient b are given by �l q(m(b); y) /�b = 0 and can be written as DT · V–(m) ·
(y – m(b̂)) = 0, where the derivative matrix D = dm /db is assumed to have
rank p for all b. This corresponds to a weighted least squares minimisation
where the weights depend only on the current estimates of the regression para-
meters. In our case study we assume that V(m) = diag[V( m1), …,V( mN)] so that
the quasi-likelihood involves a sum of N contributions l q(m;y) = i 1= l qN! (mi;yi)
and the individual components satisfy �lq(mi;yi) /�mi = (yi – mi) /V(mi). Furthermore
the quantities (yi – mi) / V mi^ h are referred to as Pearson residuals. Remark
that they possess constant variances under the given assumptions.

The quasi-likelihood approach is naturally imbedded in the theory of gen-
eralized linear and non-linear models where the classical linear regression model
is extended by linking the systematic regression component to the expected
value of the responses by a general link function g. Moreover the distribution
of the responses is assumed to belong to the exponential family of distributions.
The standard reference to generalized linear models is McCullagh & Nelder (1985).

Remark that another possible estimation approach in the present hetero-
scedastic setting would consist of using a variance-stabilizing transformation
(see for instance chapter 7 in Seber (1977)) of a response Y. The generalized
linear model and quasi-likelihood approach however have gained more recog-
nition by now as they provide a richer toolbox for data analysis.

Estimation of the market rates

In the present setting we need the following assumptions.

– The rates rj, i(Rj, i, Lj, i) of the XL contracts i = 1,…, nj of the year j = 1, …, J,
depending on the priority Rj, i and upper limit Lj, i, are assumed to be statis-
tically independent.

– The rates rj, i(Rj, i, Lj, i) are observations from a distribution that depends on
Rj, i and Lj, i, for which the variance Var 5rj, i(Rj, i, Lj, i)? and the expected value
mj, i = E 5rj, i(Rj, i, Lj, i)? > 0  are related by Var[rj, i(Rj, i, Lj, i)] = ƒ · mk

j, i, with ƒ > 0
assumed to be independent of the year j. The parameter k will be assumed
to be constant over time. This parameter will be chosen appropriately as dis-
cussed below.

The expected value mj, i = E 5rj, i(Rj, i, Lj, i)? is assumed to be equal to bB(Rj, i, Lj, i ,
dj, qj, aj, gj), while the link function g is taken equal to the identity function.

As mentioned above the parameters can be estimated by a weighted least
squares regression minimizing ,j iij 11 ==

jnJ w!! · (bj, i – rj, i)
2 = ,j iij 11 ==

jnJ w!! ·
[b (Rj, i, Lj, i , dj, qj, aj, gj) – rj, i (Rj, i, Lj, i)]

2 over the feasible set of the parameters
{dj, qj, aj, gj} with the weight wj, i = b–k(Rj, i, Lj, i , dj

*, qj
*, aj

*, gj
*) evaluated at the

(unknown) optimal parameter values {dj
*, qj

*, aj
*, gj

*}. This implies that the
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numerical procedure to solve the minimisation problem has to be re-weighted
for each iteration with the weights evaluated at the parameter values of the last
iteration. It is important to note that the direct minimisation of
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will not give the same solution due to the fact that the weight function is also
incorporated in the objective function, the weight being a function of the para-
meters, and the derivatives of this function now being explicitly incorporated
in the derivative equations. However, only the first minimisation will give the
same solution as obtained by quasi-likelihood minimisation. This has the
important advantage that one can measure the significance of the difference
between several sub-models as will be discussed below. On the other hand if
one is less interested in the selection of an appropriate sub-model, but only in
the optimal set of parameters given a fixed model structure, one could solve
the second minimisation problem. This also has the advantage that one can give
an easy interpretation in the sense that one minimizes directly the sum of the
squares of the Pearson residuals, assuming that bk

j, i is a good estimate of the
variance function.

REMARK 3.1. In the previous formulation we looked only at rates and did not
take into account the scale of the insurance company. One could argue that a
larger company should have more impact on the benchmark. To achieve this,
one could minimize the nominal reinsurance premiums instead of the rates. This
would result in multiplying the rates with the corresponding premium incomes

PIj, i resulting in the minimisation of ,j iij 11 ==
jnJ w�!! · (bj, i – rj, i )

2 with w�j, i =

,

,

j i

j i

,j iPI b

PI
k k

2

$
. Note that for k = 2 it follows that w�j, i = wj, i , and the premium weight

will disappear. But the choice k = 1 will result in w�j, i = wj, i · PIj, i , so that the
premium is introduced as an additional volume or importance weight.

The premium income plays then the role of a classical weight, in the sense
of being proportional to the volume of the observation. This choice could be
motivated by interpreting the premium income as a measure that is more or
less proportional with the number of insured risks, which seems to be accept-
able as long as all the reinsured portfolios are comparable with each other
and apply an equivalent tariff. However the heterogeneity of the underlying
portfolios could also be an argument to work with weights and to obtain a
benchmark that corresponds better with the relative importance within the
heterogeneity of the market.

This leads to a natural generalisation using weights w �j, i =
,j i

,j ib

PI ( )

k

l2 -

, where 

PIj, i
(2 – l ) implicitly plays the role of an importance weight of the corresponding

observation, which also includes the nominal minimisation problem. Here l
and k can be chosen independently of each other.
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Instead of using the premium income of the underlying portfolio as a
weight, one could also use the premium ceded to the reinsurance contract.
Arguments in favour of this would be that this weight is more or less propor-
tional with the number of claims ceded to the reinsurance contract and also
that the larger companies will start from higher layers and should have less
impact. Here an important drawback is that the information of two successive
layers would produce the same importance as the information contained in a
layer that is the sum of two layers.

For the Belgium data below we preferred to work with the premium income
of the underlying portfolio (instead of the reinsurance contract) and choose
l = 2, such that the weights disappear. However, if no reasonable k could be found
to obtain more or less constant Pearson residuals, l ! 2 needs to be explored.

REMARK 3.2. One of the important hypothesis for a generalized (non-)linear
approach is that the variance of the observed XL-rates is only function of the
expected value. In general this assumption will not be true, but there are reasons
that it could be a good approximation. Nevertheless, it must always be carefully
checked based on the analysis of the residuals.

Assuming a compound process to describe the excess of loss claims and
assuming that the rates in practice are estimated based on a simple statistic of
n years, then a formula of the variance of the XL-rates can easily be derived.

To avoid an overload of notation we will not keep into account a loading
structure or a transformed severity as discussed above, and assume that the
risk is not changed over the years. The rate for an excess of loss layer could be

estimated by r(R,L) =
j

,i j , ,n PI X R L1 1
i
N

j
n

01 0
==

!! ]d g n8 B assuming that Xi, j +

X for all i and j and PIj = PI the corresponding premium income for the
underlying insurance portfolio in year j. For i 0=S i= N X! one has that Var(S) =

E(N) · 5E (X2) + A · E2(X)? with ,A E N
Var N E N

1 3!= -
-

]
^

^ ^
g

h

h h
(see Bühlmann,

1970), such that the variance of the estimated rate r (R, L) is equal to
,

n E N
A CoV X R L1 2

$

0+ +

]

]^

g

gh · r2(R,L) = [ b1 + b2 · CoV2(X 0 (R,L))] · r2(R,L) with

bi ≥ 0, where CoV(X 0 (R,L)) denotes the coefficient of variation of the excess
of loss severity X 0 (R,L) and r (R,L) is the expected excess of loss rate. Note
that n, A, E (N) and thus also b1 and b2, are independent of R and L, but the
variance of the XL-rate is not a fixed proportion of r2(R,L). However, a vari-
ance function of the type rk(R,L) with k = 2 seems to be worthwhile to check,
if one may accept that the coefficient of variation of the severity is more or
less constant. In practice one may expect that this coefficient will decrease for
increasing rates, because increasing rates will correspond with lower and smaller
layers. This implies that from a practical point of view one can expect that k
lies in the interval [0,2]. Further, one has to keep in mind that the variance in
the rates is not only due to random fluctuations, but also depends of more or
less structural differences that are not (yet) modelled.
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Testing and model selection procedures

The full or global model provides a separate set of parameters for each rein-
surance year. If one keeps one or more parameters constant over a group of
years, then these models define a so called sub-model. With the help of a
deviance analysis between the full model and the sub-model, one can decide
if the sub-model explains the data as well as the full model does.

The scaled deviance SD is defined as the logarithm of a ratio of likelihoods
of the model under investigation and the full or saturated model: SD(m̂,g, y) =
–28lq(m̂,g, y) – lq(y,g, y)B. The deviance D is defined as D(m̂,y) = g · SD(m̂,g, y),
which means that the deviance D is equal to the scaled deviance SD with the
dispersion g = 1. Note also that maximising the quasi likelihood lq(m,y) is inde-
pendent of the dispersion f and is equivalent with minimising the deviance D.

To examine the parameters bp, b̂q (p > q > 0) of 2 nested models with para-
meter sets of dimension p respectively q, each estimated in the corresponding
models, one has that the distribution of the deviance satisfies the relation
D(b̂p, b̂q) = D(m(b̂p),y) – D(m(b̂q),y) + f · x2

p – q + Op(N –1/2), with x2
p – q the chi-

squared distribution with p – q degrees of freedom.
This leads to a first chi-squared test x2

(1) to make inference about the sub-
model q in relation to model p, supposing that the dispersion is known such
that it is independent of the choice of the submodel:

x 2
(1) =

,

f
D b bp qa k

+ x2
p – q (p – q) (7)

The dispersion parameter f can be estimated by f̂ = (y – m̂)T · V–(m̂) · (y – m̂) /
(N – p) = X2/(N – p), where X2 is a generalisation of the Pearson statistic. If the
dispersion parameter is estimated by f̂(2) = X2 / (N – p) a second chi-squared
test x 2

(2) is defined with the dispersion depending on the submodel.
Supposing that the dispersion is fixed but unknown and that it is indepen-

dent of the choice of the submodel leads to a first F test to make inference
about the submodel q in relation to model p:

F (1) =
,

g

D b bp qa k

+ F ( p – q, N – p) (8)

Further, to avoid the estimate of parameter f, one can make use of a second
F-test:

F (2) =
, /

, /

, /

, /

D N p

D p q

SD N p

SD p q

b b

b b

b b

b b

-

-
=

-

-

N p

p q

N p

p q

a ^

a ^

a ^

a ^

k h

k h

k h

k h

+ F ( p – q, N – p). (9)

In the Belgian Motor Third Party example we will concentrate on F (2) .
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Another approach to selecting appropriate models is based on model selec-
tion criteria some of which are based on information criteria such as the Akaike
information criteria defined as

AIC = –2 l q(m̂; y) / g + 2p = –2 ql
i

N

1=

! ( mi ; yi) / g + 2p (10)

and

AICC = –2 l q(m̂; y) / g + 2p N p
N
-

= –2 ql
i

N

1=

! ( mi ; yi) / g + 2p N p
N
-

(11)

Using this approach models with smaller AIC(C) are selected attempting to
strike a balance between simplicity and predictive power (see for instance in
Burham and Anderson (2004)).

4. BELGIAN MOTOR THIRD PARTY DATA

4.1. Quasi-likelihood estimation

The Belgian Motor Third Party data set contains the quotations of 172 excess
of loss layers for Motor Third Party for the reinsurance years 2001 till 2004
(General Third Party is almost always included). All the selected layers are
without any Annual Aggregate Deductible clause.

Note that Figure 1 indicates that the low rates, which correspond with the
unlimited layers, increased strongly over the years. For the higher rates the
evolution over the years is less clear but point in the same direction. The final
year seems to be more or less comparable with the preceding year.

The need for a quasi-likelihood approach to fit the quoted rates can clearly
be observed in Figure 2. Based on the estimates by a full Burr model, which
corresponds with a Burr market rate model per reinsurance year with 4 para-
meters for every year (16 in total), we have that the residuals rj, i(Rj, i, Lj, i) – mj, i

diverge when the predicted rates increase. In the right hand side panel of Fig-
ure 2 it is shown that the observed and the predicted rates correspond rather
well.

As mentioned before, the choice of the parameter k = 2 for the variance
function is motivated by a graphical presentation of the Pearson residuals (cor-
rected with the variance weight mk) versus the predicted rates through the full
Burr model. Figure 3 gives the classical regression line in combination with a
Local Regression estimate (Proc Loess in SAS) for k = 2. The top graph gives
the result for the squared Pearson residuals and indicates that the choice for
k = 2 is fairly good. One could try to optimise this choice, but we prefer a more
or less rounded value that could be used for several years. The fact that for
k = 2 the analysis is independent of the nominal premium values makes this
choice also more attractive.

QUASI-LIKELIHOOD ESTIMATION OF BENCHMARK RATES 439

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.39.2.2044642
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 13:52:46, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.39.2.2044642
https:/www.cambridge.org/core


FIGURE 1: Rate per year & priority.

440 R. VERLAAK, W. HURLIMANN AND J. BEIRLANT

TABLE 1

DATA DESCRIPTION

Reinsurance Years 2001 2002 2003 2004 Total

# layers 34 48 53 37 172
# unlimited layers 15 19 20 16 70
# cedent 15 19 20 16 70

# layers per program 2001 2002 2003 2004 Total

4 layer program 4 8 4 16
3 layer program 12 24 39 27 102
2 layer program 16 14 8 6 44
1 layer program 2 2 2 4 10
TOTAL 34 48 53 37 172

# cedent 2001 2002 2003 2004 Total

4 layer program 1 2 1 4
3 layer program 4 8 13 9 34
2 layer program 8 7 4 3 22
1 layer program 2 2 2 4 10
TOTAL 15 19 20 16 70
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Figure 2 shows that the fitting is fairly good, but the Local Regression
Curve in the bottom side plot of Figure 3 suggest that the Burr model oscillates
around the observed rates in some systematic way. The lowest rates (essentially
corresponding with the unlimited upper layers) seem to be well estimated on
average. But the model seems to underestimate the next group of rates and the
higher rates, which essentially correspond with the first layer, are somewhat
overestimated.

An explanation could be that the lower layers are basically quoted on the
claim statistic of the corresponding cedent, the highest (unlimited) layer is
essentially based on market rates. The quoted rates of these two parts of the
cover are brought in line with each other through the negotiation with the
reinsurance market. But this does not imply that they can be described through
a relative simple global quoting model (only two covariates and an analytical
description of the severity). Nevertheless the proposed model is fairly good
and can further be reduced to a much smaller model as shown below.
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FIGURE 2: Residuals (top) & rates (bottom) as a function of the predicted rates
(full Burr model).
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One of the assumptions of GLIM is the independency of the observations.
Although GLIM can be extended to correlated data by Generalized Estimating
Equations (GEEs) (Godambe & Kale 1991, McCulloch & Searle 2001, Verbeke
& Molenberghs 2000), we limit ourselves in this study to independence.
This choice can be motivated by the estimation of the correlation between
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FIGURE 3: Squared (top panel) Pearson (bottom panel) residuals from the full Burr model.
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the residuals of the rates of successive layers of the reinsurance program for
a cedent per year. The residuals are obtained by correcting with the full Burr
model. The estimated correlation is equal to –0.0196 and the 95% confidence
interval is equal to (–0.213260, 0.175546). The estimation is based on 102 cou-
ples (= number of layers minus the number of cedents). So we conclude that the
independency assumption is acceptable as a working hypothesis.

4.2. The model selection procedure

Here we try to answer several questions. Firstly, could we limit ourselves to a
Pareto model or is a Burr model preferred? What is the smallest sub-model,
which can be used to describe the 4 years of excess of loss rates adequately?
What is the highest number of successive years with equal parameters?

The parameter d is strongly linked to the reinsurance loading and the claim fre-
quency. At least the reinsurance loading cannot be supposed to be constant
over the years and makes the d constant sub-model less attractive. For the
parameter a one does not expect important changes every year, but rate cor-
rections mainly related to the higher layers cannot be excluded over a longer
period. Only if one has reasons to exclude important rate corrections for the
higher layers, one can keep a constant. However an important correction in
2002 will appear. Important to remark is that it is not natural to keep a a pri-
ori constant and to let g vary over the years, because the parameter g acts as
an generalisation through a transformation of the form X1/g with X Pareto dis-
tributed. Furthermore both parameters are strongly related with each other in
the sense that the distribution function for larger claims only depends of the
product a · g.This implies that it seems much more reasonable to keep only g
constant or to keep a and g together constant.

The parameter q leads to a generalisation of the 1-parameter Pareto model
to the 2-parameter Pareto model (see Klugman et al., 1998). This parameter
is strongly related with the parameter d and interacts also with a (see (3) and
(4)), which makes it worthwhile to keep it constant to stabilize the estimate of
the other parameters. On the other hand q is linked to the lowest excess of
loss priorities (see 1-parameter Pareto model), which are not constant over the
years due to claim inflation and market corrections.

So the g constant sub-model a priori seems to be the most attractive sub-
model between the full Burr and Pareto model compared to the other con-
stant sub-models. But to stabilize the parameters estimation the q constant
sub-model is also important and this in combination with or without the g
constant. However, if one has enough observations then we prefer to explore
the observed rates in detail before concluding.

There are many sub-models possible. To avoid an overflow of sub-models
(54,000) we will limit ourselves to sub-models with one or more parameters
equal for successive years, assuming that only neighbouring years will make a
chance to be comparable (4,608).
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The fact that we work in the context of a statistical model implies that we can
make inference about the significance of sub-models, which leads to a better
interpretation of the results.

First of all we look to the 10 best sub-models based on the Akaike infor-
mation criteria AIC and AICC (see Table 3). Both criterions indicate that the
choice for 7 free parameters is a good compromise to describe the data sufficiently
well.

The Akaike information criterion has the disadvantage that one needs an
estimate of the dispersion factor and that it is less clear how much two different
models deviate from the full model, especially when the numbers of parameters
are different. To overcome these drawbacks we will make use of the F(2)-test
p-values as described in (9). The higher the F(2) p-values are for a certain sub-
model, the better this sub-model correspond with the description of the data
through the full model. F(2) can be seen as a simple criterion without explicit
estimate of the dispersion factor.

The simplest way to illustrate the F(2) approach is to look at Figure 4.
Here all remaining 4,608 sub-models are brought together and ordered through
the F(2) p-values and the number of free parameters. Further all models are
classified in 5 (overlapping) groups. One for each sub-model with a constant
parameter (the so called d, q, a and g constant models, if two parameters are
constant they belong to both groups) and one group with all models that have
the same number of parameters. One can conclude that:

• More then 9 free parameters are not needed. There are enough sub-models
with very large F(2) values (larger then 0.8). Similarly, one needs at least
6 free parameters (sub-model with less then 6 free parameters are not shown
but have always a F(2) value smaller then 0.05). The maximum F(2) value
for 6 free parameters is around 0.363 and is not low enough to exclude this
choice, but smaller models are unacceptable. The fact that one has a view
on a relevant range of free parameters instead of just one optimal model will
give much more and useful information.

• There are enough sub-models with only 7 free parameters that perform as
well as these with 8 free parameters. Choosing between 7 or 8 free parameters
is in favour of 7 free parameters.

• The loss of goodness of fit between 6 and 7 free parameters is relative high
(more then 0.35). Between 9 and 7 (or 8) the loss is limited (around 0.20)
and there are enough sub-models for 7 free parameters with relative high F(2)
values (more then 0.6). Choosing for 7 free parameters seems to be a good
compromise between goodness of fit and number of free parameters. The
‘best F(2)‘ sub-model with 7 free parameters corresponds also with the
AIC(C) selection.

• For all sub-models between 6 and 9 free parameters there exist always a g
constant model with the highest F(2) value, suggesting that for this sample
the g constant model is the most interesting sub-model between (full) Burr
and Pareto.
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Based on the AIC(C) and the F(2) analysis we decide to select the first model
(= B-3029) in Table 3. This model has the nice property that the difference
between each year is explained by only one parameter. For year 2002 the para-
meter a decreases significantly, implying an important increase of the XL-rate
for the higher layers. For year 2003 an increase of 19.5% of the parameter d
occurs, implying an overall increase for all layers with 19.5%. For year 2004
again we find a small decrease of a, which implies a small correction essen-
tially for the higher layers.

Further the model belongs to the sub-classes with q and g constant over the
4 years and makes this model extremely attractive to describe and interpret the
evolution of the sample.

The second model B-3923 has the property that the parameter d and g stay
constant during the 4 years. Together with the property that also the difference
of each year is explained by one parameter (same as previous model but the
role of d is taken over by q with an increase of 8%). This model will keep the
frequency and the proportional loading constant, but takes the claims infla-
tion explicitly into account which is estimated to be equal to 8% in 2003.

As mentioned before, due to the fact that the coefficient of variation for the
g constant sub-model is independent of q makes this sub-model also from this
point of view very attractive.

The overall conclusion is that we prefer to describe the Belgium MTPL sam-
ple with one of the first two models. We do not have any special preference
between both, but we decided to select the first one for illustration.

To give a simple view on the differences between the years we calculate the
benchmark rates for several unlimited layers based on the first model B-3029
in Table 3. Table 2 illustrates clearly that the differences are mostly not con-
stant for different layers, and that there is a large difference between 2001 and
2002, especially for the higher layers.
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TABLE 2

BENCHMARK RATES FOR UNLIMITED LAYERS (B-3029)

Priority Bench Bench Bench Bench 2004 2003 2002
x 106 2004 2003 2002 2001 vs 2003 vs 2002 vs 2001

0,50 8,29% 7,81% 6,53% 4,95% 6,2% 19,5% 32,0%
0,75 5,48% 5,07% 4,24% 2,95% 8,2% 19,5% 44,1%
1,00 3,85% 3,51% 2,94% 1,88% 9,9% 19,5% 55,8%
1,50 2,21% 1,96% 1,64% 0,93% 12,7% 19,5% 76,7%
2,00 1,45% 1,27% 1,06% 0,54% 14,9% 19,5% 94,6%
2,50 1,04% 0,89% 0,75% 0,36% 16,7% 19,5% 110,2%
3,00 0,79% 0,67% 0,56% 0,25% 18,2% 19,5% 124,1%
4,00 0,51% 0,42% 0,35% 0,14% 20,6% 19,5% 148,2%
5,00 0,36% 0,29% 0,25% 0,09% 22,6% 19,5% 168,8%
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TABLE 3

OVERVIEW OF MOST INTERESTING (SUB-)MODELS (empty cells equal the value above)

Model B-3029 B-3923 B-3064 B-4057 B-4035 B-4056 B-4042 B-3958 B-4050 B-3285 P-0348 P-0418 P-0489 B-0001
ID

Model Burr Burr Burr Burr Burr Burr Burr Burr Burr Burr Pareto Pareto Pareto Burr
Type

#d 2 1 2 1 1 1 1 1 1 2 2 3 4 4

#q 1 2 1 1 1 1 1 2 1 3 3 2 4 4

#a 3 3 1 3 4 3 3 1 3 3 3 3 4 4

#g 1 1 3 2 1 2 2 3 2 1 0 0 0 4

# Par 7 7 7 7 7 7 7 7 7 9 8 8 12 16

AIC 157.93 157.96 158.33 158.43 158.82 158.83 158.90 158.96 159.04 158.71 159.86 159.89 167.45 170.44

rank 1 2 3 4 6 7 8 9 10 5 48 49 2511 3039

AICC 158.53 158.56 158.92 159.02 159.41 159.42 159.50 159.55 159.63 159.70 160.65 160.67 169.25 173.73

rank 1 2 3 4 5 6 7 8 9 10 42 44 2572 3477

F(2) 0.7197 0.7163 0.6750 0.6636 0.6185 0.6177 0.6091 0.6023 0.5933 0.9216 0.6354 0.6327 0.2333 1.0000

d1 0.2426 0.2525 0.2455 0.2644 0.2630 0.2635 0.2645 0.2515 0.2592 0.2113 0.3373 0.3373 0.3373 0.2982

d2 0.3735 1.0059 0.9088 0.9682 0.3030

d3 0.2899 0.2992 1.1028 1.1504 0.2200

d4 0.8762 3.1584

q1 0.5686 0.5583 0.5699 0.5824 0.5825 0.5829 0.5818 0.5572 0.5822 0.7902 1.7419 1.7419 1.7419 1.3159

q2 0.4889 0.4498 0.4674 0.4537 0.4957

q3 0.6037 0.6065 0.5306 0.4885 0.4632 0.6025

q4 0.5200 0.6941

a1 1.4080 1.3838 1.3203 1.5275 1.5062 1.5051 1.4582 1.2503 1.4866 1.9967 5.1709 5.1709 5.1709 4.0215

a2 1.2375 1.2187 1.3384 1.3190 1.3178 1.2598 1.5215 2.8499 2.8448 2.8422 1.1819

a3 1.2591 1.2757 1.2745 1.2342 2.8512 0.8732

a4 1.2033 1.1860 1.2419 1.2016 1.2258 1.4844 2.7933 2.7866 2.7992 5.3211

g1 2.1216 2.1566 2.2782 2.0112 2.0399 2.0431 2.1111 2.3915 2.0615 1.7347 1.0000 1.0000 1.0000 1.1280

g2 1.9956 1.8411 2.1015 2.1317 2.1838

g3 2.0702 2.9499

g4 1.9411 1.9878 2.0453 0.6170

4.3. An application to priority setting

In practice, as a rule of thumb, one keeps the ceded expected number of claims
more or less constant (e.g. between 0.5 and 4). If we would define the retained
priority such that the expected number of claims is independent of the port-
folio size, then one could check this relationship to verify if the above-men-
tioned rule of thumb has some common market sense.

As derived in paragraph 2 we know that E [NR(x)] = E [N ] · F[R(x)] = d(x) ·
x · F[R(x)] with R(x) the priority corresponding with a premium income PI = x
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FIGURE 4: F(2) p-values versus # parameters per constant Burr sub-model.

and d (x) the expected number of claims from ground up per unit of premium
income and biased with the discounted loading factor of the excess contract.
We suppose that d (x) depends of the size of the underlying portfolio through
the premium income. This could for example be the case if the reinsurance
loading depends of the portfolio size. We have that E [NR(x)] = c + F[R(x)] =

x d x
c

$ ] g
, with c > 0.

Under the Burr model we get that R(x) = ‡ c
x d x

1
/ /a g1 1

$
-

]
d

g
n> H . Thus the

retained priority R(x) is of the form [a · (x · d(x))b + b](1/g) or [a · xb + b](1/g) if
d (x) is constant.

For a Pareto model we have that R(x) is of the form a · (x · d(x))b + b or
a · xb + b if d (x) is constant.

Note that for the one parameter Pareto the term b is equal to zero, which
means that the relationship reduces to a standard power function. Note also
that in all other cases the term b is equal to –qg < 0, which implies that for small
values of x, R(x) does not exist. The interpretation here is that the portfolio
is too small to generate the expected number of claims.

To verify this relationship for the Belgian Motor Third Party Liability we
confine ourselves to 2003. A first analysis indicates that the relation between
premium income and first priority fairly well can be well described by a standard
power function R*(x) = a · x b (see Figure 5 top panel). But this relationship
will not result in a constant number of ceded claims.

To obtain a better view on the ceded number of claims (which are biased
by loading and discount), we will make use of the benchmark model B-3029
(see Table 3), but will correct each reinsurance program proportionally with the
individual cumulative observed rate and the corresponding benchmark rate. This
means that one will keep the severity constant over all reinsurance programs
and absorb the relative difference between the observed rates and the bench-
mark rates fully in the frequency (related with the parameter d ) E 8N cor

R(xi)B =
d · xi · F[R(xi)] · ri(R1,∞) /b(R1,∞) .
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These estimates are plotted in Figure 5 (bottom panel – left axis) together
with the first priority relationship R**(x) = a · xb + b = 0.0151 · x0.934 + 0.1975
where the parameters are estimated by a simple minimisation of the quadratic
logarithmic difference between the corrected ceded numbers of claims related
to the observed priorities and the ceded numbers based on the relationship
R**(x). This figure indicates clearly that the number of ceded claims is situated
between 0.5 and 4 and confirms the basic rule of thumb. We also observe that
the rule of thumb is too simple in the sense that the corrected ceded numbers
of claims follow a pattern that depends of the portfolio size. The pattern is
based on R**(x), which fits also very well with the observed first priorities.

In the figure one point deviates strongly from the ceded pattern. This has
essentially to do with the fact that for that particular insurance company the
rate was set too low. In fact that rate was corrected in 2004.

It is remarkable that the relationships deduced from a constant ceded fre-
quency via a Burr severity fits well in practice although that cession is portfo-
lio size dependent. We also verified the relationship R***(x) = (a · xb + b)g, but
the difference was not significant.
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FIGURE 5: Relationship between Premium volume, retained priority &
estimation of ceded number of claims.
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Figure 5 (bottom panel – left axis) suggest that the average ceded frequency
for the 2003 sample is around 2.

Finally we would like to remark that the corrected frequency has the advan-
tage that the benchmark model is translated in a simple way to a market con-
form individual model. Given a sample of large claims for a particular insur-
ance company, one can analogically correct the parameter d with the estimated
expected frequency that exceeds some (smaller) priority. This is one of the sim-
plest ways to combine individual claim experience with benchmark severity, a
severity which is measured only through the sample of excess of loss rates
negotiated on the reinsurance market.

5. CONCLUSIONS

• The excess of loss commercial rates for Motor Third Party Liability in Bel-
gium are fitted with the help of an underlying Compound Burr model, which
include the Compound Pareto as a special case.
The motivation of this choice is mainly based on the common use in prac-
tice of the Compound Pareto model for reinsurance quotation for this line
of business.
More important however is the observation that the commercial rates are
fitted well with this model. This makes it possible to derive the claim sever-
ity, as appreciated and quoted by the reinsurance market, from the excess of
loss rates without the analysis of the underlying claims. This claim severity
should be interpreted as a reinsurance price per claim for the real underly-
ing claim severity, because loading structures related to the risk appetite of
the reinsurance market are in some sense (partially) included.
Although only a relative small number of observed reinsurance programs and
rates are observed per year, makes the severity model it possible to sum-
marise accurately the observed rates over the whole range of reinsurance
covers (low and high layers) in a relative simple parametric model.
This parametric model (Compound Burr) keeps account with the priority
and limit of each observed layer as covariates. This has the advantage that
also non-successive layers may belong to the sample of analysed observations
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TABLE 4

ESTIMATED CEDED FREQUENCY (B-3029 - BIASED BY DISCOUNT & LOADING)

2004 2003

Without correction Corrected Without correction Corrected

Mean 2.643 2.192 2.322 2.013
Median 2.613 2.411 2.043 1.935
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and that once the model is calibrated one can calculate the benchmark rate
for any combination of priorities and limits.

• The explicit isolation of a common (reinsurance) claim severity in the bench-
mark model has the additional advantage that, through the premium income
of the underlying portfolio, one also obtains an estimate for the expected
number of claims ceded to the reinsurance market. These estimated numbers
of claims are biased with a discounted loading factor and the heterogeneity
of the underlying portfolios.
Due to the compound modelling one will generate a benchmark summarisa-
tion of the rates but also of frequency and severity. Instead of one bench-
mark one will have three benchmarks.
Further by correction through the frequency component one generate in an
easy way an individual benchmark for each cedent, which has the advantage
of a common severity for the whole market.
Important to note is that no claim statistics are needed for these benchmark
analysis. However if available one can verify them with the experience in prac-
tice, although one has to keep the discounted loading in mind. Nevertheless a
common benchmark severity is a good starting point when analyzing a claim
statistic, especially if the sample is (too) small such that some parameters
from the common Burr model can be taken over.

• Moreover, the decomposition gives the additionally ability of making inter-
pretations, deductions and verifications. A nice example of an indirect deduc-
tion is the verification of the rule of thumb for the Belgium market: “A more
or less fixed number of claims for each company are ceded to the reinsur-
ance market”, which is done without analysing of any claim statistic and leads
to a more general relationship between priority setting and the size of the
underlying portfolio.
Further becomes it a handy toolkit to make considerations about the expected
next renewal excess of loss pricing.

• The analysis is done within the framework of Generalised Non Linear Models
(GLIM). The motivation of this choice is mainly based on the observed
heteroscedasticity of the residuals. A residual analysis for the Belgian data
indicates that a square root variance function describes the heteroscedasticity
well. A choice that also can be motivated from an approximation of the
variance of the estimated excess of loss rates through experience rating.
This in combination with the fact that a square root variance function makes
no difference between a fit of the nominal excess of loss premiums (which
corresponds with the importance scaling by premium weights) or fit of the
excess of loss rates (without importance scaling) did lead to the final choice.
Within the GLIM framework we analysed the rates with the quasi likelihood
approach, which has the advantages that only the variance function has to be
chosen to describe the residuals. But, maybe more important in practice is that
the estimation of the parameters can be explained by a weighted regression,
where the weights are inversely proportional to the variance function (or
estimated variance of the residuals). This way of working is much easier to
interpret and to explain to management than GLIM.
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The conclusion of this approach is that much more weight is given to the
rate residuals of the higher layers (= lower rates) then these of the lower
layers (= higher rates), which is the opposite to what one often thinks.

• The over several years observed reinsurance rates are described in one large
model. The fact that one works in a well know statistical framework makes
it possible to judge how parsimonious a sub-model may be without significant
loss of describing well the observed rates. This analysis was done with the
help of the Akaike information criteria AIC and AICC, but has the disad-
vantage that one need an estimate of the dispersion factor. To overcome
this drawback we used also an F-test as an ordering criterion through the
corresponded p-values. Both methods will come to the same conclusion:
for the Belgium MTPL-market a g-constant Burr model is preferred over a
general Burr model and a general Pareto model.

• The GLIM assumptions were carefully checked for the Belgium case. All were
acceptable fulfilled, implying that this approach makes sense in practice. How-
ever, the most crucial assumption is the independence of the observations (com-
mercial non-cumulative rates, not necessarily successive layers). Nevertheless the
correlation is very low and not significant different of zero should there be some
dependency between the layers of the same cedent. Further is the error on the
estimated benchmark rate not only due to randomness but is also influenced by
some structural elements. The underlying portfolios can be different (more or
less commercial vehicles, inclusion of different perils and coverage, influences of
tariff segmentations, …) and the clauses in the observed excess of loss contracts
are not always the same (different stabilisation and interest clauses, …), leading
to some unexplained parts of the residuals. If the heterogeneity is relatively large,
one may need to incorporate some additional covariates or random effects. This
is not taken into account in this analysis, further investigation in that direction
seems to be interesting. A mixed or Bayesian approach could be helpful to derive
a more sophisticated individual Benchmark model per cedent.
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